6595高一预科班新数学练习
高一数学 必修5同步练习题:必修5 第1章 1.1.2 学业分层测评2

课后作业一、选择题1.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab >0,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形D .是锐角或直角三角形【解析】 由题意知a 2+b 2-c 22ab <0,即cos C <0, ∴△ABC 为钝角三角形. 【答案】 C2.△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( )A .19B .14C .-18D .-19【解析】 由余弦定理的推论知 cos B =AB 2+BC 2-AC 22AB ·BC=1935,∴AB →·BC →=|AB →|·|BC→|·cos(π-B )=7×5×⎝ ⎛⎭⎪⎫-1935=-19. 【答案】 D3.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2D. 3 【解析】 由a 2=b 2+c 2-2bc cos A ,得4=b 2+12-6b ,解得b =2或4.又b <c ,∴b =2.【答案】 C4.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°【解析】 ∵sin C =23sin B ,由正弦定理,得c =23b , ∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32, 又A 为三角形的内角,∴A =30°. 【答案】 A5.在△ABC 中,a ,b ,c 为角A ,B ,C 的对边,且b 2=ac ,则B 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π3 B.⎣⎢⎡⎭⎪⎫π3,π C.⎝ ⎛⎦⎥⎤0,π6 D.⎣⎢⎡⎭⎪⎫π6,π 【解析】 cos B =a 2+c 2-b 22ac =(a -c )2+ac2ac=(a -c )22ac +12≥12, ∵0<B <π,∴B ∈⎝ ⎛⎦⎥⎤0,π3.故选A.【答案】 A 二、填空题6.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cos A =23,则b =________【解析】 由余弦定理得5=22+b 2-2×2b cos A , 又cos A =23,所以3b 2-8b -3=0, 解得b =3或b =-13(舍去). 【答案】 37.在△ABC 中,若sin A ∶sin B ∶sin C =5∶7∶8,则B 的大小是________. 【解析】 由正弦定理知:a =2R sin A ,b =2R sin B ,c =2R sin C .设sin A =5k ,sin B =7k ,sin C =8k ,∴a =10Rk ,b =14Rk ,c =16Rk ,∴a∶b∶c=5∶7∶8,∴cos B=25+64-492×5×8=12,∴B=π3.【答案】π38.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b-c=14a,2sinB=3sin C,则cos A的值为________.【解析】由2sin B=3sin C及正弦定理得2b=3c,即b=32c.又b-c=14a,∴12c=14a,即a=2c.由余弦定理得cos A=b2+c2-a22bc=94c2+c2-4c22×32c2=-34c23c2=-14.【答案】-1 4三、解答题9.在△ABC中,内角A,B,C的对边分别为a,b,c,且b sin A=3a cos B.(1)求角B的大小;(2)若b=3,sin C=2sin A,求a,c的值.【解】(1)由正弦定理得asin A=bsin B=2R,R为△ABC外接圆半径.又b sin A=3a cos B,所以2R sin B sin A=3·2R sin A cos B. 又sin A≠0,所以sin B=3cos B,所以tan B= 3.又因为0<B<π,所以B=π3.(2)由sin C=2sin A及asin A=csin C,得c=2a.由b=3及余弦定理b2=a2+c2-2ac cos B,得9=a2+c2-ac,∴a2+4a2-2a2=9,解得a =3,故c =2 3.10.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos (A +B )=1.(1)求角C 的度数; (2)求AB 的长.【解】 (1)∵cos C =cos [π-(A +B )]=-cos (A +B )=-12,且C ∈(0,π), ∴C =2π3.(2)∵a ,b 是方程x 2-23x +2=0的两根, ∴⎩⎨⎧a +b =23,ab =2,∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, ∴AB =10.[能力提升]1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c 2=2a 2+2b 2+ab ,则△ABC 是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【解析】 由2c 2=2a 2+2b 2+ab 得, a 2+b 2-c 2=-12ab ,所以cos C =a 2+b 2-c 22ab =-12ab2ab =-14<0, 所以90°<C <180°,即三角形为钝角三角形,故选A. 【答案】 A2.已知锐角三角形边长分别为2,3,x ,则x 的取值范围是( ) A .(5,5) B .(1, 5) C .(5,13)D .(13,5)【解析】 三边需构成三角形,且保证3与x 所对的角都为锐角,由余弦定理得⎩⎨⎧22+32-x 2>0,22+x 2-32>0,解得5<x <13.【答案】 C3.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C =________.【解析】 由正弦定理得sin A sin C =ac ,由余弦定理得cos A =b 2+c 2-a 22bc , ∵a =4,b =5,c =6,∴sin 2A sin C =2sin A cos A sin C =2·sin A sin C ·cos A =2×46×52+62-422×5×6=1.【答案】 14.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值.【解】 (1)由b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac (1+cos B ), 又b =2,a +c =6,cos B =79, 所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429,由正弦定理得sin A =a sin Bb =223. 因为a =c ,所以A 为锐角,所以cos A =1-sin 2A =13, 因此sin(A -B )=sin A cos B -cos A sin B =10227.。
初升高衔接教材高一预科班数学《第十八讲 对数及其运算性质同步提升训练》

第18讲 对数及其应用课时达标1.把下列指数式写成对数式(1) 32=8 (2)52=32(3)12-=21(4)312731=-2.把下列对数式写成指数式(1)3log 9=2 (2)5log 125=3(3)2log 41=-2 4)3log 811=-43.求下列各式的值(1) 5log 25 (2)2log 161(3)lg 100 (4)lg 0.01(5)lg 10000 (6)lg 0.00014.求下列各式的值(1) 15log 15 (2)4.0log 1(3)9log 81 (4)5.2log 625(5)7log 343 (6)3log 2435.如果b a =2,那么A . b a =2logB .a b =2logC .2log =b a D .b a =2log6.如果()N a a =--3log 1,那么a 的取值范围是A .3<aB .31<<aC .1>a 且2≠aD .(1,2)∪(2,3)思维升华7.使0lg >x 成立的充要条件是A .0>xB .1>xC .10>xD .101<<x 8.若log [log (log )]4320x =,则x-12等于( ) A.142 B. 122 C. 8D. 4 9.化指数式为对数式:⇔=2713x ;⇔=-51521 . 10.求值:=91log 27 ;=16log 2 ;=001.0lg. 11.求值:=++++3log 15.222ln 1001lg 25.6log e. 12.已知:m a =2log ,n a =3log ,那么=+n m a 2.13. 化下列指数式为对数式:(1)1024210=,(2)001.0103=-,(3)00243.03.05=,(4)10=e .14.化下列对数式为指数式:(1)225.6log 4.0-=,(2)3010.02lg =,(3)0959.210log 3=,(4)π=14.23ln .15. 已知x=log 23,求23x -2-3x2x -2-x 的值.16.计算: ⑴27log 9,⑵81log 43, ⑶()()32log 32-+,⑷625log 345创新探究17. (原创)证明对数的换底公式:a N N c c a log log log =10(≠>c c 且,10≠>a a 且,)0>N 。
高一预科班数学卷(必修一)

高一预科班数学卷(必修一)2016年南昌九州教育学校暑期7月测试卷高一数学试卷学生姓名___________分数___________ --命题教师江新详本试卷分卷Ⅰ和卷Ⅱ两部分:满分150分,考试时间120分钟一、选择题(本大题共12小题,每小题5分,共60分)1.设集合M ={1,2,4,8},N ={x |x 是2的倍数},则M ∩N 等于( )A .{2,4}B .{1,2,4}C .{2,4,8}D .{1,2,8}2.若集合A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .?3.若f (x )=ax 2-2(a >0),且f (2)=2,则a 等于( )A .1+22B .1-22C .0D .24.若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( )A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -45.设全集U ={1,2,3,4,5},集合M ={1,4},N ={1,3,5},则N∩(?U M )等于( )A .{1,3}B .{1,5}C .{3,5}D .{4,5}6.已知函数f (x )=1x在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于( ) A.12B .-12C .1D .-17.已知函数f (x )=ax 2+(a 3-a )x +1在(-∞,-1]上递增,则a 的取值范围是( )A .a ≤ 3B .-3≤a ≤ 3C .0D .-3≤a <08.设f (x )=?x +3 (x >10)f (f (x +5)) (x ≤10),则f (5)的值是( ) A .24 B .21C .18D .169已知函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是( )A .f (1)≥25B .f (1)=25C .f (1)≤25D .f (1)>2510.设集合A =[0,12),B =[12,1],函数f (x )=x +12,x ∈A 2(1-x ),x ∈B ,若x 0∈A ,且f [f (x 0)]∈A ,则x 0的取值范围是( )A .(0,14]B .(14,12]C .(14,12)D .[0,38] 11.若函数f (x )=x 2+bx +c 对任意实数x 都有f (2+x )=f (2-x ),那么( )A .f (2)<="" p="">B .f (1)<="" p="">C .f (2)<="" (4)D .f (4)<="" (2)12.设函数f (x )=?x 2-4x +6,x ≥0,x +6, x <0则不等式f (x )>f (1)的解集是( ) A .(-3,1)∪(3,+∞) B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数y =f (x )是R 上的增函数,且f (m +3)≤f (5),则实数m 的取值范围是________.14.函数f (x )=-x 2+2x +3在区间[-2,3]上的最大值与最小值的和为________.15.若定义运算a ⊙b =?b ,a ≥b a ,a16.函数f (x )的定义域为D ,若对于任意x 1,x 2∈D ,当x 1<="" 2时,都有f="" p="">称函数f (x )在D 上为非减函数.设函数f (x )在[0,1]上为非减函数,且满足以下三个条件:①f (0)=0;②f (x 3)=12f (x );③f (1-x )=1-f (x ),则f (13)+f (18)=________. 三、解答题(本大题共6小题,共70分)17.(10分)设集合A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中p 、q 为常数,x∈R ,当A ∩B ={12}时,求p 、q 的值和A ∪B .18.(12分)已知集合{}{},10,121<<=+<<-=x x B a x a x A (1)若21=a ,求B A ;(2)若φ=B A ,求实数a 的取值范围.19.(12分)函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值.20.(12分)函数f (x )是R 上的偶函数,且当x >0时,函数的解析式为f (x )=2x-1. (1)用定义证明f (x )在(0,+∞)上是减函数;(2)求当x <0时,函数的解析式.21.(12分)已知函数f (x )对一切实数x ,y ∈R 都有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (3)=-2.(1)试判定该函数的奇偶性;(2)试判断该函数在R 上的单调性;(3)求f (x )在[-12,12]上的最大值和最小值.22.(12分)已知函数y =x +t x有如下性质:如果常数t >0,那么该函数在(0,t ]上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质,求函数f (x )的单调区间和值域; (2)对于(1)中的函数f (x )和函数g (x )=-x -2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得g (x 2)=f (x 1)成立,求实数a 的值.1.C [因为N ={x |x 是2的倍数}={…,0,2,4,6,8,…},故M ∩N ={2,4,8},所以C 正确.]2.C [A ={x |-1≤x ≤1},B ={y |y ≥0},解得A ∩B ={x |0≤x ≤1}.]3.A [f (2)=2a -2=2,∴a =1+22.] 4.B [f (3x +2)=9x +8=3(3x +2)+2,∴f (t )=3t +2,即f (x )=3x +2.]5.C [?U M ={2,3,5},N ={1,3,5},则N ∩(?U M )={1,3,5}∩{2,3,5}={3,5}.]6.A [f (x )=1x在[1,2]上递减,∴f (1)=A ,f (2)=B ,∴A -B =f (1)-f (2)=1-12=12.] 7.D [由题意知a <0,-a 3-a 2a≥-1,-a 22+12≥-1,即a 2≤3. ∴-3≤a <0.]8.A [f (5)=f (f (10))=f (f (f (15)))=f (f (18))=f (21)=24.]9.B [f (x )是偶函数,即f (-x )=f (x ),得m =0,所以f (x )=-x 2+3,画出函数f (x )=-x 2+3的图象知,f (x )在区间(2,5)上为减函数.] 10.C [∵x 0∈A ,∴f (x 0)=x 0+12 ∈B ,∴f [f (x 0)]=f (x 0+12)=2(1-x 0-12),即f [f (x 0)]=1-2x 0∈A ,所以0≤1-2x 0<12,即14<="" p="">,又x 0∈A ,∴14<12<="" p="">,故选C.] 11.A [由f (2+x )=f (2-x )可知:函数f (x )的对称轴为x =2,由二次函数f (x )开口方向,可得f (2)最小;又f (4)=f (2+2)=f (2-2)=f (0),在x <2时y =f (x )为减函数.∵0<1<2,∴f (0)>f (1)>f (2),即f (2)<="" p="">12.D [由题意知f (x )+g (x )在(0,+∞)上有最大值6,因f (x )和g (x )都是奇函数,所以f (-x )+g (-x )=-f (x )-g (x )=-[f (x )+g (x )],即f (x )+g (x )也是奇函数,所以f (x )+g (x )在(-∞,0)上有最小值-6,∴F (x )=f (x )+g (x )+2在(-∞,0)上有最小值-4.]13.m ≤2解析由函数单调性可知,由f (m +3)≤f (5)有m +3≤5,故m ≤2.14.-1解析 f (x )=-x 2+2x +3=-(x -1)2+4,∵1∈[-2,3],∴f (x )max =4,又∵1-(-2)>3-1,由f (x )图象的对称性可知,f (-2)的值为f (x )在[-2,3]上的最小值,即f (x )min =f (-2)=-5,∴-5+4=-1.15.-1解析由题意知,f (-x )=-f (x ),即x 2-(a +1)x +a -x=-x 2+(a +1)x +a x ,∴(a +1)x =0对x ≠0恒成立,∴a +1=0,a =-1.16.(-1,-12)∪[0,1) 解析由题中图象知,当x ≠0时,f (-x )=-f (x ),所以f (x )-[-f (x )]>-1,∴f (x )>-12,由题图可知,此时-1<-12<="" p="">或0-1满足条件.因此其解集是{x |-1<-12<="" p="">或0≤x <1}. 17.解∵A ∩B ={12},∴12∈A . ∴2(12)2+3p (12)+2=0. ∴p =-53.∴A ={12,2}.又∵A ∩B ={12},∴12∈B . ∴2(12)2+12+q =0.∴q =-1. ∴B ={12,-1}.∴A ∪B ={-1,12,2}. 18.解(1)∵f (3)=3+23-6=-53≠14. ∴点(3,14)不在f (x )的图象上.(2)当x =4时,f (4)=4+24-6=-3. (3)若f (x )=2,则x +2x -6=2,∴2x -12=x +2,∴x =14.19.(1)证明设0<="" p="">f (x 1)-f (x 2)=(2x 1-1)-(2x 2-1) =2(x 2-x 1)x 1x 2,∵00,x 2-x 1>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是减函数.(2)解设x <0,则-x >0,∴f (-x )=-2x-1,又f (x )为偶函数,∴f (-x )=f (x )=-2x-1,即f (x )=-2x-1(x <0). 20.解∵f (x )=4(x -a 2)2-2a +2,①当a 2≤0,即a ≤0时,函数f (x )在[0,2]上是增函数.∴f (x )min =f (0)=a 2-2a +2.由a 2-2a +2=3,得a =1±2.∵a ≤0,∴a =1- 2.②当0<2,即0)=-2a +2. 由-2a +2=3,得a =-12(0,4),舍去.③当a 2≥2,即a ≥4时,函数f (x )在[0,2]上是减函数, f (x )min =f (2)=a 2-10a +18.由a 2-10a +18=3,得a =5±10.∵a ≥4,∴a =5+10.综上所述,a =1-2或a =5+10.21.解 (1)令x =y =0,得f (0+0)=f (0)=f (0)+f (0) =2f (0),∴f (0)=0.令y =-x ,得f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ),∴f (x )为奇函数.(2)任取x 10,∴f (x 2-x 1)<0,∴f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1)<0,即f (x 2)<="" p="">∴f (x )在R 上是减函数.(3)∵f (x )在[-12,12]上是减函数,∴f (12)最小,f (-12)最大.又f (12)=f (6+6)=f (6)+f (6)=2f (6)=2[f (3)+f (3)]=4f (3)=-8,∴f (-12)=-f (12)=8.∴f (x )在[-12,12]上的最大值是8,最小值是-8.22.解 (1)y =f (x )=4x 2-12x -32x +1=2x +1+42x +1-8,设u =2x +1,x ∈[0,1],1≤u ≤3,则y =u +4u-8,u ∈[1,3].由已知性质得,当1≤u ≤2,即0≤x ≤12时,f (x )单调递减;所以减区间为[0,12];当2≤u ≤3,即12≤x ≤1时,f (x )单调递增;所以增区间为[12,1];由f (0)=-3,f (12)=-4,f (1)=-113,得f (x )的值域为[-4,-3].(2)g (x )=-x -2a 为减函数,故g (x )∈[-1-2a ,-2a ],x ∈[0,1].由题意,f (x )的值域是g (x )的值域的子集,∴ -1-2a ≤-4-2a ≥-3∴a =32.。
数学

教育新高一预科数学检测试题 姓名: 成绩:一、选择题(10*5=50分)1.下列各项中,不可以组成集合的是( )A.所有正数B.所有奇数C.接近于0的数D.不等于0的偶数2.若全集{}3,2,1,0=u ,且{}2=A C u ,则集合A 的真子集共有( )A.3个B.5个C.7个D.8个3.{}31≤≤=x x A ,{}2>=x x B ,则A B=( ) A.{}32≤<x x B.{}1≥x x C.{}32<≤x x D.{}2>x x4.函数xx x f -=1)(的定义域是( ) A.[]1,0 B.]1,(--∞ C.(0,∞-)]1,0( D.R5.已知函数32)(-=x x f 若1)(=a f ,则a 的值为( )A.-2B.-1C.1D.26.下列各组函数相等的是( ) A.2)()(,)(x x g x x f == B.x x x g x x f 32)(,)(== C.0)(,1)(x x g x f == D.⎩⎨⎧<-≥==)0()0()(,)(x x x x x g x x f7.下列各图中,表示以x 为自变量的函数图是( )8.函数223y x x =-++在区间[0,3]上,那么该函数的值域是( ) (A ) [0,3]; (B )[4,4]-; (C )[0,4]; (D )[3,4]或[0,4];9.集合{(,)|0}A x y x y =+=;{(,)|0}B x y x y =-=,则A B 是( )A ,0x y ==;B ,(0,0);C ,{(0,0)};D ,{0,0}x y ==;10.在区间(0,+∞)上不是增函数的是( )A.y=2x+1B.132+=x yC.xy 1= D.y=2x二、填空题(4*5=20分)11.已知函数()⎩⎨⎧<-≥+=0,10,12x x x x x f ,则f[f(-2)]= .12.函数1222++-=a ax x y ,在(-∞,5)上是减函数,则a 的取值范围是13.已知f(x)的定义域为[-1,1],则f (2x+1)的定义域为14.定义在R 上的奇函数f(x),当x ≥0时,()12-=x x f ,求f(-1)=三、解答题(3*10=30分)15.已知{}30≤≤∈=x Z x A , {}0342=+-=x x x B 。
初升高衔接教材高一预科班数学《第十九讲 对数函数同步提升训练》

第19讲 对数函数课时达标1.已知3a +5b = A ,且a 1+b1= 2,则A 的值是( ). A .15 B .15 C .±15 D .225 2.已知a >0,且10x = lg(10x)+lga1,则x 的值是( ). A .-1 B .0 C .1 D .23.若x 1,x 2是方程lg 2x +(lg3+lg2)+lg3·lg2 = 0的两根,则x 1x 2的值是( ).A .lg3·lg2B .lg6C .6D .614.(原创)若log a (a 2+1)<log a 2a <0,那么a 的取值范围是( ).A .(0,1)B .(0,21) C .(21,1) D .(1,+∞) 5. (原创)y=)8lg(2x - 的定义域是__________.6.求下列函数的定义域:(1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=.思维升华 7.已知x =31log 121+31log 151,则x 的值属于区间( ).A .(-2,-1)B .(1,2)C .(-3,-2)D .(2,3)8.已知lga ,lgb 是方程2x 2-4x +1 = 0的两个根,则(lgba )2的值是( ). A .4 B .3 C .2 D .19.已知函数y = log (ax +2x +1)的值域为R ,则实数a 的取值范围是( ).A .0≤a ≤1B .0<a ≤1C .a ≥1D .a >§5 对数函数 10.若log 7[ log 3( log 2x)] = 0,则x 21-为( ).A .321 B .331C .21 D .42 11.(原创)若0<a <1,函数y = log a [1-(21)x]在定义域上是( ). A .增函数且y >0 B .增函数且y <0 C .减函数且y >0 D .减函数且y <0 12.已知不等式log a (1-21+x )>0的解集是(-∞,-2),则a 的取值范围是( ). A .0<a <21 B .21<a <1 C .0<a <1 D .a >113.(原创)函数y=log 13 (x 2-3x)的增区间是________14.(原创)求函数251-⎪⎭⎫⎝⎛=xy 和函数22112+⎪⎭⎫ ⎝⎛=+x y )0(<x 的反函数。
高一数学新课标人教版必修5第二章 数列练习题10套试题_试卷含答案解析 双基限时练10

双基限时练(十)1.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )A .9B .10C .11D .12解析 a 1=1,a 3+a 5=2a 1+6d =14, ∴d =2,∴S n =n +n (n -1)2×2=100. ∴n =10. 答案 B2.设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=( ) A .8 B .7 C .6D .5解析 S 7=a 1+a 72×7=35, ∴a 1+a 7=10,∴a 4=a 1+a 72=5. 答案 D3.设数列{a n }是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .8 解析 依题意⎩⎪⎨⎪⎧a 1+a 2+a 3=12,a 1·a 2·a 3=48,∵a 1+a 3=2a 2,∴a 2=4.∴⎩⎪⎨⎪⎧ a 1+a 3=8,a 1·a 3=12,解得⎩⎪⎨⎪⎧ a 1=2,a 3=6,或⎩⎪⎨⎪⎧a 1=6,a 3=2.∵{a n }是递增数列,∴a 1=2. 答案 B4.若数列{a n }为等差数列,公差为12,且S 100=145,则a 2+a 4+…+a 100的值为( )A .60B .85 C.1452D .其他值解析 设a 1+a 3+…+a 99=S 1, 则a 2+a 4+…+a 100=S 1+50d . 依题意,有S 1+S 1+50d =145. 又d =12,∴S 1=60.∴a 2+a 4+…+a 100=60+25=85. 答案 B5.记等差数列的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( )A .2B .3C .6D .7 解析 由题意,有a 1+a 2=4,a 1+a 2+a 3+a 4=20, ∴a 3+a 4=16. ∴a 1+2d +a 2+2d =16. ∴4d =12,d =3. 答案 B6.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .663解析 被7除余2的自然数,构成等差数列,其首项a 1=2,公差d =7.最大的a n =93,由2+(n -1)×7=93得n =14.∴这些数的和为S =2+932×14=665.答案 B7.在数列{a n }中,a n =4n -52,a 1+a 2+…+a n =an 2+bn ,(n ∈N *),其中a ,b 为常数,则ab =________.解析 ∵a n =4n -52,∴a 1=32. 又知{a n }为等差数列,且d =4, ∴an 2+bn =a 1+a 2+…+a n =32n +n (n -1)2×4=2n 2-12n . ∴a =2,b =-12,∴ab =-1. 答案 -18.在等差数列{a n }中,S 4=6,S 8=20,则S 16=________. 解析 S 4=6,S 8=S 4+a 5+a 6+a 7+a 8=20, ∴a 1+…+a 4=6,a 5+…+a 8=14. ∴a 9+a 10+a 11+a 12=22, a 13+…+a 16=30,∴S 16=72. 答案 729.在数列{a n }中,a n +1=2a n 2+a n(n ∈N *),且a 5=12,则a 3=________.解析 由a n +1=2a n 2+a n ,得1a n +1=2+a n 2a n =1a n+12,即1a n +1-1a n =12,所以数列⎩⎨⎧⎭⎬⎫1a n 是公差为12的等差数列,故1a 3=1a 5-2d =2-2×12=1,即a 3=1.答案 110.等差数列{a n }的前n 项和记为S n ,已知a 10=30,a 20=50. (1)求通项a n ; (2)若S n =242,求n .解 (1)设{a n }的首项为a 1,公差为d ,则⎩⎪⎨⎪⎧ a 1+9d =30,a 1+19d =50,∴⎩⎪⎨⎪⎧a 1=12,d =2.∴通项a n =a 1+(n -1)d =10+2n .(2)由S n =na 1+n (n -1)2d ,S n =242,可得方程 12n +n (n -1)2×2=242.解得n =11或n =-22(舍去),∴n =11.11.已知{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }的前n 项和S n 的最大值. 解 (1)设{a n }的公差为d ,由已知条件⎩⎪⎨⎪⎧ a 1+d =1,a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=3,d =-2.∴a n =a 1+(n -1)d =-2n +5. (2)S n =na 1+n (n -1)2d=-n 2+4n =-(n -2)2+4,所以,当n =2时,S n 取得最大值4.12.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N +),求数列{b n }的前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d .∵a 3=7,a 5+a 7=26,∴⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26.解得⎩⎪⎨⎪⎧a 1=3,d =2.∴a n =3+2(n -1)=2n +1,S n =3n +n (n -1)2×2=n 2+2n .即a n =2n +1,S n =n 2+2n .(2)由(1)知a n =2n +1,∴b n =1a 2n -1=1(2n +1)2-1=14×1n (n +1)=14×⎝ ⎛⎭⎪⎫1n -1n +1. ∴T n =14×⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14×⎝ ⎛⎭⎪⎫1-1n +1=n4(n +1),即数列{b n }的前n 项和T n =n4(n +1).。
「新高一预科」2024版数学必修第一册必刷题

【序】作为新高一预科数学必修第一册的学习者,我们应该重视必刷题这一学习方法,通过大量的题目练习来巩固基础知识,提高解题能力。
下面将介绍新高一预科2024版数学必修第一册中的必刷题,希望能够帮助同学们更好地学习数学,取得更好的成绩。
一、整式与因式分解1. 整式的加减整式的加减是整式运算的基础,要熟练掌握各种形式的整式加减,包括同类项的合并和系数的计算。
常见的题型有:(1) 化简表达式:如将3x+2y-5x-3y进行合并;(2) 填空求值:如计算4a-(-5a+2b)的值。
2. 整式的乘法整式的乘法是整式运算中的重要环节,要熟练掌握多项式的乘法规则,包括分配律、乘法交换律和乘法结合律。
常见的题型有:(1) 展开式子:如计算(3x+2)(4x-5)的结果;(2) 计算含有未知数的表达式:如计算2a*(3a+4b)的结果。
3. 因式分解因式分解是整式运算的重要内容,要熟练掌握各种因式分解的方法,包括提公因式法、公式法和分组分解法。
常见的题型有:(1) 因式分解:如对多项式2x^2-7x+3进行因式分解;(2) 求解未知数:如对方程式2x^2-7x+3=0进行因式分解求解。
二、一元二次方程1. 一元二次方程的定义一元二次方程是关于未知数x的二次方程,其一般形式为ax^2+bx+c=0。
在解一元二次方程时,需要熟练掌握求根公式和配方法。
常见的题型有:(1) 解一元二次方程:如求解方程式2x^2-3x+1=0的解;(2) 判断方程根的情况:如判断方程式3x^2-4x+2=0的根的情况。
2. 一元二次方程的应用一元二次方程在生活中有很多应用,需要熟练掌握利用一元二次方程解决实际问题的方法。
常见的题型有:(1) 求最值:如求抛物线y=x^2-2x+3的最小值;(2) 计算距离和时间:如根据公式d=vt-1/2at^2计算运动物体的路径。
三、不等式1. 不等式的性质不等式是数学中的重要内容,需要熟练掌握不等式的性质和解不等式的方法。
2025届高考数学新课标卷19题新题型集训卷(6)

2025届高考数学新课标卷19题新题型集训卷(6)学校:___________姓名:___________班级:___________考号:___________当0d >时,()101n a +的取值范围为()10,+∞.2.[2024届·河南·模拟考试联考]在空间解析几何中,可以定义曲面(含平面)S 的方程,若曲面S 和三元方程(),,0F x y z =之间满足:①曲面S 上任意一点的坐标均为三元方程(),,0F x y z =的解;②以三元方程(),,0F x y z =的任意解()000,,x y z 为坐标的点均在曲面S 上,则称曲面S 的方程为(),,0F x y z =,方程(),,0F x y z =的曲面为S .已知空间中某单叶双曲面C 的方程为2221114x y z +-=,双曲面C 可视为平面xOz 中某双曲线的一支绕z 轴旋转一周所得的旋转面,已知直线l 过C 上一点()1,1,2Q ,且以()2,0,4d =--为方向向量.(1)指出xOy 平面截曲面C 所得交线是什么曲线,并说明理由;(2)证明:直线l 在曲面C 上;(3)若过曲面C 上任意一点,有且仅有两条直线,使得它们均在曲面C 上.设直线l '在曲面C 上,且过点2)T ,求异面直线l 与l '所成角的余弦值.答案:(1)以原点O 为圆心,1为半径的圆(2)点P 的坐标总是满足曲面C 的方程,从而直线l 在曲面C 上(3)810+解析:(1)根据坐标平面xOy 内点的坐标的特征可知,坐标平面xOy 的方程为0z =,已知单叶双曲面C 的方程为2221114x y z +-=,当0z =时,xOy 平面截曲面C 所得交线上的点(,,0)M x y 满足221x y +=,从而xOy 平面截曲面C 所得交线是平面xOy 上,以原点O 为圆心,1为半径的圆.(2)设()000,,P x y z 是直线l 上任意一点,由(2,0,4)d =--,QP 均为直线l 的方向向量,得//QP d ,从而存在实数λ,使得QP d λ=,即()0001,1,2(2,0,4)x y z λ---=--,则00012,10,24,x y z λλ-=-⎧⎪-=⎨⎪-=-⎩解得00012,1,24,x y z λλ=-⎧⎪=⎨⎪=-⎩所以点P 的坐标为(12,1,24)λλ--,于是22222(12)1(24)(12)1(12)1114λλλλ--+-=-+--=,因此点P 的坐标总是满足曲面C 的方程,从而直线l 在曲面C 上.(3)直线l '在曲面C 上,且过点2)T ,设()111,,M x y z 是直线l '上任意一点,直线l '的方向向量为(,,)d a b c '=,由d ',TM均为直线l '的方向向量,得//TM d ' ,从而存在实数t ,使得TM td '=,即()111,2(,,)x y z t a b c --=,则111,,2,x at y bt z ct ⎧=⎪=⎨⎪-=⎩解得111,,2,x at y bt z ct ⎧=⎪=⎨⎪=+⎩所以点M的坐标为,,2)at bt ct ++,因为点M 在曲面C 上,所以222(2)()(2)1114at bt ct +++-=,整理得2222)04c a b t c t ⎛⎫+-+-= ⎪⎝⎭,因为M 为直线l '任意一点,所以对任意的t ,有2222)04c a b t c t ⎛⎫+-+-= ⎪⎝⎭恒成立,所以22204c a b +-=,且0c -=,所以c =,b a =或c =,b a =-,不妨取a =,则4c =-,b =或4c =-,b =,所以(4)d '=-,或(4)d '=-,又直线l 的方向向量为(2,0,4)d =--,所以异面直线l 与l '所成角的余弦值为810||d d d d ''⋅+==.3.[2024届·贵州黔南州·二模]1799年,哥廷根大学的高斯在其博士论文中证明了如下定理:任何复系数一元n 次多项式方程在复数域上至少有一根(1n ≥).此定理被称为代数基本定理,在代数乃至整个数学中起着基础作用.由此定理还可以推出以下重要结论:n 次复系数多项式方程在复数域内有且只有n 个根(重根按重数计算).对于n 次复系数多项式()1110n n n f x x a x a x a --=++⋅⋅⋅++,其中1n a -,2n a -,0,a ⋅⋅⋅∈C ,若方程()0f x =有n 个复根1x ,2x ,⋅⋅⋅,n x ,则有如下的高阶韦达定理:()1121311201ni n i ni j n i j nni j k n i j k n n n x a x x a x x x a x x x a-=-≤<≤-≤<<≤⎧=-⎪⎪⎪=⎪⎪⎨⎪=-⎪⎪⎪⎪⋅⋅⋅=-⎩∑∑∑(1)在复数域内解方程240x +=;(2)若三次方程320x ax bx c +++=的三个根分别是11i x =-,21i x =+,32x =(i 为虚数单位),求a ,b ,c 的值;(3)在4n ≥的多项式()1110n n n f x x a x a x a --=++⋅⋅⋅++中,已知11n a -=-,21a n a =-,0a a =,a 为非零实数,且方程()0f x =的根恰好全是正实数,求出该方程的所有根(用含n 的式子表示).答案:(1)2i x =±;(2)4a =,6b =,4c =-;(3)121111n x x x n==⋅⋅⋅==解析:(1)由240x +=可得24x =-,解得2i x =±.(2)由题意可知:123122313123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩,将11i x =-,21i x =+,32x =代入可得464a b c =-⎧⎪=⎨⎪=-⎩,所以4a =,6b =,4c =-.(3)设()12,,,n a a a a =⋅⋅⋅ ,()12,,,n b b b b =⋅⋅⋅,1212,,,,,,,0n n a a a b b b ⋅⋅⋅⋅⋅⋅>,因为a b a b ⋅≤ ,当且仅当//a b时,等号成立,可得1122n n a b a b a b ++⋅⋅⋅+≤,即1122n n a b a b a b ++⋅⋅⋅+≤,当且仅当1212n na a ab b b ==⋅⋅⋅=时,等号成立,因为方程()11100n n n f x x a x a x a --=++⋅⋅⋅++=的根恰好全是正实数,设这n 个正根分别为1x ,2x ,⋅⋅⋅,n x ,且11n a -=-,21a n a =-,0a a =,由题意可知:()()()1212121122312111n n n n n n n n x x x x x x x x x x x x n a x x x a ---⎧++⋅⋅⋅+=⎪⎪⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=--⎨⎪⋅⋅⋅=-⎪⎩,因为121n x x x ++⋅⋅⋅+=,且1x ,2x ,⋅⋅⋅,n x 均为正数,则()121212111111n n n x x x x x x x x x ⎛⎫++⋅⋅⋅+=++⋅⋅⋅+++⋅⋅⋅+ ⎪⎝⎭22n ⎫≥⋅⋅⋅+=,当且仅当121111n x x x n==⋅⋅⋅==时,等号成立,又因为()()()1221211223211211111nn n n n n nn n a x x x x x x x x x n x x x x x x a-----⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅==⋅⋅⋅+-+⋅⋅⋅+=,即212111nn x x x ++⋅⋅⋅+=,所以121111n x x x n==⋅⋅⋅==.11122122a ,我们定义方阵11122122a a A a a ⎛⎫=⎪⎝⎭,方阵A 对应的行列式记为()det A ,且()11221221det A a a a a =-,方阵A 与任意方阵11122122bb B b b ⎛⎫= ⎪⎝⎭的乘法运算定义如下:A B C ⨯=,其中方阵11122122c c C c c ⎛⎫= ⎪⎝⎭,且{}()21,1,2nn mi in i c a b m n ==∈∑.设cos sin sin cos M αααα-⎛⎫=⎪⎝⎭,cos sin sin cos N ββββ⎛⎫=⎪-⎝⎭,1001E ⎛⎫= ⎪⎝⎭.(1)证明:()()det det M N E ⨯=.(2)若方阵A ,B 满足A B E ⨯=,且()det A ,()det B ∈Z ,证明:()()()()det det det det A B M N +=+.答案:(1)见解析(2)见解析解析:(1)证明:设方阵11122122k k K M N k k ⎛⎫=⨯=⎪⎝⎭,则()()()11cos cos sin sin cos k αβαβαβ=+--=-,()()12cos sin sin cos sin k αβαββα=+-=-,()()21sin cos cos sin sin k αβαβαβ=+-=-,()22sin sin cos cos cos k αβαβαβ=+=-,则()()()()cos sin sin cos K αββααβαβ--⎛⎫= ⎪--⎝⎭,所以()()()()()2det det cos sin sin M N K αβαββα⨯==----()()22cos sin 1αβαβ=-+-=.因为()det 11001E =⨯-⨯=,所以()()det det M N E ⨯=,证毕.(2)证明:设11122122a a A a a ⎛⎫=⎪⎝⎭,11122122b b B b b ⎛⎫= ⎪⎝⎭,则由A B E ⨯=,可得111112211a b a b +=,①111212220a b a b +=,②211122210a b a b +=,③211222221a b a b +=,④由①×④,得111121121111222212212112122122221a b a b a b a b a b a b a b a b +++=,⑤由②×③,得111221111112222112222111122222210a b a b a b a b a b a b a b a b +++=,⑥由⑤-⑥,可得111122221221211211122221122221111a b a b a b a b a b a b a b a b +--=,整理得()()11221221112212211a a a a b b b b --=,即()()det det 1A B ⨯=.由()()det ,det A B ∈Z ,可得()()det 1,det 1,A B =⎧⎪⎨=⎪⎩或()()det 1,det 1,A B =-⎧⎪⎨=-⎪⎩则()()det det 2A B +=.又()()det det 1M N ==,所以()()()()det det det det A B M N +=+,证毕.6.[2024届·湖北黄冈·模拟考试校考]第二十五届中国国际高新技术成果交易会(简称“高交会”)在深圳闭幕.会展展出了国产全球首架电动垂直起降载人飞碟.观察它的外观造型,我们会被其优美的曲线折服.现代产品外观特别讲究线条感,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线():C y f x =上的曲线段AB ,其弧长为Δs ,当动点从A 沿曲线段AB 运动到B 点时,A 点的切线A l 也随着转动到B 点的切线B l ,记这两条切线之间的夹角为θ△(它等于B l 的倾斜角与A l 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义ΔΔK sθ=为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义()3022lim 1y K sy θ∆→''∆==∆'+(若极限存在)为曲线C 在点A 处的曲率.(其中y ',y ''分别表示()y f x =在点A 处的一阶、二阶导数)(1)已知抛物线22(0)x py p =>的焦点到准线的距离为3,则在该抛物线上点()3,y 处的曲率是多少?(2)若函数()11212x g x =-+,不等式()e e 2cos 2x x g g x ω-⎛⎫+≤- ⎪⎝⎭对于x ∈R 恒成立,求ω的取值范围;(3)若动点A 的切线沿曲线()228f x x =-运动至点()(),n n B x f x 处的切线,点B 的切线与x 轴的交点为()()*1,0n x n +∈N .若14x =,2n n b x =-,n T 是数列{}n b 的前n 项和,证明3n T <.答案:(1)212(2)[]1,1-(3)()*3n T n <∈N 解析:(1)已知抛物线22(0)x py p =>的焦点到准线的距离为3,则3p =,即抛物线方程为26x y =,即()216f x y x ==,则()13f x x '=,()13f x ''=,又抛物线在点()3,y 处的曲率,则32211233121139K ===⎛⎫+⋅ ⎪⎝⎭,即在该抛物线上()3,y 处的曲率为212.(2)()()112111212212221x xx x g x g x --=-=-=-=-+++ ,()g x ∴在R 上为奇函数,又()g x 在R 上为减函数.∴不等式()e e 2cos 2x xg g x ω-⎛⎫+≤-⎪⎝⎭对于x ∈R 恒成立,等价于e e cos 22x xx ω-+≥-对于x ∈R 恒成立.又因为两个函数都是偶函数,记()cos p x x ω=,()e e 22x xq x -+=-,则曲线()p x 恒在曲线()q x 上方.()sin p x x ωω'=-,()e e 2x xq x -=-'-,又因为()()001p q ==,所以在0x =处三角函数()p x 的曲率不大于曲线()q x 的曲率.即()()()()332222001010p q p q ≤⎡'''⎤⎡⎤++⎣⎦⎣'⎦''又因为()2cos p x x ωω'=-',()e e 2x xq x -+=''-,()20p ω''=-,()01q ''=-,所以21ω≤,解得:11ω-≤≤,因此,ω的取值范围为[]1,1-.(3)由题可得()4f x x '=.所以曲线()y f x =在点()(),n n x f x 处的切线方程是:()()()n n n y f x f x x x '-=-.即()()2284n n n y x x x x --=-.令0y =,得()()2142n n n n x x x x +--=-.即2142n n n x x x ++=.显然0n x ≠,122n n n x x x +∴=+.由122n n nx x x +=+,知()21222222n n n n n x x x x x +++=++=,同理()21222n n n x x x +--=,故2112222n n n n x x x x ++⎛⎫++= ⎪--⎝⎭.从而1122lg 2lg 22n n n n x x x x ++++=--,设2lg 2n n n x a x +=-,即12n n a a +=.所以,数列{}n a 成等比数列.故111111222lg2lg 32n n n n x a a x ---+===-.即12lg 2lg 32n n n x x -+=-.从而12232n n n x x -+=-所以()112223131n n n x --+=-,1242031n n n b x -∴=-=>-,111112122223111113313133n n n n n n b b ----+-∴==<≤=-+当1n =时,显然1123T b ==<.当1n >时,21121111333n n n n b b b b ---⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,1112111113111333133313n n n n n b T b b b b b b -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦∴=+++<+++==-⋅< ⎪ ⎪⎝⎭⎝⎭- .综上,()*3n T n <∈N .。