构造平行四边形证题的技巧

合集下载

平行四边形解题方法与技巧

平行四边形解题方法与技巧

◆解读平行四边形1.正确理解平行四边形的概念有两组对边分别平行的四边形叫做平行四边形.用数学语言表示为:在四边形ABCD中,若AB∥DC,AD∥BC,则四边形ABCD是平行四边形.记作□ ABCED.平行四边形的定义也是判定一个四边形是不是平行四边形的一种方法.2.掌握平行四边形的性质平行四边形的性质可以从以下三个方面去理解:(1)从边着眼:平行四边形的两组对边分别平行且相等;(2)从角着眼:平行四边形的两组对角分别相等,邻角互补;(3)从对角线着眼:平行四边形的对角线互相平分.事实上,平行四边形的对角线除了互相平分外,它还是将四边形转化为三角形的”桥梁”,在处理许多与平行四边形有关的问题时,常用”对角线”互相平分这一性质解决.如:□ABCD的周长为26,对角线AC 和BD相交于点O,若△AOB的周长比△AOD的周长多1,这样我们就可以利用平行四边形的对边相等和对角线互相平分得到AB+AD=13,,AB-AD=1,从而求得AB=7,AD=6.3.掌握平行四边形的判定方法判定一个四边形是平行四边形的方法主要有:(1)两组对边分别平行;(2)两组对边分别相等;(3)一组对边平行且相等;(4)两组对角分别相等;(5)两条对角线互相平分.◆平行四边形性质的活用平行四边形除了具有一般四边形的性质外,还具有以下特性:(1)对边平行且相等;(2)对角相等,邻角互补;(3)对角线互相平分;(4)是中心对称图形,对角线的交点是它的对称中心;(5)平行四边形被对角线分成的4个三角形的面积相等.例1: 已知:如图,在□ABCD中,E、F分别是AB、CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.例2: 如图,在平行四边形ABCD中,E、F分别是AB、CD上的点,且∠DAF=∠BCE.(1)求证:△DAF≌△BCE;(2)若∠ABC=60°,∠ECB=20°,∠ABC的平分线BN交AF与M,交AD于N,求∠AMN的度数.◆判定平行四边形的五种基本方法判定平行四边形的五种方法1.两组对边分别平行例: 如图1,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF是怎样的四边形,并说明理由。

典中点平行四边形专训5 构造中位线解题的五种常用方法

典中点平行四边形专训5   构造中位线解题的五种常用方法

典中点平行四边形专训5 构造中位线解题的五种常用方法◐名师点金◑三角形的中位线具有两方面的性质:一是位置上的平行关系,二是数量上的倍分关系.因此,当题目中给出三角形两边的中点时,可以直接 连出中位线;当题目中给出一边的中点时,往往需要找另一边的中点,作出三角形的中位线。

典例剖析:如图,在△ABC 中,BD,CE 分别平分∠ABC,∠ACB,AM ⊥CE 于点M,AN ⊥BD 于点N.求证:MN=21(AB+AC-BC)解题秘方:图中不存在中点,但结论与三角形中位线定理很类似,因此应设法寻找中点,再构造三角形的中位线.要证明MN=21(AB+AC-BC),可找以MN 为中位线的三角形,故延长AM 交BC 于点F,延长AN 交BC 于点G,易证明2MN=FG,而FG=BC+FC-BC.又易证明BG=AB,FC=AC,故问题得解。

方法1:连接两点构造三角形的中位线1.如图,点B 为AC 上一点,分别以AB,BC 为边在AC 同侧作等边△ABD 和等边△BCE,点P,M,N 分别为AC,AD,CE 的中点。

(1)求证PM=PN ;(2)求∠MPN 的度数。

方法2:已知角平分线及垂直构造中位线2.如图,在△ABC 中,点M 为BC 的中点,AD 为△ABC 的外角平分线,且AD ⊥BD.若AB=12,AC=18,求DM 的长。

3.如图,在△ABC 中,已知AB=6,AC=10,AD 平分∠BAC,BD ⊥AD 于点D,点E 为BC 的中点,求DE 的长。

方法3:倍长法构造三角形的中位线4.如图,在△ABC 中,∠ABC=90°,BA=BC ,△BEF 为等腰直角三角形,∠BEF=90°,M 为AF 的中点, 求证ME=21CF方法4:已知两边中点,取第三边中点构造三角形的中位线5. 如图,在△ABC 中,∠C=90°,CA=CB,E,F 分别为CA,CB 上一点,CE=CF,M,N 分别为AF 、BE 的中点, 求证AE=2MN方法5:已知一边中点推理得出另一边中点再取第三边中点构造三角形的中位线6.如图,在△ABC 中,AB=AC,AD ⊥BC 于点D,点P 是AD 的中点,连接BP 并延长交AC 于点N ,求证AN=31AC。

数学平行四边形证明题技巧思路与方法

数学平行四边形证明题技巧思路与方法

数学平行四边形证明题技巧思路与方法
证明平行四边形的一般方法是使用平行线的性质和几何定理,以下是一些常用的技巧思路和方法:
1. 平行线的性质:平行线具有许多重要的性质,例如对应角相等、内错角相等、同旁内角互补等等。

可以利用这些性质来推导出平行四边形的相关结论。

2. 逆向思维:当需要证明一个四边形是平行四边形时,可以从相反的方向思考。

即首先假设该四边形不是平行四边形,然后推导出矛盾结论,从而得出原命题的正确性。

3. 利用已知条件:观察已知条件,比如已知两条边平行或已知两条边等长,然后利用这些已知条件进行推导证明。

例如,通过使用平行线的性质证明两组对应边相等等。

4. 使用平行四边形的定义:平行四边形的定义是对角线互相平分,可以利用这一定义来证明平行四边形的性质。

例如,通过证明对角线的中点连线平行于两边,或证明对角线互相垂直等。

5. 利用其他几何定理:除了平行线的性质外,还可以利用其他几何定理来证明平行四边形的性质。

例如,利用三角形的一些性质或相似三角形的性质来推导出平行四边形的相关结论。

总的来说,证明平行四边形的关键是灵活运用几何定理和性质,善于利用已知条件进行推导,并运用逆向思维来证明。

在证明
过程中,需要详细演算和陈述每一步的推导过程,注重逻辑严密和证明的完整性。

平行四边形几何辅助线专题详解

平行四边形几何辅助线专题详解

平行四边形几何辅助线专题详解1 平行四边形知识框架{分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4个点的坐标平行四边形的面积{利用面积解决问题方程思想构造中位线{连接法{连接两中点知一中点,取另一中点知两中点,构双中位线倍长法{倍长垂直于角平分线的线段倍长线段 方法1 分类讨论思想分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4点坐标一、动态讨论解题技巧:点在线段的不同位置,也会造成不同的结果 (1)1个点的移动如下图,1个点C 在直线AB 上移动,会出现3种情况:①在线段AB 左侧;②在线段AB 当中;③在线段AB 右侧,具体见例1.(2)2个点的移动如下图,2个点C、D在线段AB上移动(C、D两点在AB中),会出现2种情况:①点C在点D的左侧;②点C在点D的右侧,具体见例2.例1.▱ABCD的内角∠BCD的平分线CE交射线DA于点E,若AE=3,DE=4,求▱ABCD的周长。

例2.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,求AB的长。

二、高的位置的讨论解题技巧:在平行四边形中作高,会出现2种情况:①在图形内;②在图形外。

(1)过点作下(上)侧边的高如下图,过点A作▱ABCD下侧的边CD上的高AE。

因▱ABCD倾斜方向的变化,高会存在两种情况,具体见例1(2)过点右(左)侧边的高如下图,过点B作▱ABCD的右侧边AD上的高AE。

因▱ABCD倾斜大小的变化,高会存在两种情况,具体见例2上述两种情况实质是同一种情况经过翻折后得到的,为同一种情况。

例1.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,若AB=5,BC=6,求CE的值。

例2.在▱ABCD中,AD=BD=4,BE是AD边上的高,∠EBD=30°,求△ABD的面积。

数学教案-平行四边形的判定

数学教案-平行四边形的判定

数学教案-平行四边形的判定数学教案-平行四边形的判定(精选3篇)数学教案-平行四边形的判定篇1教学建议1.重点平行四边形的判定定理重点分析平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点.2.难点灵活运用判定定理证明平行四边形难点分析平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.3.关于平行四边形判定的教法建议本节研究平行四边形的判定方法,重点是四个判定定理,这也是本章的重点之一.1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索平行四边形的判定定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.2.素质教育的主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.3.平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.教学设计示例1[教学目标] 通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。

初二数学平行四边形的判定知识精讲 人教义务几何

初二数学平行四边形的判定知识精讲 人教义务几何

初二数学平行四边形的判定知识精讲人教义务几何【学习目标】1.掌握并会证明平行四边形的四个判定定理.2.能灵活运用平行四边形的五种判定方法进行有关的计算和证明.【主体知识归纳】平行四边形的判定:1.两组对边分别平行的四边形叫做平行四边形.2.判定定理1:两组对角分别相等的四边形是平行四边形.3.判定定理2:两组对边分别相等的四边形是平行四边形.4.判定定理3:对角线互相平分的四边形是平行四边形.5.判定定理4:一组对边平行且相等的四边形是平行四边形.【基础知识精讲】1.平行四边形的判定定理,是相应性质定理的逆定理,学习时将它们进行对照,有利于记忆.2.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.平行四边形的知识运用包括:(1)直接运用平行四边形的性质去解决某些问题,例如求角的度数,线段的长度,证明角相等或互补,证明线段相等或倍、分等;(2)判定一个四边形是平行四边形,从而判定直线平行等;(3)先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题.【例题精讲】[例1]在四边形ABCD中,AC和BD相交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下六个说法:(1)如果再加上条件“AD∥BC”,那么四边形ABCD一定是平行四边形;(2)如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;(3)如果再加上条件“∠DAB=∠DCB”,那么四边形ABCD一定是平行四边形;(4)如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;(5)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;(6)如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法有()A.3个 B.4个 C.5个 D.6个剖析:本题是一道给出结论和部分条件,让学生探索附加条件的各种可能性的开放性题目,解答这类选择题,一定要严格按照平行四边形的定义及判定定理,认真考查六种说法.说法(1)符合平行四边形的定义;说法(2)符合平行四边形的判定定理4;说法(3)由AB ∥CD和∠DAB=∠DCB,可推断出AB=CD或AD∥BC,也正确;说法(4)可举出反例;说法(5)能证出BO=DO,符合平行四边形的判定定理3;说法(6)不符合平行四边形的判定定理.答案:B[例2]如图4-23,在ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).图4—23(1)连结_____.(2)猜想:_____=_____.(3)证明:剖析:容易猜想连结BF,证明BF=DE.如图4-24,可连结DF、DB,利用“对角线互相平分的四边形是平行四边形”判定四边形BFDE是平行四边形,从而证明猜想的结论.又可猜想连结DF,证明DF=BE,证明方法可同上面猜想结论的证明方法.图4—24解法一:(1)BF(2)BFDE(3)证明:连结DB、DF,设DB、AC交于点O,∵四边形ABCD是平行四边形,∴AO=OC,DO=OB,∵AE=FC,∴AO-AE=OC-F C.∴EO=FO.∴四边形EBFD为平行四边形.∴BF=DE.解法二:(1)DF(2)DFBE(3)证明:(略)说明:(1)本例解法一中又可通过△BCF≌△DAE等证明BF=DE.(2)本例是结论猜想型的题目,此类题型是中考中常见题型.[例3]如图4-25,已知AD为△ABC的中线,E为AC上一点,连结BE交AD于F,且AE=FE.求证:BF=A C.图4—25剖析:延长AD到N,使DN=AD,构造出平行四边形ABN C.证明:延长AD到N,使DN=AD,连结BN、,则四边形ABNC为平行四边形.∴BN=AC,BN∥AC,∴∠1=∠4.∵AE=FE,∴∠1=∠2.∵∠2=∠3,∠1=∠4,∴∠3=∠4.∴BN=BF,∴BF=A C.说明:当题目中有三角形中线时,常利用加倍中线构造平行四边形,然后再应用平行四边形的知识证题,用这种方法比利用加倍中线构造全等三角形要方便、简捷.【同步达纲练习】1.填空题(1)一个四边形的边长依次是a、b、c、d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是_____.(2)用两个全等三角形按不同方法拼成四边形,在这些四边形中,平行四边形的个数是_____.(3)四边形ABCD中,已知AB∥CD,若再增加条件______,可知四边形ABCD为平行四边形.(4)如图4-26,在ABCD中,E、F分别是对角线BD上两点,且BE=DF,要证明四边形AECF是平行四边形,最简捷的方法是根据_____来证明.图4—26(5)如图4-27,在ABCD中,E、F分别是AB、CD边上的点,且BE=DF,要证明四边形AECF是平行四边形,可证明_____ _____.图4—27(6)在四边形ABCD中,给出下列论断:①AB∥DC;②AD=BC;③∠A=∠C.以其中两个作为题设,另外一个作为结论,用“如果……,那么……”的形式,写出一个你认为正确的命题______.2.选择题(1)下列命题是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.一组对边平行,一组对角相等的四边形是平行四边形C.两条平行线间的垂线段就是这两条平行线的距离D.平行四边形的一条对角线平分一组对角(2)如图4-28,四边形ABCD是平行四边形,按下列条件得到的四边形BEDF,不一定是平行四边形的是()图4—28A.DE⊥AC于E,BF⊥AC于F(图①)B.BE平分∠ABC,DF平分∠ADC(图②)C.E是AB的中点,F是CD的中点(图③)D.E是AB上一点,EF⊥AB(图④)(3)把两个全等的不等腰三角形拼成平行四边形,可拼成的不同的平行四边形的个数为()A.1 B.2 C.3 D.4(4)如图4-29,在ABCD中,EF∥BC,GH∥AB,GH、EF的交点P在BD上,图中面积相等的平行四边形有()图4—29A.0对 B.1对 C.2对 D.3对3.如图4-30,在ABCD中,AC、BD交于点O,EF过点O分别交AB、CD于E、F,AO、CO的中点分别为G、H.求证:四边形G E H F是平行四边形.图4—304.如图4-31,已知O是ABCD对角线AC的中点,过点O的直线EF分别交AB、CD 于E、F两点.(1)求证:四边形AECF是平行四边形;(2)填空:不增加辅助线的原图中,全等三角形共有_____对.图4—315.如图4-32,在△ABC中,E、G在BC边上,且BE=GC,AB∥EF∥GH.求证:AB=EF+GH.图4—326.已知:平行四边形ABCD,试用两种方法,将平行四边形ABCD分成面积相等的四个部分.(要求用文字简述你所设计的两种方法,并正确画出图形).【思路拓展题】想一想图4—33如图4-33,田村有一呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树,田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写作法)参考答案【同步达纲练习】1.(1)平行四边形(2)3 (3)AB=CD(或AD∥BC,或∠A=∠C等)(4)对角线互相平分的四边形是平行四边形(5)AECF(6)如果AB∥CD,∠A=∠C,那么AD=B C.2.(1)B (2)D (3)C (4)D3.提示:先证△AOE≌△COF,得OE=OF,再证OG=OH.4.(1)提示:证△AOE≌△COF,得OE=OF(2)25.提示:过E作ED∥AC交AB于D,先证△BED≌△GCH,得BD=GH,再证AD=EF.6.略.【思路拓展题】想一想如图所示。

二次函数专题复习——平行四边形存在性问题(盲解法)

二次函数专题复习——平行四边形存在性问题(盲解法)

是平行四边形,写出相应的点P的坐标. 已知B (4,0),O(0,0),设Q (2, a),P(m, -0.25m2+m).
①点B与点O相对
4+0= 2+m 0+0= a-0.25m2+m
m= 2 a= -1
②点B与点Q相对
4+2= 0+m 0+ a = 0-0.25m2+m
m= 6 a= -3
③点B与点P相对
2m
a
③点A与点P相对
0 a
4 3
a
1 3
a
0
a
m m2
2m
a
m a
5 2 15 8
(舍)
m
1 2
a
3 8
几何画板演示
二次函数综合问题中,平行四边形的存在性问题,无论是“三定一动” ,还是“两定两动”,甚至是“四动”问题,能够一招制胜的方法就是“对 点法”,需要分三种情况,得出三个方程组求解。这种从“代数”的角度思 考解决问题的方法,动点越多,优越性越突出!
二次函数专题复习 ——平行四边形的存在性问题
二、引入:对点法
如图,在平面直角坐标系中,□ABCD的顶点坐标分别为
A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),已知其中任意3个顶点 的坐标,如何确定第4个顶点的坐标? 平行四边形有哪些性质?
(x1,y1)
(x4,y4) (x3,y3)
是平行四边形,写出相应的点P的坐标. 已知B (4,0),O(0,0),设Q (2, a),P(m, -0.25m2+m).
①点B与点O相对 4+0= 2+m
m= 2
②点B与点Q相对 4+2= 0+m

证明平行四边形的技巧

证明平行四边形的技巧

证明平行四边形的技巧证明平行四边形的技巧平行四边形该如何去证明呢?证明的方法又是的呢?下面就是啦店铺给大家整理的证明平行四边形内容,希望大家喜欢。

证明平行四边形的方法如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。

已知∠BAC=30º,EF⊥AB,垂足为F,连结DF。

求证:四边形ADFE是平行四边形。

设BC=a,则依题意可得:AB=2a,AC=√3a,等边△ABE ,EF⊥AB=>AF=1/2AB=a,AE=2a,EF=√3a∵∠DAF=∠DAC+∠CAB=60°+30°=90°,AD=AC=√3a,∴DF=√(AD²+AF²)=2a∴AE=DF=2a,EF=AD=√3a =>四边形ADFE是平行四边形1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形1、两组对边分别平行的四边形是平行四边形2、一组对边平行且相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形21.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;(2)一组对边平行且相等的四边形是平行四边形; (3)两组对边分别平行的四边形是平行四边形; (4)两条对角线互相平分的四边形是平行四边形(5)两组对角分别相等的四边形为平行四边形(注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。

) (第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形) 编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

构造平行四边形证题的技巧
构造平行四边形证题的技巧
一. 构造平行四边形证两线段平行
例1. 已知如图,平行四边形ABCD的对角线AC和BD交于O,E、F分别为OB、OD的中点,过O任作一直线分别交AB、CD于G、H。

求证:GF//EH。

证明:连结GE、FH
四边形ABCD是平行四边形

四边形EHFG是平行四边形
二. 构造平行四边形证两线段相等
例2. 如图,
中,D在AB上,E在AC的延长线上,BD=CE连结DE,交BC 于F,∠BAC外角的平分线交BC的延长线于G,且AG//DE。

求证:BF=CF
分析:过点C作CM//AB交DE于点M,可以证明BD=CM,然后再利用平行四边形的性质得到BF=CF
证明:过点C作CM//AB交BE于点M,连接BM、CD,则∠CME=∠ADE
四边形BMCD为平行四边形
故BF=CF
三. 构造平行四边形证线段的不等关系
例3. 如图,AD是
的边BC上的中线,求证:
分析:欲证
,即要证
,设法将2AD、AB、AC归结到一个三角形中,利用三角形任意两边之和大于第三边来证明。

注意到AD为
的中线,故可考虑延长AD到E,使DE=AD,则四边形ABEC为平行四边形。

从而问题得证。

证明:延长AD到E,使DE=AD,连结BE、EC
四边形ABEC是平行四边形

中,AE 即2AD<ab+ac< p="">
点评:此题是利用三角形三边关系定理、平行四边形的判定,通过延长中线将证明三角形中三条线段间的不等关系,转化为三角形三边之间的关系,从而使问题迎刃而解。

四. 构造平行四边形证线段的倍分关系
例4. 如图,分别以
中的AB、AC为边向外作正方形ABEF和正方形ACGH,M是BC 的中点,求证:FH=2AM
证明:延长AM到D,使MD=AM,连结BD、CD,
是BC的中点
四边形ABDC为平行四边形
又AF=BA,AH=AC=BD
故FH=2AM
五. 构造平行四边形证两线段互相平分
例5. 平面上三个等边三角形
两两共有一个顶点,如图所示,求证:CD与EF互相平分
分析:要证CD与EF互相平分,须证四边形DFCE是平行四边形证明:连结DE、DF、AF易知AD=AB=BD
又AE=AC,AD=AB
∠DAE=60°-∠EAB=∠BAC
四边形DECF是平行四边形
故CD与EF互相平分
六. 构造平行四边形证角的`不等关系
例6. 如图,在梯形ABCD中,AD//BC,对角线AC>BD
求证:∠DBC>∠ACB
证明:过点D作DE//AC交BC的延长线于点E,则四边形ACED 是平行四边形


中,∠DBE>∠E
七. 构造平行四边形证线段的和差关系
例7. 如图,
中,点E、F在边AB上,AE=BF,ED//AC//FG,求证:ED+FG=AC
证明:过E作EH//BC交AC于H
四边形CHED为平行四边形
又AE=BF,
同步练习:
1. 如图1,在梯形BCED中,DE//BC延长BD、CE交于A,在BD上截取BF=AD。

过F作FG//BC交EC于G,求证:DE+FG=BC。

2. 如图2,
中,AB=AC,E是AB上一点,F是AC延长线上一点,BE=CF,EF交BC于D。

求证:DE=DF
3. 如图3,平行四边形ABCD中,E、G、F、H分别是四条边上的点,且AE=CF,BG=DH,求证:EF与GH互相平分
4. 如图4,已知AB=AC,B是AD的中点,E是AB的中点,求证CD=2CE
5. 已知:如图5在四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD相交于点O,求证:O是BD的中点。

提示:
1. 过点F作FM//AC交BC于点M,则有平行四边形FMCG。

2. 过E作EG//AC交BC于G,连结CE、GF。

3. 连结FH、HE、EG、GF
4. 延长CE至F,使EF=CE,连结AF、BF。

5. 连结BF、DE
四边形ABCD是平行四边形

四边形BEDF是平行四边形
O是BD的中点</ab+ac<>。

相关文档
最新文档