(完整版)三角形五心的证明

合集下载

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

--WORD 格式--可编辑-----三角形的外心、内心、重心、垂心、旁心(五心定理 )序 名 定义号称三 三角形的三条边角的垂直平分线交形1于一点 ,这点称为 的三角形的外心 (外外 接圆圆心 )心三 三角形的三条内角角平分线交于一形 2点 ,这点称为三角 的形的内心 (内切圆内圆心 )心三角 三角形的三条中 3形 线交于一点 ,这点的 称为三角形的重重 心心 三角 三角形的三条高形4交于一点 ,这点称的 为三角形的垂心垂心图形AOBCAM FEKI BCD HAFEG BCDCED OAFBA性质1, 三角形的外心到三角形的三个顶点距离相等.都等于三角形的外接圆半径;2, 锐角三角形的外心在三角形内;直角三角形的外心在斜边中点;钝角三角形的外心在三角形外1, 三角形的内心到三边的距离相等,都等于三角形内切圆半径;2, 直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一1, 三角形的重心到边的中点与到相应顶点的距离之比为1∶ 2;2, 重心和三角形 3 个顶点组成的 3 个三角形面积相等; 3, 重心到三角形 3 个顶点距离的平方和最小1,三角形任一顶点到垂心的距离,等于外心到对边的距离的 2 倍;锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的 2 倍;2,锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上; 钝角三角形的垂心在三角形外 ;三 三角形的一条内 BD角角平分线与另两 C形 个外角平分线交 F1, 每个三角形都有三个旁心;2, 旁心到三边的距离相等5于一点 ,称为三角的 E旁 形的旁心 (旁切圆 I a心圆心 )附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

第 1 页,共 1 页。

(完整版)初中几何三角形五心及定理性质

(完整版)初中几何三角形五心及定理性质

初中几何三角形五心定律及性质三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。

外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

5、外心到三顶点的距离相等垂心定理图1 图2三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

推论:1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。

三角形的五心一次看个够

三角形的五心一次看个够

三角形的五心一次看个够三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在这里分别给予介绍.一、三角形外心的性质外心定理的证明:如图,设AB 、BC 的中垂线交于点O ,则有OA =OB =OC ,故O 也在A 的中垂线上,因为O 到三顶点的距离相等,故点O 是ΔABC 外接圆的圆心.因而称为外心.设⊿ABC 的外接圆为☉G(R),角A 、B 、C 的对边分别为a 、b 、c ,p=(a+b+c)/2.1:(1)锐角三角形的外心在三角形内;(2)直角三角形的外心在斜边上,与斜边中点重合; (3)钝角三角形的外心在三角形外. 2:∠BGC=2∠A ,(或∠BGC=2(180°-∠A).3:点G 是平面ABC 上一点,那么点G 是⊿ABC 外心的充要条件是: 点G 是ABC ∆的外心⇔GA GB GC == (或GA 2=GB 2=GC 2)(点G 到三顶点距离相等)⇔(GA +GB )·AB =(GB +GC )·BC =(GC +GA )·CA =0(G 为三边垂直平分线的交点)4:点G 是平面ABC 上一点,点P 是平面ABC 上任意一点,那么点G 是⊿ABC 外心的充要条件是:PG =((tanB+tanC) PA +(tanC+tanA) PB +(tanA+tanB) PC )/2(tanA+tanB+tanC).或PG =(cosA/2sinBsinC)PA +(cosB/2sinCsinA)PB +(cosC/2sinAsinB)PC . 5:R=abc/4S ⊿ABC.正弦定理:2R=a/sinA=b/sinB=c/sinC 。

6.外心坐标:给定112233(,),(,),(,)A x y B x y C x y 求外接圆心坐标O (x ,y )①. 首先,外接圆的圆心是三角形三条边的垂直平分线的交点,我们根据圆心到顶点的距离相等,可以列出以下方程:22221122()()()()x x y y x x y y ---=--- 22223322()()()()x x y y x x y y ---=--- ②.化简得到:2222212122112()2()x x x y y y x y x y -+-=+--2222232322332()2()x x x y y y x y x y -+-=+--令1212()A x x =-;1212()B y y =-;222212211C x y x y =+-- 2232()A x x =-;2232()B y y =-;222222233C x y x y =+--A B C O7.若O 是△ABC 的外心,则S △BOC :S △AOC :S △AOB =sin ∠BOC :sin ∠AOC :sin ∠AOB=sin∠2A :sin ∠2B :sin ∠2C 故sin ∠2A ·OA +sin ∠2B ·OB +sin ∠2C ·OC =0 证明:设O 点在ABC ∆内部,由向量基本定理,有()+∈=++R r n m OC r OB n OA m ,,0,则r n m S S S AOB COA BOC ::::=∆∆设:r n m ===,,,则点O 为△DEF 的重心, 又EOF BOC S nr S ∆∆=1,DOF AOC S mr S ∆∆=1,DOE AOB S mnS ∆∆=1,∴r n m S S S AOB COA BOC ::::=∆∆若O 是△ABC 的外心,则S △BOC :S △AOC :S △AOB =sin ∠BOC :sin ∠AOC :sin ∠AOB =sin∠2A :sin ∠2B :sin ∠2C故si n ∠2A ·OA +si n ∠2B ·OB +si n ∠2C ·OC =0二、三角形的内心内心定理的证明:如图,设∠A 、∠C 的平分线相交于I 、过I 作ID ⊥BC ,IE ⊥AC ,IF ⊥AB 则有IE=IF =ID .因此I 也在∠C 的平分线上,即三角形三0aOA bOB cOC ++=。

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心,外心,垂心,内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

之二胡藕藤创作一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

完整版三角形的五心向量结论证明

完整版三角形的五心向量结论证明

三角形的五心向量结论证明1. O是RP2R的重心UJU uuir umr rOp OP, OP3 0(其中a,b,c 是PP2P3 三边)P2 PP3uu uur uur r证明:充分性:OR OF2 OP30 O是PP2F3的重心uuu uir uur r uur uur uur uuur uur若OR OP,OP3 0 ,则O R OP2 OR,以OR,OF2OP1P3 ' P2,设OP3与RP2交于点P3,则F3为RF2的中点,有即O,R, P,p四点共线,故PP2P3的中线,同理,uur uuuOP3 OP3 ,为邻边作平行四边形uurOP1uur uuur,OP2OP3,得PO, P2O亦为PP2P3的中线,所以,O为的重心。

2•在ABC中,给uurADuur uuuAB AC ,等于已知AD是ABC 中BC边的中线;————uur* △ ABC中AB AC 一定过BC的中点,通过△ABC的重心luuAPuuBP*PUG1 uuu(AB31 uuu-(BA31 uur -(PAuurAC),uurBC),P为VABC的重心uur uirPB PC)uuu uu uur uur uur urir uur uur uur uur uuu uuu uuu uurPG PA AG PB BG PC CG 3PG (AG BG CG) (PA PB PC)-G是厶ABC的重心uur uuu uuu r UU uur uuu r 亦uur uuu uuu uuu-GA GB GC = 0 AG BG CG : =0,即3PG PA PB PCG ABC的重心(P是平面上任意点).证明(反之亦然(证略))uurPBuirPC).uur 1 uur 由此可得PG (PA3S*若O是ABC的重心,则BOC S AOC S AOB1SS ABC3uuu umrAPgBC 0 2. uuu uuirBPgAC 0则0是厶ABC 的垂心证明:由 OA '\BC 3 = 003 +CA J ,得 -0?)3 = OB \COC -OA )2 ,所以.■ .' ■''"。

三角形的五心定理

三角形的五心定理

三角形的五心定理三角形五心定理三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

5. 以重心为起点,以三角形三定点为终点的三条向量之和等于零向量。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(完整word版)三角形的五心问题

(完整word版)三角形的五心问题

自主招生讲座—平面几何5三角形的五心问题一.重心:中线交点 1。

:2:1AG GD =2。

2222111224AD AB AC BC =+-3.13GBC ABC S S ∆∆=4。

(1)2222222222333()3BC GA CA GB AB GC AB AC BC +=+=+=++(2)2222221()3GA GB GC AB AC BC ++=++(3) 222GA GB GC ++最小.二.外心:三边中垂线交点,外接圆圆心。

如图,OE BC ⊥交BC 于D . 1.OA OB OC R ===2.2BOC A ∠=∠(非钝角三角形) 2(180)BOC A ∠=-∠(钝角三角形) 3。

,BD DC BE EC ==4。

4ABC abcS R∆=三.内心:角平分线交点,内切圆圆心。

内心)的延长线交外接设ABC ∆的内切圆O 切边AB 于点P ,AI (I 为圆于D ,内切圆半径为r ,则1.1902BIC A ∠=+∠2.1cot ()22A AP r b c a ==+-3.DB DC DI ==4。

()2ABC rS a b c ∆=++四.垂心:高线的交点 设,,O G H 分别是ABC ∆的外心、重心和垂心,OD BC ⊥于D ,AH 的延长线交外接圆于1H ,则 1.2AH OD =2。

H 与1H 关于BC 成轴对称。

3。

BCH 与ABC 的半径相同。

4.,,ABH CBO BCO ACH BAH CAO ∠=∠∠=∠∠=∠5。

旁心:三角形任意两角的外角平分线和第三个内角的角平分线相交于一点,这个交点即为三角形的旁心。

设在ABC ∆中,A ∠内的旁切圆1I (半径为1r )与AB 的延长线切于1P ,则1.11902BI C A ∠=-∠2。

111cot ()22A AP r a b c ==++ 3.112AI B C ∠=∠4.11()2ABC S r b c a ∆=+-例1:如图,设I 是ABC ∆的内心,,M N 分别是边,AB AC 上的点,且使得,ABI NIC ACI MIB ∠=∠∠=∠。

三角形的五心定理

三角形的五心定理

三角形的五心定理重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。

该点叫做三角形的重心。

外心定理:三角形的三边的垂直平分线交于一点。

该点叫做三角形的外心。

垂心定理:三角形的三条高交于一点。

该点叫做三角形的垂心。

内心定理:三角形的三条内角平分线交于一点。

该点叫做三角形的内心。

旁心定理:三角形的一条内角平分线和另外两顶点处的外角平分线交于一点。

该点叫做三角形的旁心。

三角形有三个旁心。

三角形的重心、外心、垂心、内心、旁心称为三角形的五心。

它们都是三角形的重要相关点。

三角形的重心重心三角形的三条中线交于一点.三角形三条中线的交点叫做三角形的重心.定理:三角形重心与顶点的距离等于它与对边中点的距离的两倍.△ABC 的三条中线AD 、BE 、CF 交于P ,则.2===PFCP PE BP PD AP三角形的内心内心和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.例:⊙O 是△ABC 的内切圆,△ABC 是⊙O 的一个外切三角形,点O 叫做△ABC 的内心.三角形的三条内角平分线有一个且只有一个交点,这个交点到三角形三边的距离相等,就是三角形的内心.三角形有且只有一个内切圆.三角形的外心外心经过三角形各顶点的圆叫做三角形的外接圆.外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形.例:⊙O是△ABC的外接圆,△ABC是⊙O的一个内接三角形,点O叫做△ABC的外心.三角形三边的垂直平分线有一个且只有一个交点,这个交点到三角形三个顶点的距离相等,就是三角形的外心.三角形有且只有一个外接圆.三角形的垂心垂心三角形的三条高线交于一点.三角形三条高线的交点叫做三角形的垂心.锐角三角形的垂心在三角形内(图1);直角三角形的垂心在直角的顶点(图2);钝角三角形的垂心在三角形外(图3).三角形的旁心旁心与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形的旁心.例:图中⊙O1、⊙O2、⊙O3都是△ABC的旁切圆,点O1、O2、O3叫做△ABC的旁心.三角形的一条内角平分线与其他两个角的外角平分线交于一点,这个交点到三角形一边及其他两边延长线的距离相等,就是三角形的旁心.三角形有三个旁切圆,三个旁心.补充:三角形的中心当且仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形五心
内心:内切圆的圆心,即三条角平分线的交点。

外心:外切圆的圆心,即三条中垂线的交点。

旁心:旁切圆的圆心,即三条角平分线的交点。

(类似、但不同于内心)垂心:三条高的交点。

重心:三条中线的交点。

注:红线为所要证明的线,绿线为辅助线。

内心:三条角平分线的交点
证:过点O作三边的垂线,垂足分别为D、E、F。

由角平分线定理(角平分线上一点到两边的
距离相等)得:
OD=OF,OF=OE
∴ OD=OE
∴AO为角BAC的平分线
外心:三条中垂线的交点
证:连结OA、OB、OC,并过O点作OF⊥BC于点F。

由线段中垂线定理(线段中垂线上一点到
两端点的距离相等),得:
OA=OB,OA=OC.
∴OB=OC
∴点O在线段BC的中垂线上
∴OF为线段BC的中垂线
旁心:
证:过点O作三边的垂线,垂足分别为D、E、F。

由角平分线定理(角平分线上一点到两边的
距离相等)得:
OD=OF,OD=OE
∴ OF=OE
∴BO为角ABC的平分线
垂心:三条高的交点
证:连结DE,连结AO交BC于F点。

∵角BDC=角BEC=90°
∴B、D、E、C四点共圆(以BC为直径的圆)。

∴角FBO=角CDE ······①
(同弦(弧)所对圆周角相等)
又∵角ODA=角AEO=90°
∴O、D、A、E四点共圆(以AO为直径的圆)。

∴角AOE=角ADE (同弦(弧)所对圆周角相等)
且角AOE=角BOF
∴角ADE=角BOF ······②
由①②可知,角OFB=角ODA=90°
∴AF为BC边上的高。

重心:三条中线的交点
方法一:
证:连结AO交BC于点F。

∵D为AB的中点
∴S△ACD=S△BCD (S△表示三角形的面积)
(底相等(AD=BD),高相同(都为点C到AB的距离))
S△AOD=S△BOD
∴S△AOC=S△BOC ······①
同理可得:
S△BOC=S△AOB ······②
由①②得,S△AOC=S△AOB
又∵△AOC与△AOB底都为AO
∴它们高相等,即:点B和点C到AF的距离相等。

对于△AFB和△AFC,底相同(为AF),高相等(分别为点B和点C到AF的距离)。

∴S△AFB=S△AFC
又对于△AFB和△AFC,高相同(为点A到BC的距离)。

∴它们底相等,即:BF=CF
∴AF为三角形的中线。

方法二:
证:连AO交BC于点F,连DE交AF于点N,
G,H分别为OB、OC的中点,连DG,EH。

连GH交AF于点M。

∵DE为△ABC的中位线
∴DE#1/2BC (#表示平行且等于)
同理,可得:GH#1/2BC
∴DE#GH 即:四边形DEHG为平行四边形。

易证,△ODN≌△OHM,得HM=DN
∵DG为△ABO的中位线
∴DG∥NM,即四边形DGMN为平行四边形
∴DN=GM
∴HM=GM,再由三角形中位线定理得,BF=CF。

∴AF为三角形的中线。

三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.
重心
三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.
外心
三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点.
此点定义为外心,用它可作外接圆.内心外心莫记混,内切外接是关键.
垂心
三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,
直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清.
内心
三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;点至三边均等距,可作三角形内切圆,此圆圆心称“内心”,如此定义理当然.五心性质别记混,做起题来真是好。

相关文档
最新文档