工程力学第8章 梁的弯曲应力与强度计算

合集下载

工程力学第八章 直梁弯曲

工程力学第八章  直梁弯曲
实际加工中,采用在铣刀 对面加顶尖的方式。其力学 原理是:增加铣刀的支座约 束,其受力图如图c所示,使 铣刀根部截面上的弯矩MW 减小。铣刀所受的径向力F, 一部分由顶尖承担,使铣刀 根部截面上的应力也相应减 小,从而保证了铣刀不被折 断,提高了生产效率。
§8-5 提高梁抗弯强度的主要措施
二、选择合理的截面形状
Mw y σ= Iz
Mw——横截面上的弯矩,N·m或N·mm; y——点到中性轴z的距离,m或mm; Iz——截面对中性轴z的惯性矩,m4或mm4。
最大正应力:σ max
M w ymax M w = = Iz Wz
Wz =
Iz ymax
Wz为抗弯截面系数,单位为m3或mm3。
§8-3 弯曲正应力
工程中常见梁截面图形惯性矩和抗弯截面系数计算公式 截面图形 惯性矩 抗弯截面系数
弯曲内力——剪力和弯矩 §8-2 弯曲内力 剪力和弯矩
2.弯矩的正负规定
梁弯曲成凹面向 上时的弯矩为正 梁弯曲成凸面向 上时的弯矩为负
弯矩的计算规律:某一截面上的弯矩,等于该截面 左侧或右侧梁上各外力对截面形心的力矩的代数和。
弯曲内力——剪力和弯矩 §8-2 弯曲内力 剪力和弯矩
三、弯矩图
1.弯矩方程与弯矩图
§8-1 平面弯曲的力学模型
(1)活动铰链支座 (2)固定铰链支座 (3)固定端支座
§8-1 平面弯曲的力学模型
3.载荷的基本类型 (1)集中力
(2)集中力偶 (3)分布载荷
F1
集中力
(分布力)
§8-1 平面弯曲的力学模型
4.静定梁的力学模型
名称
简支 梁




一端为活动铰链支座, 另 一端为固定铰链支座的梁 一端或两端伸出支座外的 简支梁,并在外伸端有载 荷作用 一端为固定端,另一端为 自由端的梁

工程力学第八章:弯曲课件

工程力学第八章:弯曲课件

§8–5 平面弯曲梁横截面上的正应力
8.5.1纯弯曲、剪切弯曲的概念
1、剪切弯曲: 各横截面内既有弯矩又有剪力,这种弯曲称为剪切弯曲或横 力弯曲。
2、纯弯曲 各横截面上剪力等于零,弯矩为一常数,这种弯曲称为纯 弯曲。为了更集中地分析正应力与弯矩之间的关系,先考虑 纯弯曲梁横截面上的正应力。
8.5.2梁的纯弯曲实验及简化假设 一、简化假设 (1)弯曲的平面假设:梁的各个横截面在变形后仍保持为平
例8-3 如图8-13(a)所示,一简支梁AB受均布载荷q作用,试 列出该梁的剪力方程和弯矩方程,并绘出剪力图和弯矩图。
图8-13(a)
解:(1)首先求约束力。利用载荷与支座反力的对称性,
可直接得到约束力为
方(向2向)上按。图9-13(b)R所A =示RB,= q2列L 剪力方程和弯矩方程。由内力计
图8-5
(2)固定铰支座 能阻止支承处截面沿水平和垂直方向移动,但不能阻止其发
生转动的支座称为固定铰支座,其简化形式如图8-5(d)或(e)所 示。
(3)固定端支座(固定端) 这种支座使梁端既不发生移动也不发生转动。其简化形式及
支反力如图8-5(g)、图8-5(h)、图8-5(i)所示。图8- 1(c)中的钻床横梁的左端以及长轴承、车刀刀架等均可简化为固 定端支座。
2.利用内力计算规则求指定截面上的内力
例8-2 如图8-11所示,悬臂梁作用有均布载荷q及力偶 ,求A点 右侧截面、C点左侧和右侧截面、B点左侧截面的弯矩。
图8-11
解:对于悬臂梁不必求支座反力,可由自由端开始分析。
截面B-上的内力,由截面右段梁,得 截面C+上的内力,由截面右段梁,得 截面C-上的内力,由截面右段梁,得 截面A+上的内力,由截面右段梁,得

梁弯曲时的正应力 知识点:1、变形几何关系 2 、物理关系 3、静力

梁弯曲时的正应力 知识点:1、变形几何关系 2 、物理关系 3、静力
在一层既不伸长也不缩短的纤维,这一层称为中性层。
中性轴:中性层与横截面的交线。
线应变的公式:
cd cd y d d y d cd
注:对于一个确定的截面来说,其曲率半径ρ是个常 数,因此上式说明同一截面处任一点纵向纤维的线 应变与该点到中性层的距离成正比
图(8.2)
gzdy
Hale Waihona Puke jxlxz工程力学 第八章平面弯曲的应力与强度计算
3、适当布置载荷和支座位置 在梁的内力一章中知道,梁的弯矩图与载荷作用 的位置和梁的支承位置有关。在可能的情况下,如查 适当地调整载荷或支承的位置,可以减小梁的最大弯 矩,增大梁的抗弯能力。 对于梁上的集中载荷,如要能适当地将它分散, 也可提高梁的抗弯强度。
h 2
gzdy
jxlxz
工程力学 第八章平面弯曲的应力与强度计算
正应力强度条件
max
M max WZ
对于脆性材料,其抗拉和抗压强度不同,宜选用中性 轴不是截面对称轴梁,并分别对抗拉和抗压应力建立 强度条件
max
max
gzdy
gzdy
jxlxz
工程力学 第八章平面弯曲的应力与强度计算
提高梁抗弯能力的措施 1、采用变截面梁 在工程实际中不少构件都采用了变截面 梁的形式 1)在厂房建筑中经常采用的鱼腹梁。 2)桥式起重机的大梁 3)汽车以及其他车辆上经常使用的叠 板弹簧等等 2、选用合理截面 可以用比值Wz /A来衡量截面的经济程 度。这个比值愈大,所采用的截面愈经 济合理。
jxlxz
工程力学 第八章平面弯曲的应力与强度计算
例1 图示T形截面铸铁外伸梁,其许用拉应力[σ]= 30MPa,许用压应力[σ]=60MPa,截面尺寸如图。截 面对形心轴z的惯性矩Iz=763mm4,且y1=52cm。试校 核梁的强度。

梁的弯曲计算剪力计算公式

梁的弯曲计算剪力计算公式

梁的弯曲计算剪力计算公式在工程力学中,梁是一种常见的结构元素,用于支撑和承载荷载。

在设计和分析梁的时候,我们需要考虑到梁的弯曲和剪切力。

本文将重点讨论梁的弯曲计算和剪力计算公式,帮助读者更好地理解和应用这些公式。

梁的弯曲计算公式。

在梁的弯曲计算中,我们需要考虑梁的受力情况以及梁的几何形状。

弯曲时梁的受力情况可以用弯矩来描述,弯矩的大小和位置取决于梁的荷载和支撑条件。

在弯曲计算中,我们通常使用以下公式来计算梁的弯矩:M = -EI(d^2y/dx^2)。

其中,M表示弯矩,E表示梁的弹性模量,I表示梁的惯性矩,y表示梁的挠度,x表示梁的位置。

这个公式描述了梁在弯曲时的受力情况,可以帮助我们计算梁的弯曲应力和挠度。

梁的剪力计算公式。

除了弯曲力之外,梁在受荷载时还会产生剪切力。

剪切力是梁上各点间的内力,它的大小和位置取决于梁的荷载和支撑条件。

在剪力计算中,我们通常使用以下公式来计算梁上各点的剪切力:V = dM/dx。

其中,V表示剪切力,M表示弯矩,x表示梁的位置。

这个公式描述了梁上各点的剪切力分布情况,可以帮助我们计算梁的剪切应力和剪切变形。

梁的弯曲和剪力计算实例。

为了更好地理解梁的弯曲和剪力计算,我们可以通过一个实例来说明。

假设有一根长度为L,截面为矩形的梁,受均布荷载w作用。

我们可以根据梁的受力情况和几何形状,计算出梁的弯矩和剪切力分布情况。

首先,我们可以计算出梁的弯矩分布情况。

根据梁的受力情况和几何形状,我们可以得到梁的挠度y(x)的表达式。

然后,我们可以通过弯矩公式M = -EI(d^2y/dx^2)来计算出梁上各点的弯矩分布情况。

接着,我们可以计算出梁上各点的剪切力分布情况。

根据梁的弯矩分布情况,我们可以通过剪切力公式V = dM/dx来计算出梁上各点的剪切力分布情况。

通过以上计算,我们可以得到梁在受均布荷载作用时的弯矩和剪切力分布情况。

这些计算结果可以帮助我们更好地了解梁的受力情况,指导我们设计和分析梁的结构。

梁弯曲的强度条件和刚度条件及应用

梁弯曲的强度条件和刚度条件及应用

范中查到。
在梁的设计计算中,通常是根据强度条件确定截面尺寸,然
后用刚度条件进行校核。具体过程参看下面例题。
工程力学
梁弯曲的强度条件和刚度条件及应用
(1)小跨度梁或荷载作用在支座附近的梁。此时梁的Mm ax可能较小而FSmax较大。
(2)焊接的组合截面(如工字形)钢梁。当梁截面的腹板厚 度与高度之比小于型钢截面的相应比值时,横截面上可能产 生较大的切应力τmax。
(3)木梁。木梁在顺纹方向的抗剪能力差,可能沿中性层 发生剪切破坏。
梁弯曲的强度条件和刚度条件及应用
2. 强度条件的应用 【例8-6】
梁弯曲的强度条件和刚度条件及应用
(2)内力分析。绘制内力图如图8-27(b)和(c)所示, 确定最大剪力、弯矩为
FSmax=60 kN,Mmax=18 kN·m (3)根据正应力强度条件选择截面。由式(8-26)得
查附录型钢表,可选用16号工字钢,其抗弯截面系数 Wz=141 cm3,高h=16 cm,腿厚t=9.9 mm,腹板厚b1= 6 mm。
梁弯曲的强度条件和刚度条件及应用
图8-27
梁弯曲的强度条件和刚度条件及应用
1.2 弯曲梁的刚度条件
梁除满足强度条件外,还应满足刚度要求。根据工程实际的
需要,梁的最大挠度和最大(或指定截面的)转角应不超过某一规
定值,由此梁的刚度条件为
ymax≤y
(8-28)
θmax≤θ
(8-29)
式中,许可挠度y和许可转角θ的大小可在工程设计的有关规
工程力学
ห้องสมุดไป่ตู้
梁弯曲的强度条件和刚度条件及应用
1.1 梁弯曲的强度条件及应用 1. 强度条件
由于梁弯曲变形时横截面上即有正应力又有切应力,因此强度条 件应为两个。当弯曲梁横截面上最大正应力不超过材料的许用正应力, 最大切应力不超过材料的许用切应力时,梁的强度足够,即

工程力学第八章__直梁弯曲

工程力学第八章__直梁弯曲
作用面内的一条曲线。
(3)构件特征:具有一个以上对称面的等截
面直梁。
§8-1 平面弯曲的力学模型
二、梁的力学模型 1.梁的结构形式 工程中梁的轴 线多为直线。无论截 面形状如何,在计算 简图中的梁,一般均 用与梁轴线重合的一 段直线表示
§8-1 平面弯曲的力学模型
2.梁的支座 梁的支撑情况,要通过分析来确定在载 荷作用平面内支座对梁的约束类型以及相 应的约束反力数目。一般情况下,可将梁 的支承简化为以下三种典型支座之一:
§8-2 弯曲内力——剪力和弯矩
管钳的应用分析
在拧、卸管状零件 时,常常要使用管钳给 管件施加转矩,将管件 拧紧或卸下。当拆卸连 接牢固的管子时,常在 钳柄部分加套管,以增 大转矩。那么,在这种 情况下,钳牙是否会损 坏?
1一固定牙 2一可动牙 3-圆螺母 4一齿条 5一弹簧 6-钳柄 7-销轴
§8-2 弯曲内力——剪力和弯矩
2.改变加载方式,在结构允许的条件下,应 尽可能把集中力改变为分散力
集中力改变为分散力
§8-5 提高梁抗弯强度的主要措施
工程应用
吊车与平板车
吊车简图
平板车过桥
§8-5 提高梁抗弯强度的主要措施
3.增加约束 如图a所示,某变速器 换挡杆1需要加工一个R8的 月牙槽,以往是把月牙槽 铣刀悬挂地装在铣床主轴 上,利用工作台的升降进 行铣削加工。
§8-3
弯曲正应力
2.中性轴与中性层
§8-3 弯曲正应力
二、正应力的分布规律
横截面上各点正应力的大小与该点到中性轴 的距离成正比:

y


max
y max
在中性轴处纤维长度不变,此处 不受力,正应力为零。

梁的应力计算公式全部解释

梁的应力计算公式全部解释

梁的应力计算公式全部解释应力是材料受力时产生的内部力,它是描述材料内部抵抗外部力的能力的物理量。

在工程领域中,计算材料的应力是非常重要的,可以帮助工程师设计和选择合适的材料,以确保结构的安全性和稳定性。

梁的应力计算公式是计算梁在受力时产生的应力的公式,它可以帮助工程师了解梁在不同条件下的应力情况,从而进行合理的设计和分析。

梁的应力计算公式是由弹性力学理论推导而来的,它可以根据梁的几何形状、受力情况和材料性质来计算梁的应力。

在工程实践中,梁的应力计算公式通常包括弯曲应力、剪切应力和轴向应力三种类型的应力。

下面将分别对这三种类型的应力计算公式进行详细解释。

1. 弯曲应力计算公式。

梁在受到外部力的作用时,会产生弯曲应力。

弯曲应力是由于梁在受力时产生的弯曲变形所引起的,它可以通过以下公式进行计算:σ = M c / I。

其中,σ表示梁的弯曲应力,单位为N/m^2;M表示梁的弯矩,单位为N·m;c表示梁截面内的距离,单位为m;I表示梁的惯性矩,单位为m^4。

弯曲应力计算公式可以帮助工程师了解梁在受力时产生的弯曲应力大小,从而进行合理的设计和分析。

在工程实践中,通常会根据梁的几何形状和受力情况选择合适的弯曲应力计算公式进行计算。

2. 剪切应力计算公式。

梁在受到外部力的作用时,会产生剪切应力。

剪切应力是由于梁在受力时产生的剪切变形所引起的,它可以通过以下公式进行计算:τ = V Q / (I b)。

其中,τ表示梁的剪切应力,单位为N/m^2;V表示梁的剪力,单位为N;Q 表示梁的截面偏心距,单位为m;I表示梁的惯性矩,单位为m^4;b表示梁的截面宽度,单位为m。

剪切应力计算公式可以帮助工程师了解梁在受力时产生的剪切应力大小,从而进行合理的设计和分析。

在工程实践中,通常会根据梁的几何形状和受力情况选择合适的剪切应力计算公式进行计算。

3. 轴向应力计算公式。

梁在受到外部力的作用时,会产生轴向应力。

轴向应力是由于梁在受力时产生的轴向变形所引起的,它可以通过以下公式进行计算:σ = N / A。

清华出版社工程力学答案-第8章弯曲强度问题

清华出版社工程力学答案-第8章弯曲强度问题

eBook工程力学习题详细解答教师用书(第8章)2011-10-1范 钦 珊 教 育 教 学 工 作 室FAN Qin-Shan ,s Education & Teaching Studio习题8-1 习题8-2 习题8-3 习题8-4 习题8-5 习题8-6 习题8-7 习题8-8 习题8-9 习题8-10 习题8-9 习题8-10习题8-11 习题8-12 习题8-13 习题8-14 习题8-15 习题8-16 习题8-17 习题8-18 习题8-19 习题8-20习题8-21工程力学习题详细解答之八第8章 弯曲强度问题8-1 直径为d 的圆截面梁,两端在对称面内承受力偶矩为M 的力偶作用,如图所示。

若已知变形后中性层的曲率半径为ρ;材料的弹性模量为E 。

根据d 、ρ、E 可以求得梁所承受的力偶矩M 。

现在有4种答案,请判断哪一种是正确的。

(A) ρ64π4d E M =(B) 4π64d E M ρ=(C) ρ32π3d E M =(D) 3π32dE M ρ=正确答案是 A 。

8-2 矩形截面梁在截面B 处铅垂对称轴和水平对称轴方向上分别作用有F P1和F P2,且F P1=F P2,如图所示。

关于最大拉应力和最大压应力发生在危险截面A 的哪些点上,有4种答案,请判断哪一种是正确的。

(A) +max σ发生在a 点,−max σ发生在b 点M习题8-1图A Ba b cd P2z固定端习题8-2图(B) +max σ发生在c 点,−max σ发生在d 点 (C) +max σ发生在b 点,−max σ发生在a 点 (D) +max σ发生在d 点,−max σ发生在b 点正确答案是 D 。

8-3 关于平面弯曲正应力公式的应用条件,有以下4种答案,请判断哪一种是正确的。

(A) 细长梁、弹性范围内加载;(B) 弹性范围内加载、载荷加在对称面或主轴平面内;(C) 细长梁、弹性范围内加载、载荷加在对称面或主轴平面内;(D) 细长梁、载荷加在对称面或主轴平面内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



y0 和
h y 2
FS BH 2 b Bh2 max (1 ) Iz b 8 B 8
计算结果表明:
FS1 (0.95 ~ 0.97) FS
腹板内的剪应力近似计算公式
FS BH 2 Bh2 min 8 8 Iz b
I z 25.6cm4 b 4.8cm y1 1.52cm
(3)求最大应力
t ,max
M max y1 (3000N m)(1.52102 m) 178 .1MPa -8 4 25.610 m Iz
M max y2 (3000N m) (4.8 1.52) 102 m 384 .4MPa c,max -8 4 25.610 m Iz
应力 c =160 MPa。已知中性轴位置 y1 = 52 mm,截面对形心轴 z
的惯性矩为 Iz=763 cm4。试校核梁的强度。 解: 1.计算支反力
FA 2.5kN
FA FB
FB 10.5kN
2.绘弯N m
8 梁的弯曲应力与强度计算
3.选择截面尺寸
A,B截面最危险,该截面
bh2 b(2b) 2 2b3 Wz 6 6 3
8 梁的弯曲应力与强度计算
M max Fa 12kN m
8.2 弯曲正应力的强度条件
bh2 b(2b) 2 2b3 Wz 6 6 3
强度条件
M max M max 3 Wz 2b / 3
A
(c) (d) (e)
M y z dA 0
A
M z y dA M e
A
将式 E
y

代入式(c),得
dA
A
Ey
A

dA 0
E

=常量,
E


A
y dA 0 S z 0 z 轴(中性轴)通
过截面形心。
梁的轴线在中性层内,其长度不变。
对于抗拉和抗压强度相等的材料 (如炭钢),只要绝对值最大
的正应力不超过许用弯曲应力即可。 对于抗拉和抗压不等的材料 (如铸铁),则最大的拉应力和最 大的压应力分别不超过各自的许用弯曲应力。
8 梁的弯曲应力与强度计算
8.2 弯曲正应力的强度条件
例:20a工字钢梁。若 160MPa ,试求许可荷载 F 。 解:(1)计算支反力
y

(b)
式(b)表明横截面上任意一点的正应力σ 与该点到中性轴的距离 y 成正比。 在中性轴上:y=0, σ =0。
8 梁的弯曲应力与强度计算 静力学关系
FN dA
A
8.1 梁弯曲时横截面上的正应力
M y z dA
A
M z y dA
A
FN dA 0
公式就可适用。
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力
8.1.2 横力弯曲时横截面上的正应力
在工程实际中,一般都是横力弯曲,此时,梁的横截面上不 但有正应力还有剪应力。因此,梁在纯弯曲时所作的平面假设和 各纵向纤维之间无挤压的假设都不成立。
虽然横力弯曲与纯弯曲存在这些差异,但是应用纯弯曲时正
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力
E
y

(b)
M y z dA 0
A
(d) (e)
将式(b)代入式(d),得
M z y dA M
A
z dA
A
E
A
y z dA 0
y z dA I yz 0
A
(自然满足)
应力计算公式来计算横力弯曲时的正应力,所得结果误差不大,
足以满足工程中的精度要求。且梁的跨高比 l/h 越大,其误差越小。
My Iz
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力
例: 已知 l=1m,q=6kN/m,10号槽 钢。求最大拉应力和压应力。 解:(1)作弯矩图 1 2 M max ql 3000 N m 2 (2)由型钢表查得,10号槽钢


8 梁的弯曲应力与强度计算
8.2 弯曲正应力的强度条件
横力弯曲时,弯矩随截面位置变化。一般情况下,最大正应 力 max 发生在弯矩最大的截面上,且离中性轴最远处。即
max
引用记号
M max ymax Iz
Iz Wz ymax

M max max Wz
Wz 称为弯曲截面模量。它与截面的几何形状有关,单位为m3。
工 程 力 学
8 梁的弯曲应力与强度计算
8 梁的弯曲应力与强度计算
8
梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力 8.2 弯曲正应力的强度条件 8.3 梁的剪应力及其强度条件 8.4 提高弯曲强度的措施
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力
横截面上有弯矩又有剪力。 例如:AC和DB段。 称为横力弯曲(剪切弯曲)。 横截面上有弯矩没有剪力。 例如:CD段。
式(a)表明线应变ε与它到中性层的距
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力
y d d
物理关系:
d

y

(a)
因为纵向纤维之间无正应力,每一纤维都是单向拉伸或压缩。 当应力小于比例极限时,由胡克定律知
E
将 (a) 代入上式,得
E
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力
变形几何关系:
设横截面的对称轴为y 轴,向下为 正,中性轴为 z 轴(位置未定)。
bb y d
bb dx OO OO d
y d d
d
离 y 成正比。

y

(a)
8 梁的弯曲应力与强度计算 剪应力计算公式为
* FS S z I zb
8.3 梁的剪应力及其强度条件
h/ 2 y h S b y y 2 2
* z
b h2 y2 2 4
FS 2I z
h2 2 4 y
8.2 弯曲正应力的强度条件
M B 4kN m
M C 2.5kN m
3.强度校核
M B y1 (4 103 N m)(52103 m) t ,max 27.3MPa t 8 4 Iz 76310 m M B y2 (4 103 N m)(88103 m) c,max 46.1MPa c 8 4 Iz 76310 m C截面: M C y2 (2.5 103 N m)(88103 m) t ,max 28.8MPa t 8 4 Iz 76310 m
FS B 2 b h2 FS S z 2 2 H h y Iz b 8 2 4 Iz b
8 梁的弯曲应力与强度计算
8.3 梁的剪应力及其强度条件
FS B 2 b h2 2 2 H h y Iz b 8 2 4
Iz D 4 (1 4 ) / 64 D 3 (1 4 ) Wz 32 ymax D/2
8 梁的弯曲应力与强度计算
8.2 弯曲正应力的强度条件
如果梁的最大工作应力,不超过材料的许用弯曲应力,梁就 是安全的。因此,梁弯曲时的正应力强度条件为
max
M max Wz
B截面:
故该梁满足强度条件。
8 梁的弯曲应力与强度计算 8.3.1 梁的弯曲剪应力
8.3 梁的剪应力及其强度条件
1. 矩形截面梁的弯曲剪应力
关于横截面上剪应力的分布
规律,作以下两个假设:
(1) 横截面上各点的剪应力的方 向都平行于剪力FS; (2) 剪应力沿截面宽度均匀分布。 在截面高度 h 大于宽度 b 的情况下,以上述假设为基础得到 的解,与精确解相比有足够的准确度。
FS bh
max min
8 梁的弯曲应力与强度计算 3. 圆形截面梁的弯曲剪应力 横截面上弯曲剪应力分布的假设 (1) ab 弦上各点的剪应力都汇交于
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力
设想梁由平行于轴线的众
多纵向纤维组成,由底部纤维 的伸长连续地逐渐变为顶部纤 维的缩短,中间必定有一层纤 维的长度不变。
中性层:中间既不伸长也
不缩短的一层纤维。 中性轴:中性层与梁的横截面的交线,垂直于梁的纵向对称 面。(横截面绕中性轴转动) 中性轴垂直于纵向对称面。
M y Iz
1
由上面两式,得纯弯曲时正应力的计算公式:
将弯矩 M 和坐标 y 按规定的正负代入,所得到的正应力若为 正,即为拉应力,若为负则为压应力。
一点的应力是拉应力或压应力,也可由弯曲变形直接判定。
以中性层为界,梁在凸出的一侧受拉,凹入的一侧受压。 只要梁有一纵向对称面,且载荷作用于这个平面内,上面的
8 梁的弯曲应力与强度计算
8.2 弯曲正应力的强度条件
对于宽为 b ,高为 h 的矩形截面
bh3 / 12 bh2 Iz Wz h/2 6 ymax
对于直径为 D 的圆形截面
Iz D 4 / 64 D 3 Wz D/2 ymax 32
对于内外径分别为 d 、D 的空心圆截面
称为纯弯曲。
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力
8.1.1 纯弯曲时横截面上的正应力 实验观察变形 纵向线(aa、bb):变为弧线,凹侧 缩短,凸侧伸长。 横向线(mm、nn): 仍保持为直线, 发生了相对转动,仍与弧线垂直。 平面假设:梁的横截面在弯曲变形后仍然保持平面,且与变 形后的轴线垂直,只是绕截面的某一轴线转过了一个角度。 单向受力假设:各纵向纤维之间相互不挤压。
相关文档
最新文档