椭圆(高三复习课教案)
高中数学椭圆的性质教案

高中数学椭圆的性质教案
教学目标:
1. 理解椭圆的基本概念
2. 掌握椭圆的标准方程
3. 熟练运用椭圆的性质进行问题解答
教学重点:
1. 椭圆的定义及数学性质
2. 椭圆的标准方程
3. 椭圆的焦点、长短轴、离心率等性质
教学难点:
1. 椭圆的属性与其他几何图形的比较
2. 椭圆的运用问题解决
教学过程:
一、导入(5分钟)
通过提问引导学生回顾圆的性质,并引入椭圆的概念,让学生猜测椭圆与圆的异同点。
二、讲解(15分钟)
1. 讲解椭圆的定义及性质,介绍椭圆的标准方程及主要属性。
2. 通过示意图讲解椭圆的焦点、长短轴、离心率等概念。
三、练习(20分钟)
1. 完成课堂练习,巩固椭圆的基本算法。
2. 组织学生进行小组讨论,解决椭圆相关问题。
四、拓展(10分钟)
探讨椭圆在实际生活中的应用,如卫星轨道、天文测量等。
五、作业布置(5分钟)
布置课后作业,要求学生继续复习椭圆相关知识,并尝试解决相关问题。
教学反思:
在教学过程中,要注重引导学生思考,让他们通过实际问题解决来理解椭圆的性质和应用。
同时,要注重椭圆与其他几何图形的比较,帮助学生更好地理解椭圆的特点。
椭圆的复习课

有关椭圆基本量的计算
• 例1.如图o为椭圆的中心、F为焦点、A 为顶点、准线L交OA于B,P、Q在椭圆 上,PD丄L于D,QF丄OA于F,设椭圆 的离心率为e,下列正确个数为( )
1.e PF PD
2.e
4.e
QF BF
AF AB
D B
Q
A F
P
O
3.e
5.e
OA OB
OF OA
椭圆的复习课(一)
教学目标: 1.掌握椭圆的基本量及相互关系. 2.掌握椭圆的第一,第二定义及在解题中的 应用. 教学重点:椭圆的基本量,第一第二定义及在 解题中的应用. 教学难点:综合应用.
复习
• 椭圆:
x2 y2 2 1(a b 0) 2 a b
y
P( x, y)
• 1.长轴 2a • 2.短轴. 2b • 3.焦点. F1 (c,0), F2 (c,0).
2
2
F1
F2
*椭圆自测.doc
小结
• 1.椭圆的基本量. c b2
F1
F2
x
4.准线. 5.焦准距. c 6.焦半径 PF 1 a e.x, PF 2 a e.x 7通径.
• 椭圆:
• • • •
x2 y 2 2 1(a b 0) 2 b a
y
F2 1.长轴 2a F2 x 2.短轴. 2b F F ( 0 , c ), F ( 0 , c ) 1 P( x, y) 2 3.焦点. 1 F 1 2 a 4.准线 y 2 c b • 5.焦准距. c • 6.焦半径. PF 1 a e. y, PF 2 a e. y • 7.通径
例2
• 如图, 从椭圆上一点P向x轴作垂线,垂足 为焦点F,此时AB OP且 FA 10 5 求椭圆方程.
椭圆的定义教学教案

椭圆的定义教学教案第一章:导入教学目标:1. 让学生了解椭圆的概念,理解椭圆是一种圆的特殊情况。
2. 引导学生通过观察实际物体,发现椭圆的形状特点。
教学内容:1. 引导学生回顾圆的定义和性质。
2. 介绍椭圆的定义和形状特点。
3. 通过实际物体观察,让学生发现椭圆的形状特点。
教学步骤:1. 导入新课,提问:“我们学过的几何图形有哪些?”引导学生回顾已学的图形。
2. 提问:“圆是一种特殊的图形,那椭圆又是怎样的图形呢?”引入椭圆的概念。
3. 讲解椭圆的定义和性质,引导学生理解椭圆是一种圆的特殊情况。
4. 组织学生观察实际物体,如地球、太阳等,发现它们的形状特点是椭圆的。
5. 总结本节课的主要内容,强调椭圆的形状特点。
教学评价:1. 检查学生对椭圆定义的理解程度。
2. 评估学生通过观察实际物体发现椭圆形状特点的能力。
第二章:椭圆的性质教学目标:1. 让学生掌握椭圆的基本性质,如椭圆的焦点、长轴、短轴等。
2. 引导学生通过观察和实验,发现椭圆性质的特点。
教学内容:1. 讲解椭圆的基本性质,如焦点、长轴、短轴等。
2. 引导学生通过观察和实验,发现椭圆性质的特点。
教学步骤:1. 复习椭圆的定义,提问:“椭圆有哪些特殊的性质呢?”引导学生学习新的内容。
2. 讲解椭圆的焦点、长轴、短轴等基本性质,让学生理解椭圆的形状特点。
3. 组织学生进行观察和实验,如通过观察地球、太阳等实际物体,发现椭圆性质的特点。
4. 总结本节课的主要内容,强调椭圆的性质。
教学评价:1. 检查学生对椭圆性质的理解程度。
2. 评估学生通过观察和实验发现椭圆性质特点的能力。
第三章:椭圆的方程教学目标:1. 让学生掌握椭圆的标准方程及其推导过程。
2. 引导学生运用椭圆方程解决实际问题。
教学内容:1. 讲解椭圆的标准方程及其推导过程。
2. 引导学生运用椭圆方程解决实际问题。
教学步骤:1. 复习椭圆的性质,提问:“如何用数学公式来表示椭圆呢?”引导学生学习新的内容。
高中数学椭圆的应用教案

高中数学椭圆的应用教案
教学目标:
1. 了解椭圆的定义和特性;
2. 掌握椭圆的标准方程和参数方程;
3. 能够应用椭圆解决实际问题。
教学重难点:
1. 椭圆的基本概念和性质;
2. 椭圆参数方程的应用。
教学准备:
1. 教师准备课件和教学素材;
2. 学生准备纸笔和计算器。
教学过程:
1. 导入:通过提问和讨论引导学生了解椭圆的定义和特性;
2. 讲解:讲解椭圆的标准方程和参数方程,并介绍椭圆在实际问题中的应用;
3. 练习:通过一些例题和实际问题,让学生练习应用椭圆求解问题;
4. 总结:总结椭圆的相关知识点,并强调学生需要多做练习提高应用能力。
教学延伸:
1. 学生可以通过阅读相关资料和解决实际问题,进一步理解和应用椭圆;
2. 学生可以尝试在数学建模比赛中运用椭圆解决问题,提升自己的数学建模能力。
课后作业:
1. 复习椭圆的相关知识点,并做相关习题;
2. 思考如何运用椭圆解决实际问题,并进行尝试。
教学反思:
通过本节课的教学,学生应该对椭圆的定义、性质和应用有了初步的了解,并能够运用相关知识解决实际问题。
教师可以根据学生的掌握情况进一步调整教学方法,提高学生的学习效果。
椭圆的几何性质教案

椭圆的几何性质教案一、教学目标1. 知识与技能:(1)理解椭圆的定义及标准方程;(2)掌握椭圆的几何性质,如焦点、半长轴、半短轴等;(3)能够运用椭圆的性质解决实际问题。
2. 过程与方法:(1)通过观察实物,培养学生的直观思维能力;(2)利用数形结合思想,引导学生发现椭圆的性质;(3)运用合作交流的学习方式,提高学生解决问题的能力。
3. 情感态度与价值观:激发学生对椭圆几何性质的兴趣,培养学生的探究精神,提高学生对数学的热爱。
二、教学重点与难点1. 教学重点:(1)椭圆的定义及标准方程;(2)椭圆的几何性质;(3)运用椭圆性质解决实际问题。
2. 教学难点:(1)椭圆几何性质的推导;(2)运用椭圆性质解决复杂问题。
三、教学过程1. 导入新课:通过展示生活中的椭圆实例,如地球、鸡蛋等,引导学生关注椭圆形状的物体,激发学生对椭圆的兴趣。
2. 知识讲解:(1)介绍椭圆的定义及标准方程;(2)讲解椭圆的几何性质,如焦点、半长轴、半短轴等;(3)引导学生发现椭圆性质之间的关系。
3. 实例分析:通过具体例子,让学生了解如何运用椭圆的性质解决问题,如计算椭圆的长轴、短轴等。
4. 课堂练习:布置一些有关椭圆性质的练习题,让学生巩固所学知识。
四、课后作业1. 复习椭圆的定义及标准方程;2. 熟练掌握椭圆的几何性质;3. 尝试运用椭圆性质解决实际问题。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对椭圆几何性质的理解和运用能力。
关注学生在学习过程中的困惑,及时解答疑问,提高教学质量。
六、教学活动设计1. 小组讨论:让学生分组讨论,探究椭圆性质之间的内在联系,培养学生合作交流的能力。
2. 课堂展示:每组选代表进行成果展示,分享探讨过程中的发现和感悟,提高学生的表达能力和逻辑思维。
3. 教师点评:对学生的讨论成果进行点评,总结椭圆性质的关键点,引导学生深入理解。
七、教学评价1. 课堂问答:通过提问方式检查学生对椭圆性质的理解程度,及时发现并解决问题。
椭圆教案6篇

椭圆教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、述职报告、合同协议、演讲致辞、条据文书、心得体会、策划方案、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, job reports, contract agreements, speeches, documents, insights, planning plans, teaching materials, other sample essays, and more. If you want to learn about different sample formats and writing methods, please stay tuned!椭圆教案6篇通过准备实用的教案,我们能够更好地把握教学内容和进度,一个成功的教案应该能够培养学生的自主学习能力,下面是本店铺为您分享的椭圆教案6篇,感谢您的参阅。
椭圆(高三复习课)

椭 圆学习目标:1.掌握椭圆的定义、标准方程,会求椭圆的标准方程;2.掌握椭圆的简单几何性质,能运用椭圆的标准方程和几何性质处理一些简单问题;3.体会椭圆和谐美及对称美的同时,提高分析探索能力及解决几何问题的能力.高考要求:椭圆 B 级 考点回顾:1.椭圆的定义2.椭圆的标准方程3.椭圆的几何性质课前练习:(1)已知1F 、2F 为椭圆2214x y +=的左右焦点,弦AB 过1F ,则2F AB ∆的周长为_________. (2)过椭圆221259x y +=的右焦点F 的直线与椭圆在第一象限交于P ,若PF =2,则点P 到左准线距离为__________.(3)如果椭圆经过()3,0和()0,4两点,则该椭圆的标准方程是______________.(4)方程22123x y m m+=--表示椭圆,则 m 的取值范围是______________. (5)已知椭圆方程为2212516x y +=,则该椭圆的焦点坐标为___________,长轴长为________,短轴长为________,离心率为________,准线方程为________.(6)若椭圆2212x y m+=的离心率为12,则m =________. 典型例题精析:例1 在△ABC 中,B(-1,0)、C(1,0),且AC 、BC 、AB 成等差数列,求顶点A 的轨迹方程.例2 求满足下列条件的椭圆的标准方程:(1)长轴是短轴的3倍,且经过点B(0,1);()2A 2,B ⎛⎛ ⎝⎭⎝⎭经过两点;(3)设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直, 且此焦点与长轴上较近的端点距离为4,求此椭圆的方程.例3 在平面直角坐标系xOy 中,点(,)P a b (0)a b >>,12F F 、分别为椭圆22221x y a b+=的左右焦点,已知△12F PF 为等腰三角形,求椭圆的离心率.巩固练习:1、如图,已知A 、B 、C 是椭圆上的三点,点A 是长轴的右顶点, F 为椭圆右焦点,BC 过椭圆中心O,且0,||2||AC BC BC AC ⋅== 当长轴长为4时,求椭圆的标准方程;2、如图,已知12,F F 是椭圆2222:1x y C a b+= (0)a b >>的左、右焦点,点P 在椭圆C 上,线段2PF 与圆222x y b +=相切于点Q 点Q 为线段2PF 的中点,则椭圆C 的离心率为 .课堂小结:课后作业: 123P 《完胜》(课外练习)。
椭圆复习课(第一课时)学案-2025届高三数学一轮复习

椭圆复习课(第一课时)学习目标知识与技能:掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).过程与方法:通过例题的研究,进一步掌握椭圆的简单应用.理解数形结合的思想. 情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.教学过程一、知识梳理1、定义:平面内到两个定点21F F ,的距离之 等于常数( )的点的 轨迹叫椭圆.2、椭圆的标准方程和几何性质标准方程22221(0)x y a b a b +=>> )0(12222>>=+b a b x a y 图 像范围 -a ≤x ≤a -b ≤y ≤b -a ≤x ≤a -b ≤y ≤b对称性 对称轴:坐标轴; 对称中心:原点顶点坐标()0,1a A - ()0,2a A ()b B -,01 ()b B ,01()a A -,01 ()a A ,02 ()0,1b B - ()0,2b B焦点坐标 ()0,1c F - ()0,2c F()c F -,01 ()c F ,02轴长 长轴长2a ,短轴长2b焦距 c F F 221=a,b,c 关系222b a c +=亲,表格中有数处错误,你能一一找出吗?离心率1>=ac e(1)动点P 到两定点A (–2,0),B(2,0)的距离之和为4,则点P 的轨迹是椭圆.( )(2)若椭圆1ky 4x 22=+的焦距是22,则k=2. ( )三、能力提升考点一 椭圆的定义及其标准方程例1:已知椭圆以坐标轴为对称轴,求分别满足下列条件的椭圆的标准方程.(1)一个焦点为(2,0),离心率为 ;(2)过 ()23,N 1,6M ,),(-两点.直击高考已知椭圆C: 1b y a x 2222=+(a>b>0)的左右焦点为21F F ,,离心率为33,过2F 的直线L 交C 于A ,B 两点,若B AF 1∆的周长为43,则C 的方程为( )A.12y 3x 22=+B. 1y 3x 22=+ C. 18y 12x 22=+ D. 14y 12x 22=+变式提升:设21F F ,分别是椭圆116y 25x 22=+的左、右焦点,P 为椭圆上一点,M 是P F 1的中点,|OM| =3,则P 点到椭圆左焦点的距离为 ( )A.4B.3C.2D.521=e X YPO xyBOA1F1F2F2FM考点二、椭圆的几何性质例2、已知椭圆C: 1b y a x 2222=+(a>b>0)的左右焦点为21F F ,,P 是椭圆短轴的一个端点,且21PF PF ⊥,则椭圆的离心率为 .变式提升椭圆C :1by a x 2222=+(a >b >0)的左、右焦点分别为21F F ,,焦距为2c ,若直线y=3(x+c )与椭圆C 的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于 .互动探究已知椭圆C: 1by a x 2222=+(a>b>0)的左右焦点为21F F ,,M 为椭圆上一点,021=•M F M F ,则椭圆离心率的范围是 .XYMO1F2FYOXP1F2F探究思考1)本题中若P 点在椭圆内部,其他条件不变,试求之。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭 圆(高三复习课)
阜阳三中 谭含影
一、教学内容分析
圆锥曲线是解析几何的主体内容,也是高中数学的重点内容,而椭圆是圆锥曲线的起始部分,通过本节课的学习,不但让学生对椭圆的知识结构有一个较清晰的认识,而且在处理问题时,让学生学会灵活运用定义,正确选用标准方程,恰当利用几何性质,合理的分析,准确的计算,并且为复习双曲线和抛物线奠定了基础。
二、学生学习情况分析
本班是普通文科班,此课之前,学生已经学习过相关内容。
此时,学生已有一定的学习基础和学习兴趣。
总体上来讲,由于学生应用数学知识的意识不强,创造力较弱,分析问题不透彻,知识体系不完整,使得学生在对椭圆定义的理解及其标准方程的灵活运用上有一定的难度。
因此根据尝试教学法,教学过程中遵循“练习探索——自主复习——课堂研究——巩固运用”的四个要素,侧重学生的“练”、“思”、“究”的自主学习。
通过学生的“练”、“ 思”、“究” ,再到教师的“讲”, 使学生的学习达到“探索有所得,研究获本质”。
三、教学目标
1、知识与能力:能用自己的语言描述椭圆的定义;准确地写出椭圆两种形式的标准方程;能根据椭圆的定义及标准方程画出椭圆的几何图形;并概括出椭圆的简单几何性质。
2、过程与方法:通过了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;理解数形结合的思想,并能用数形结合的思想结合椭圆的有关性质,解决椭圆的简单应用问题。
3、情感、态度与价值观:通过与同学、老师的交流、合作与探究,体会合作学习的乐趣;通过对椭圆的定义、几何图形、基本性质的探索,体会椭圆的几何图形与方程之间的相互联系和相互转化的规律,感受数学的严谨性;逐步形成细心观察、认真分析、善于总结的良好思维习惯。
四、教学重点与难点
教学重点:1、掌握椭圆的定义,几何图形,标准方程及简单的几何性质。
2、了解椭圆的简单应用。
教学难点:椭圆的定义和简单几何性质的应用,理解数形结合的思想。
五、教学过程 1、知识梳理 构建网络
问题1:平面内与两个定点F 1、F 2的距离之和为常数的点的轨迹是什么? 常数大于12||F F 时,点的轨迹是椭圆
常数等于12||F F 时,点的轨迹是线段F 1F 2 常数小于12||F F 时,点的轨迹不存在
问题2:平面内到定点F 与到定直线l 的距离之比为常数的点的轨迹是椭圆吗? 常数e (0<e <1)点的轨迹是椭圆
问题3:椭圆的标准方程的两种形式是什么?
12222=+b y a x , 122
22=+a
y b x , (a >b >0) 分别表示中心在原点,焦点在 x 轴和y 轴上的椭圆
问题4:椭圆的几何性质有哪些?
2、要点训练 知识再现
例1 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,求椭圆的离心率。
2
F 1
F M
[分析]: 求椭圆的离心率,关键是先利用几何关系(即△F 1PF 2为等腰直角三角形),建立a 、b 、c 的等式关系,然后转化为
c
a
的方程式,从而求得离心率。
例2 已知椭圆的一个顶点为(0,1)A -, 焦点在x 轴上,若右焦点到直线
的距离为3,
求椭圆的标准方程。
[分析]: 求椭圆的标准方程,关键是求a 、b 的值,利用点到直线的距离公式列出a 、
b 、
c 的方程或方程组,从而求出a 、b 的值。
3、 学以致用 直通高考
1)设 是椭圆
上的点,若
, 是椭圆的两个焦点,则
12PF PF +等于( )
A 、4
B 、5
C 、8
D 、10
2)在 中, , , 、 为焦点的椭圆经过点 ,则该椭圆的离心率是( )。
A 1
B
C D
3)椭圆 的焦点为了 , ,点 在椭圆上,若14PF =,则2PF = ,12F PF ∠的大小为 。
4)设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为 ,求椭圆的离心率。
5)已知 、 、 是椭圆 : 上的三点,其中点 的坐标为 , 过椭圆 的中心,且 , 。
(1)求椭圆 的方程;
(2)过点 的直线 (斜率存在时)与椭圆 交天两点 、 ,设 为椭圆 与 轴负半轴的交点,且 。
求实数 的取值范围。
4、课后小结 谈谈收获
通过本节课的学习,同学们应明确以下几点:
(1)掌握椭圆的定义、几何图形、标准方程及简单几何性质。
(2)解题时注重“三个充分”,即充分利用椭圆定义,充分利用几何性质,充分利用图形。
(3)解题时注重设而不求思想和数形结合思想的应用。
5、课后作业 巩固升华
配套练习:第213页椭圆(第一课时)。
六、教学反思
0x y -+=ABC ∆30A ∠=2AB =ABC S ∆=A B
C P 22
12516
x y
+=1F 2F 422
192
x y +=1F 2F P A B C m 22
22
1(0)x y a b a b +=>>A BC
m 0AC BC =2BC
AC =m (0,)M t l m P Q
D m y DP DQ =t。