数字图像处理_第五章全解

合集下载

数字图像处理要点简述详述

数字图像处理要点简述详述

第一.二章.采样,量化,数字图像的表示 基本的数字图像处理系统系统的层次结构I 应用程序 I 开发工具 操作系统 设备驱动程序I硬件I图像处理的主要任务: 图像获取与数字化 图像增强 图像恢复 图像重建 图像变换 图像编码与压缩 图像分割 特点:(1) 处理精度高。

(2) 重现性能好。

(3) 灵活性髙1•图像的数字化包括两个主要步骤:离散和量化2. 在数字图像领域,将图像看成是许多大小相同、形状一致的像素组成3. 为便于数字存储和计算机处理可以通过数模转换(A/D)将连续图像变为数字图像。

4•数字化包括取样和量化两个过程:取样:对空间连续坐标(x,y)的离散化量化:幅值f(x,y)的离散化(使连续信号的幅度用有限级的数码表示的过程。

)5.数字化图像所需的主要硬件:♦采样孔、图像扫描机构、光传感器、量化器、输岀存储体6•取样和量化的结果是一个矩阵 7.其中矩阵中的每个元素代表一个邃塞8•存储一幅图像的数据量又空间分辨率和幅度分辨率决定 9•灵敏度、分辨率、信噪比是三大指标第三章,傅里叶变换,DCT变换,WHT•余弦型变换:•傅里叶变换(DFT)和余弦变换(DCT)O•方波型变换:•沃尔什•哈达玛变换(DWT)1•二维连续傅里叶正反变换:F(u,v)= I f f(x.y)eJ_oc J_ocf g y)= \f F(u, v)ej27r(nA+vv)dwdvJ —oo J —oo二维离散傅里叶变换:M — 1 N — I=乏疋 Fgg 宀SS)if=o v=O。

F(u, v)即为f (x, y)的频谱。

频谱的直流成分说明在频谱原点的傅里叶变换尸(0,0)等于图像的平均灰度级 卷积定理:/(x,y)*^(x, y)= ss /O, n)g(x 一 m, y~n)/?/=() n=02•二维离散余弦变换(DCT)一维离散余弦变换:EO)=%)岳gfg 芈严 其中 c®=怜 ""DCT 逆变换为F(u.v)=1~MN A =0 y=02 A r -1/(«)=咅 C(0) + \1三工 F (gsn(2n +1)« ~~2N3•—维沃尔什变换核g (W ):1 X_JL£(乂申)=丄口(一 1)®(”)為一】一心)<N i=o• 厂、Cn 7V--1 ^T-l码3》=卡吝 /G 〉耳(—1)635—一 3«JC> =牙中 O )n (—O务i二维:•正变换: 1 N —l. N —!■H —1护(“*) = —X X /X%」)口( — 1)4(5—373$一_W] N 宜 U • JO■逆变换二1 AT-l JV-l 片_]/(X.y )=丄 £ 乞 疗(心巧 口弟-i -心)JN 為 v=o ~。

【数字图像处理】部分答案第一章到第五章

【数字图像处理】部分答案第一章到第五章

第一章习题基本概念2007-12-29 16:251.什么是图像?模拟图像与数字图像有什么区别?答:1)图像是对客观存在的物体的一种相似性的、生动的写真或描述。

2)模拟图像在数学上主要用连续函数来描述,主要特点表现为图像的光照位置和光照强度均为连续变化的。

数字图像主要用矩阵或数组来描述。

以往的胶片成象就是模拟的图象,它反映了事物在连续空间上的特征,而现在的数码相机成象就是数字图象,它反映了事物在离散空间上的特征,也可以说模拟图象经过抽样和量化就可以转化为数字图象。

而数字图象是随着计算机和数字技术发展起来的新的表现或再现外界事物的方式。

2.模拟图像处理与数字图像处理主要区别表现在哪些方面?答: 1)数学描述方法:模拟图像主要用连续数学方法,数字图像主要用离散数学方法。

2)图像分辨率表示:数字图像分辨率是指反映整个图像画面垂直和水平方向像素数乘积。

模拟图像分辨率是指反映整个画面最多的扫描线数。

3)图像处理:数字图像是通过对模拟图像采样,量化等处理获得的,模拟图像处理的方式很少,往往只能进行简单的放大、缩小等,而数字图像的处理方式可以非常精确、灵活。

数字图像处理再现性好,模拟图像的保存性较差,时间长了会有所变化,而数字图像不会因为保存、传输或复制而产生图像质量上的变化。

但数字图像处理速度较慢,存储容量大。

4)图像传输:模拟图像以实物为载体,传输相对困难,而数字图像以数字信息为载体,传输相对较快3.图像处理学包括哪几个层次?各层次间有何区别和联系?答:图像处理学包含3个层次:图像处理,图像分析和图像理解。

图像处理是比较底层的操作,它主要在图像像素级上进行处理,处理的数据量大。

图像分析,则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的对目标的描述。

图像理解主要是高层操作,操作对象的基本上是从描述中抽象出来的符号,其处理过程和方法与人类的思维推理有许多类似之处。

各层次之间起着相辅相承联系,高层指导底层操作,底层为高层服务,中层起着桥梁的作用,为底层和高层联系起衔接作用。

数字图像处理及应用(MATLAB)第5章

数字图像处理及应用(MATLAB)第5章

1. AVI格式 它的英文全称为Audio Video Interleaved,即音频视频交 错格式。它于1992年被Microsoft公司推出,随Windows3.1一 起被人们所认识和熟知。所谓“音频视频交错”,就是可以
将视频和音频交织在一起进行同步播放。这种视频格式的优
点是图像质量好,可以跨多个平台使用,但是其缺点是体积 过于庞大,而且更加糟糕的是压缩标准不统一,因此经常会 遇到高版本Windows媒体播放器播放不了采用早期编码编辑 的AVI格式视频,而低版本Windows媒体播放器又播放不了采 用最新编码编辑的AVI格式视频。
5.2 视频检测技术
视频检测所研究的对象通常是图像序列,运动目标分割的目的是从序列图像 中将变化区域从背景中分割出来。静态图像f(x,y)是空间位置(x,y)的函数,它 与时间t变化无关,只由单幅静止图像无法描述物体的运动。而图像序列的每一幅 称为一帧,图像序列一般可以表示为f(x,y,t),和静态图像相比,多了一个时间 参数t,当采集的多帧图像获取时间间隔相等,那么,图像序列也可表示为f(x,y, i),i为图像帧数。通过分析图像序列,获取景物的运动参数及各种感兴趣的视觉 信息是计算机视觉的重要内容,而运动分割是它的关键技术。 在应用视觉系统中,检测运动目标常用差分图像的方法,一般有两种情况,一 是当前图像与固定背景图像之间的差分称为减背景法,二是当前连续两幅图像 (时间间隔
海岸的泥沙淤积及监视江河、湖泊、海岸等的污染。利用差 值图像还能鉴别出耕地及不同的作物覆盖情况。可广泛应用 于视频检测。
5.2.1 帧间差分法
图像差分法是在序列图像中,检测图像序列相邻两帧之间变化,通 过逐像素比较可直接求取前后两帧图像对应像素点之间灰度值的差别。 它是当图像背景不是静止时,无法用背景差值法检测和分割运动目 标的另外一种简单方法。在这种方式下,帧f(x,y,i)与帧f(x,y,j)之间的变化 可用一个二值差分图像Df(x,y)表示:

数字图像处理图像分割

数字图像处理图像分割

如果检测结果小于给定的阈值,就把两个区域合并。
5.3 区域分割
2 分裂合并法 实际中常先把图像分成任意大小且不重叠的区域,然后再
合并或分裂这些区域以满足分割的要求,即分裂合并法.一致 性测度可以选择基于灰度统计特征(如同质区域中的方差),假
设阈值为T ,则算法步骤为: ① 对于任一Ri,如果 V (Ri ) T ,则将其分裂成互不重叠的四
3 影响因素
多特征阈值分割
a 灰度及平均灰度(3×3区)二维直方图
--若集中于对角线区则表示灰度均匀 平均灰度
区。
边界
--若远离对角线者(灰度与平均灰度 不同)是区域边界。
背景
(近对角线构成直方图有明显峰值及阈 值,远离对角线者可用灰度平均值作为 阈值,用于区分两个区)。
目标 边界
灰度
3 影响因素 多特征阈值分割 b 灰度与灰度梯度图
5.4 Hough变换
Hough变换是一种检测、定位直线和解析曲线的有效 方法。它是把二值图变换到Hough参数空间,在参数空间 用极值点的检测来完成目标的检测。下面以直线检测为例, 说明Hough变换的原理。
域,直到区域不能进一步扩张; Step4:返回到步骤1,继续扫描直到所有像素都有归属,则结束整
个生长过程。
5.3 区域分割
1 区域生长法 区域生长法生长准则
基于区域灰度差方法
讨论:生长准则与欠分割或过分割现象
10477 10477 01555 20565 22564
11577 11577 11555 21555 22555
C1的平均值:1
m
ipi
iT 1 w1
(T )
1 w(T )
m
其中, ipi w00 w11 是整体图像的灰度平均值

数字图像处理课件第五章.

数字图像处理课件第五章.

ii. 把这个符号的概率与其余符号的概率按从大到 小进行排列,然后再把最末两个符号的概率加 起来,合成一个概率。
iii. 重复上述做法,直到最后剩下两个概率为止。
iv. 从最后一步剩下的两个概率开始逐步向前进行
编码。每步只需对两个分支各赋予一个二进制
码,如对概率大的赋予码0,对概率小的赋予
码1。
28
37
第五章 图像编码
Huffman编码
输入 输入概率第一步第二步第三步第四步 S1 0.4 0.4 0.4 0.4 0.6 0 S2 0.3 0.3 0.3 0.3 0 0.4 1 S3 0.1 0.1 0.2 0 0.3 1 S4 0.1 0.1 0 0.1 1 S5 0.06 0 0.1 1 S6 0.04 1 S4=0100
I = D - du
I — 信息量 D — 数据量 du — 冗余量,包含在D中
● 冗余举例 播音员—— 180字/分钟,2Byte一个字,360Byte (合0.35KB/分钟) 音频数据——8kHz采样×8bit×60秒 = 3840KBit (合480KB/分钟)
6
第五章 图像编码
[1] 空间冗余—— 规则物体的物理相关性 [2] 时间冗余—— 视频与动画画面间的相关性 [3] 统计冗余—— 具有空间冗余和时间冗余 [4] 结构冗余—— 规则纹理、相互重叠的结构表面 [5] 信息熵冗余—— 编码冗余,数据与携带的信息 [6] 视觉冗余—— 视觉、听觉敏感度和非线性感觉 [7] 知识冗余—— 凭借经验识别 [8] 其他冗余—— 上述7种以外的冗余
8
第五章 图像编码
图像数据压缩技术的重要指标
(1)压缩比:图像压缩前后所需的信息存储量之比, 压缩比越大越好。 (2)压缩算法:利用不同的编码方式,实现对图像 的数据压缩。

数字图像处理(许录平着)课后答案(全)

数字图像处理(许录平着)课后答案(全)
−a
+a
+b
−b +a −a
h ( x, y )e − jux e − jvy dxdy e − jux dx ∫ e − jvy dy
−b
jua
+b
− e e − jvb − e jvb − ju − jv sin ua sin vb = 4E uv =E e
(3) H (u, v ) =
− jua
图像通信
图像输入
处理和分析
图像输出
图像存储
各个模块的作用分别为: 图像输入模块:图像输入也称图像采集或图像数字化,它是利用图像采集设备(如数码照相机、数 码摄像机等)来获取数字图像,或通过数字化设备(如图像扫描仪)将要处理的连续图像转换成适于计 算机处理的数字图像。 图像存储模块:主要用来存储图像信息。 图像输出模块:将处理前后的图像显示出来或将处理结果永久保存。 图像通信模块:对图像信息进行传输或通信。 图像处理与分析模块:数字图像处理与分析模块包括处理算法、实现软件和数字计算机,以完成图 像信息处理的所有功能。
《数字图像处理》各章要求及必做题参考答案
第一章要求 了解图像及图像处理的概念、图像的表达方法、图像处理系统的构成及数字图像处理技术的应用。 必做题及参考答案 1.4 请说明图像数学表达式 像? 解答:
I = f (x, y, z, λ , t,) 图像数学表达式 中, (x,y,z)是空间坐标,λ是波长,t 是时间,I 是光点(x,y,z) 的强度(幅度) 。 上式表示一幅运动 (t) 的、彩色/多光谱 (λ) 的、立体(x,y,z)图像。
⎡10 ⎢0 则 F1 = H 4 f1 H 4 = ⎢ ⎢0 ⎢ ⎣0 ⎡16 ⎢0 F3 = H 4 f 3 H 4 = ⎢ ⎢0 ⎢ ⎣0

《数字图像处理》课程

《数字图像处理》课程

《数字图像处理》课程教学大纲课程信息课程代码:课程名称:数字图像处理/Digital Image Process课程类型:专业任选课学时学分:48学时/3学分适用专业:计算机科学与技术开课部门:灾害信息工程系一、课程的地位、目的和任务本课程是计算机科学与技术本科专业任选课。

课程的主要内容包括:(1)数字图像处理的基本概念,包括数字图像格式,数字图像显示,灰度直方图,点运算,代数运算和几何运算等概念。

(2)介绍二维傅氏变换、离散余弦变换、离散图像变换和小波变换的基本原理与方法。

(3)重点介绍图像的增强方法,包括空间域方法和变换域方法。

(4)图像恢复和重建基本原理与方法。

(5)图像压缩编码的基本原理与方法以及一些国际标准。

(6)图像的分析和模式识别基本原理。

通过本课程的学习使学生掌握数字图像处理的基本概念、基本原理和实现方法和实用技术,了解数字图像处理基本应用和当前国内外的发展方向。

要求学生通过该课程学习,具备通过程序解决智能化检测与应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下扎实的理论基础。

二、课程与相关课程的联系与分工要求学生先修课程为:《C语言程序设计》、《数据结构》、《线性代数》、《高等数学》、《概率与数理统计》后继课程:生产实习三、教学内容与基本要求第一章概述1.教学内容1.1 数字图像的发展历史1.2 图像工程的概述1.3 数字图像处理的应用及其发展趋势1.4 VC++ 运行环境的介绍1.5 BMP文件的基本介绍2.重点难点VC运行环境;BMP文件格式;3.基本要求了解图像工程的概念;熟悉数字图像的应用领域;熟悉VC运行环境;掌握BMP文件结构形式;能够在vc环境下,从内存显示BMP图像。

第二章图像采集1.教学内容2.1.视觉过程2.2.成像中的空间关系2.3.光度学和亮度学2.4.采样和量化2.重点成像中的空间关系。

3.难点采样和量化。

4.基本要求了解视觉过程及其原理;掌握几何投影和齐次坐标下的成像变换;熟悉光强度、照度、景深等概念;了解成像模型;理解采样和量化的原理;掌握图像数字化的原理好过程。

DIP5国科大数字图像处理第5章PPT

DIP5国科大数字图像处理第5章PPT

s4 448 0.11
32

步骤5:计算p(sk)。
计算 n1
:(见表) n n 64 64, n1 790, n3 1023, n5 850, n 6 985, n7 448 n 0.19, n3 n 0.25, n5 n 0.21, n6 n 0.24, n7 n 0.11
直方图均衡化
直方图均衡化是将原图像的直方图通过 变换函数修正为均匀的直方图,然后按均衡 直方图修正原图像。 图像均衡化处理后,图像的直方图是平 直的,即各灰度级具有相同的出现频数。
15
直方图均衡化
连续灰度的直方图-非均匀分布
16
直方图均衡化
连续灰度的直方图-均匀分布
17
直方图均衡化
直方图均衡化
40
直方图均衡化
直方图均衡化技术是图像增强的实质: 直方图均衡化实质上是减少图象的灰度级以换取对 比度的加大。在均衡过程中,原来的直方图上频数较小 的灰度级被归入很少几个或一个灰度级内。 若这些灰度级所构成的图象细节比较重要,则需采 用局部区域直方图均衡。
41
直方图均衡化
直方图均衡化技术是图像增强的实质: (1)两个占有较多像素的灰度变换后,灰度之间的差距 增大。一般,背景和目标占有较多的像素,这种技 术实际上加大了背景和目标的对比度。 (2)占有较少像素的灰度变换后需要归并。一般,目标 与背景的过渡处像素较少,由于归并,其或者变为 背景点或者变为目标点,从而使边界变得陡峭。
s4 448
30

步骤4:计算nsk 。
计 算 对 应 每 个 s k的 像 元 数 目 n k: r0 0 s 0 1, 所 以 有 790 个 像 元 取 s 0 1这 个 灰 度 值 ; r1 s1 , 所 以 有 1023 个 像 元 取 s1 3 这 个 灰 度 值 ; r2 s 2 , 所 以 有 850 个 像 元 取 s 2 5 这 个 灰 度 值 ; 而 r3 和 r4 都 映 射 到 s 3 s 4 6, 所 以 有 656 329 985 个 像 元 取 s3,4 6 这 个 灰 度 值 ; 同 理 r5 , r6 , r7 都 映 射 到 s 5 ,6 ,7 1, 所 以 有 245 122 81 448 个 像 元 取 s 5 ,6 ,7 1这 个 灰 度 值 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对高斯及均匀噪声效果最好。
数字图像处理
Chapter 5 Image Restoration
5.3 仅存在噪声时的复原
5.3.2 顺序统计滤波器 修正后的阿尔法均值滤波器 去掉 S xy 内最高灰度值 d 个 去掉 S xy 内最低灰度值
2 d 2

其余 mn d 个的均值,叫修正的阿尔法均值小组波器。
均匀分布噪声 1 azb P( z ) b a 其他 0 ab 2 (b a ) 2 2
脉冲噪声(椒盐噪声) Pa P( z ) Pb 0 z=a z=b 其他

高斯噪声→电子电路,低照度 指数→激光成像 各种噪声图像及其直方图见下页图所示:
数字图像处理
Chapter 5 Image Restoration
5.2 噪声模型
5.2.3 周期噪声 在图像获取 中来自于电力或机电 干扰而产生是空间依 赖型噪声,如右图a所 示,被不同频率正弦 噪声所干扰→一对共 轭脉冲,关于周期噪 声的详细讨论见5.4节 。
数字图像处理
Chapter 5 Image Restoration
数字图像处理
Chapter 5 Image Restoration
5.2 噪声模型
数字图像的噪声主要来源于图像获取和传输过程。
5.2.1 噪声的空间Байду номын сангаас频率特性 几个概念和要讨论的问题: 相关性:噪声是否与图像相关 频率特性:噪声在傅立叶域的频率内容 白噪声:谱为常量 本章假设:噪声独立于空间坐标,并与图像本身无关联。
数字图像处理
Chapter 5 Image Restoration
5.1 图像退化/复原过程
如果系统H是线性,移不变的过程,则空域中给出的退 化图像:
g ( x, y ) h( x, y )* f ( x, y ) ( x, y ) 频域: G(u, v) H (u, v) F (u, v) N (u, v)
数字图像处理
Chapter 5 Image Restoration
5.3 仅存在噪声时的复原
5.3.3 自适应滤波器 则满足上面条件的表 达式:
2 ˆ ( x, y) g ( x, y) g ( x, y) m f L 2 L 需要估计 2 ,上式假 2 设 2 L
(a)g ( x, y ) :含噪声的图像 (b)2 :噪声方差 (c)mL :在 S xy 上局部灰度均值 2 (d) :像素点的局部方差 L 希望滤波器预期性能如下: 1、如果 2 0,应返回 g ( x, y ) , 0噪声。 2 2、如果 2 与 L 高相关,返回 g ( x, y ) 近似值(遇到边缘时) 3、如果 L ,返回 S xy 上算 平均值 整个图像特性与局部图像特 性相同。
5.3 仅存在噪声时的复原 5.3.3 自适应滤波器 到目前为止,我们所讨论的 滤波器都是:一但选定了一种滤 波器,就不考虑从一点到另一点 图像性能(特征)的变化。 本节介绍两种滤波器,其行 为变化是基于 mxn内矩形窗口 S内的统计特征,叫自适应滤 xy 波器,其性能优于前边所有滤波 器性能。 自适应局部噪声消除滤波器 统计度量→均值,方差。 方差→平均对比度 滤波器作用于局部区域,滤 波器在中心化区域中任何点的响 应其于以下4个量:
Chapter 5 Image Restoration
5.3 仅存在噪声时的复原
5.3.2 顺序统计滤波器 空间滤波器,其响应基于滤波器所包围的图像区域中像 素点的排序。 ˆ ( x, y) midian g (s, t ) f 中值滤波器
( s ,t )S xy
在噪能力好,模糊少,对单极或双极脉冲噪声很有效。 最大值和最小值滤波器
数字图像处理
Chapter 5 Image Restoration
5.2 噪声模型
5.2.2 一些重要 噪声的概率密 度函数 各种噪 声图像及其直 方图
数字图像处理
Chapter 5 Image Restoration
5.2 噪声模型
5.2.2 一些重要 噪声的概率密 度函数 各种噪 声图像及其直 方图
5.3 仅存在噪声时的复原
5.3.1 均值滤波器
逆谐波均值滤波器 fˆ ( x, y )
s ,t )S xy

g ( x, y )
Q 1
Q 0 算术均值 Q -1 谐波均值 各滤波器的滤波效果见下两页图示:
s ,t )S xy

g ( s, t )
Q
Q称为滤波器的阶数。 适合于减少或消除椒盐噪声的影响,但 不能同时消除这两种噪声。 Q 0 :消除“胡椒”噪声 Q 0 :消除“盐”噪声
数字图像处理
Chapter 5 Image Restoration
目的:改善图像,是客观过程,利用某种光验 知识,重建原图像而图像增强是一个主观过程。 那么如何来评价图像复原的效果呢? 往往是建立一个最质准则,具体实施复原时, 有些方法适于在空域进行,有些适合于在频域进行。 事实上,造成图像质量退化的因素很多,如传 感器,数字转化等,但本章只是就给出的一幅退化图 像来考虑复原。
仅存在噪声时的复原——空间滤波当图像中的退 化仅仅是噪声(产生)的时候 则: g ( x, y ) f ( x, y) ( x, y)
及 G(u, v) F (u, v) N (u, v)
当仅存在加性噪声时,可选择空间滤波的方法。 在3.6节介绍了一些图像增强的滤波器,下面介绍的滤波 器性能往往低于3.6节中的。
数字图像处理
Chapter 5 Image Restoration
5.3 仅存在噪声时的复原
5.3.3 自适应滤波器 自适应中值滤波器 工作时分两个层次,A层和B层 A层:
A1 Zmed Zmin A2 Zmed Zmax
其本质是: 1)去除“椒盐” 2)平滑其它非冲激噪声 3)减少边缘细化或粗化 A层决定指 Zmax 是否是脉 冲,若不是,转B,再继续看 中心是不是脉冲,若不是,保 留这个“中间水平”值。 如果A确找到一脉冲,则 增大 S xy 直到找到一个非脉冲 。 滤波效果见 下页图:
如果 A1 0 且 A2 0 ,转到B层 否则增大窗口尺寸 如果窗口尺寸 Smax,重复A层 否则输出 Z xy B层: B1 Z xy Z min
B 2 Z xy Z max
(等于0时←如果 B1 0 且 B 2 0 , out Z xy 椒或盐)否则 out Zmed
数字图像处理
Chapter 5 Image Restoration
5.3 仅存在噪声时的复原
5.3.1 均值 滤波器 各滤波器的 滤波效果图 示:
数字图像处理
Chapter 5 Image Restoration
5.3 仅存在噪声时的复原
5.3.1 均值 滤波器 各滤波器的 滤波效果图 示:
数字图像处理
5.2 噪声模型
5.2.4 噪声参数的估计 1、周期性噪声:通过谱来估计 2、从传感器的技术说明中可以得到 3、成像装量:对固体的光照均匀的灰度极成像 4、当仅有Sensor产生的图像可以利用时,从恒定 灰度值的一小部分估计PDF
数字图像处理
Chapter 5 Image Restoration
5.2 噪声模型
数字图像处理
Chapter 5 Image Restoration
5.3 仅存在噪声时的复原 5.3.3 自适应滤波器 自适应中值滤波器 滤波效果示意图:
数字图像处理
Chapter 5 Image Restoration
5.4 频域滤波削减周期噪声
本节利用带阻,带通,陷波滤波器,来削除 或削减周期性噪声。
数字图像处理
Chapter 5 Image Restoration
5.3 仅存在噪声时的复原
5.3.1 均值滤波器
算术均值滤波器 1 f ( x, y ) g ( x, y ) mn ( s ,t )S xy S xy 表示大小为m n中心在( x, y )的窗口
谐波均值滤波器 mn ˆ ( x, y ) f
Chapter 5 Image Restoration
5.2 噪声模型
瑞利噪声 z ( z a )2 / b ( z a ) e P( z ) b 0 za z0
指数分布噪声 ae az P( z ) 0 a0 z0 z0
a b / 4 b(4 ) 2
模型中噪声是加性及 位置独立。 自适应滤波与算求均 值、几何均值比较见 。
数字图像处理
Chapter 5 Image Restoration
5.3 仅存在噪声时的复原
5.3.3 自适应滤波器 自适应中值滤波器 前述的中值滤波一般可以处理冲激噪声空间密度不大 的情况( Pa , Pb 0.2 )而自适应中值滤波则可以处理更大 概率的冲激噪声,且保持图像细节。 不同之处,S xy 大小可变。 具体如下: 规定符号: Zmin : Sxy 中最小 Zmax : S xy 中最大 Zmed : Sxy 中中值 Zxy : S( x,n) 值 Smax : Sxy 允许的最大尺寸
1 ( s ,t )S xy g ( s , t )
对于“盐”噪声效果较好,但不适合于 “胡椒”噪声,比较善于处理高斯噪声。
几何均值滤波器 g ( x,t )] ˆ ( x, y ) [ f ( x,t )S xy
1 mn
与算术均值相比,丢失更少的细节
数字图像处理
Chapter 5 Image Restoration
数字图像处理
Chapter 5 Image Restoration
5.2.4 噪声参数的估计 假设S代代表小带,则:
相关文档
最新文档