构造平行四边形解题

合集下载

平行四边形解题方法与技巧

平行四边形解题方法与技巧

◆解读平行四边形1.正确理解平行四边形的概念有两组对边分别平行的四边形叫做平行四边形.用数学语言表示为:在四边形ABCD中,若AB∥DC,AD∥BC,则四边形ABCD是平行四边形.记作□ ABCED.平行四边形的定义也是判定一个四边形是不是平行四边形的一种方法.2.掌握平行四边形的性质平行四边形的性质可以从以下三个方面去理解:(1)从边着眼:平行四边形的两组对边分别平行且相等;(2)从角着眼:平行四边形的两组对角分别相等,邻角互补;(3)从对角线着眼:平行四边形的对角线互相平分.事实上,平行四边形的对角线除了互相平分外,它还是将四边形转化为三角形的”桥梁”,在处理许多与平行四边形有关的问题时,常用”对角线”互相平分这一性质解决.如:□ABCD的周长为26,对角线AC 和BD相交于点O,若△AOB的周长比△AOD的周长多1,这样我们就可以利用平行四边形的对边相等和对角线互相平分得到AB+AD=13,,AB-AD=1,从而求得AB=7,AD=6.3.掌握平行四边形的判定方法判定一个四边形是平行四边形的方法主要有:(1)两组对边分别平行;(2)两组对边分别相等;(3)一组对边平行且相等;(4)两组对角分别相等;(5)两条对角线互相平分.◆平行四边形性质的活用平行四边形除了具有一般四边形的性质外,还具有以下特性:(1)对边平行且相等;(2)对角相等,邻角互补;(3)对角线互相平分;(4)是中心对称图形,对角线的交点是它的对称中心;(5)平行四边形被对角线分成的4个三角形的面积相等.例1: 已知:如图,在□ABCD中,E、F分别是AB、CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.例2: 如图,在平行四边形ABCD中,E、F分别是AB、CD上的点,且∠DAF=∠BCE.(1)求证:△DAF≌△BCE;(2)若∠ABC=60°,∠ECB=20°,∠ABC的平分线BN交AF与M,交AD于N,求∠AMN的度数.◆判定平行四边形的五种基本方法判定平行四边形的五种方法1.两组对边分别平行例: 如图1,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF是怎样的四边形,并说明理由。

平行四边形的知识点整理(一)2024

平行四边形的知识点整理(一)2024

平行四边形的知识点整理(一)引言概述:平行四边形是一种特殊的四边形,具有一些独特的性质和特点。

了解这些知识点有助于我们在几何学中更好地理解和运用。

本文将对平行四边形的知识进行整理和总结,以帮助读者更好地掌握相关内容。

正文:一、平行四边形的定义和特点:1. 平行四边形的定义2. 平行四边形的性质和特点3. 平行四边形的内角和外角性质4. 平行四边形的对角线性质5. 平行四边形的边长和内角关系二、平行四边形的分类:1. 平行四边形的分类方法2. 等边平行四边形的性质和特点3. 矩形和正方形的性质和特点4. 菱形的性质和特点5. 平行四边形的其他特殊分类三、平行四边形的面积和周长计算:1. 平行四边形的面积计算方法2. 平行四边形的周长计算方法3. 面积和周长的相关性质和公式4. 平行四边形的面积和周长实例计算5. 平行四边形的面积和周长在实际问题中的应用四、平行四边形的相关定理和推论:1. 平行四边形的对称性定理2. 平行四边形的角平分线与边平分线定理3. 对角线互相平分的平行四边形定理4. 平行四边形的中位线定理5. 平行四边形的相关推论和应用五、平行四边形的解题方法和技巧:1. 解直角平行四边形的问题的方法和步骤2. 解面积和周长问题的技巧和注意事项3. 解平行四边形的性质问题的思路和方法4. 运用平行四边形求证和构造题的解题技巧5. 平行四边形相关问题的典型例题和解答总结:平行四边形是几何学中的重要内容,了解平行四边形的定义、性质和特点,掌握其分类、面积和周长计算方法,熟悉其相关定理和推论,并具备解题技巧和应用能力,对我们的几何学学习和问题解决能力都有很大的帮助。

通过学习本文所总结的平行四边形的知识点,相信读者会在几何学中取得更好的成绩,对未来的学习和发展起到积极的促进作用。

巧构平行四边形速证几何题

巧构平行四边形速证几何题

龙源期刊网
巧构平行四边形速证几何题
作者:华腾飞
来源:《数理化学习·初中版》2013年第11期
同学们在证一些几何问题时,若能够根据已知条件和图形的特征,适当地添加辅助线,巧妙地构造出平行四边形,然后利用平行四边形的特殊性质,常常可使问题化难为易,变繁为简,进而达到快速、简捷获证的目的. 这样不仅可以提高我们的解题技能与技巧,而且对于提高我们思维的品质和创造性也是大有裨益的.
一、利用对角线互相平分构造平行四边形
例1 如图1所示,已知平行四边形ABCD的两条对角线AC、BD相交于点O,E、G分别为OA、OC的中点,过点O任作一直线交AD于H,交BC于F. 求证:EF∥GH .
证明:连结EH、FG,在△BOF和△DOH中,∠OBF =∠ODH,OB = OD,∠BOF =∠DOH.
所以△BOF ≌△DOH(ASA),则OF = OH.
因为OE=12OA=12OC=OG,
所以四边形EFGH为平行四边形,所以EF∥GH.。

构造平行四边行解题

构造平行四边行解题

8口江苏庄亿农对于有些几何问题,若能根据题目中的条件和图形特征.添加适当的辅助线.构造出平行四边形,然后利用平行四边形的性质.往往能使问题得到巧妙解决.■黼一、构造平行四边形,求角的大小例1如图l,六边形A B C D E F中,C D,//A F,LD=£A,A B上B C,[G=124。

.£E=800,求[4FE的大小.i分析:i由条件C D l∥A F和‘D=£A,联想到构造平行四边形.解:延长A F、JI)E交于点p,延长D C、A B交于点P,如图2.因为cD∥A F,所以£D+£p=1800.又[D=厶A.所以£A+£Q=1800.所以A P//qo,所以四边形49D尸是平行四边形。

所以£p=[只又因为[P=£B C D一[C B P=1240一900=34。

,所以£Q=34。

.又£D E F=800,所以。

厶pE F=1800一80o=1000.所以£A府=、r、-[Q E F+£Q=100。

+34。

=134。

._二、构造平行四边形,证明两角相等例2如图3,在四边形A B C D中.A D∥曰C.A B=D C.试证明£B=[C.1分析:1要说明£B=乞C,可过点A作D C的平行线.构造平行四边形来解决问题.解:作A层∥D C,交B C于点E,如图4.因为<)图1Q、A F Q图2图3A D//B C.所以四边形A EC D是平行四边形.所以A E=D C因为A B=D C.所以A B=A E,所以£B=二AE B.因为A E//D C.所以£A EB=[C.所以[B=£C.■■三、构造平行四边形,证明线段相等例3如图5。

在R t△A B C中,£C=900,M是A B的中点.A M=A N.M N//A c.试证明M N=4C1分析:I由肘Ⅳ∥一c,要证明删=A C,可联‘想到四边形A C删是平行四边形.因此连接C M.判断四边形A C M N是平行四边形即可.解:连接C M,如图6.因为在R t△A B C中。

微讲座—利用平行四边形对角线关系解决最值问题

微讲座—利用平行四边形对角线关系解决最值问题

微讲座—利用平行四边形对角线关系解决最值问题引言本文将介绍如何利用平行四边形的对角线关系,解决数学中的最值问题。

通过理解对角线的性质以及最值的定义,在解决问题时可以更加高效和简便。

本文主要包括以下几个方面的内容:对角线的定义、平行四边形的性质、利用对角线关系解决最值问题的步骤以及一些应用示例。

---1. 对角线的定义平行四边形是指具有两对平行的边的四边形。

对角线是连接非相邻顶点的线段,分为两条。

我们用AC和BD分别表示平行四边形ABCD的两条对角线。

---2. 平行四边形的性质平行四边形的对角线具有以下性质:- 对角线相等:即AC = BD。

- 对角线互相平分:即AC和BD互相平分彼此的交点。

这些性质是平行四边形独有的,利用这些性质可以简化解决问题的过程。

---3. 利用对角线关系解决最值问题的步骤对于求解最值问题,我们可以利用平行四边形的对角线关系来简化计算。

步骤如下:1. 首先,根据题目给出的条件,构造一个平行四边形,并标记出对角线AC和BD。

2. 利用对角线的相等性质,得出AC = BD的等式。

3. 根据对角线相互平分的性质,可得到AC和BD互相平分的交点E。

4. 根据最值问题的要求,利用平行四边形中对角线长度相等的关系,将问题转化为AC和BD的长度问题。

5. 利用所学的数学知识,解决出AC和BD的长度,并据此得到最终结果。

通过以上步骤,我们可以利用平行四边形的对角线关系解决最值问题,简化计算过程,提高解题效率。

---4. 应用示例下面举一个应用示例来说明如何利用平行四边形的对角线关系解决最值问题。

示例:求解平行四边形的最大面积问题描述:已知平行四边形ABCD的两边长分别为5cm和8cm,求平行四边形的最大面积。

解题步骤:1. 构造平行四边形ABCD,并标记出对角线AC和BD。

2. 利用对角线的相等性质,得出AC = BD的等式。

3. 根据对角线相互平分的性质,可得到AC和BD互相平分的交点E。

初中数学复习几何模型专题讲解11---构造平行四边形

初中数学复习几何模型专题讲解11---构造平行四边形

初中数学复习几何模型专题讲解专题11 构造平行四边形一、单选题1.如图,菱形ABCD的边长为13,对角线24AC=,点E、F分别是边CD、BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=()A.13 B.10 C.12 D.5【答案】B【分析】连接对角线BD,交AC于点O,求证四边形BDEG是平行四边形,EG=BD,利用勾股定理求出OD的长,BD=2OD,即可求出EG.【详解】连接BD,交AC于点O,由题意知:菱形ABCD的边长为13,点E、F分别是边CD、BC的中点,∴AB=BC=CD=DA=13,EF//BD,∵AC、BD是菱形的对角线,AC=24,∴AC⊥BD,AO=CO=12,OB=OD,又∵AB//CD,EF//BD∴DE//BG,BD//EG在四边形BDEG中,∵DE//BG,BD//EG∴四边形BDEG是平行四边形∴BD=EG在△COD中,∵OC⊥OD,CD=13,CO=12∴OD=OB=5∴BD=EG=10故选B.【点睛】本题主要考查了菱形的性质,平行四边形的性质及勾股定理,熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.2.在等边三角形ABC中,BC=6cm,射线AG//BC,点E从点A出发,沿射线AG以1cm/s的速度运动,同时点F从点B出发,沿射线BC以2cm/s的速度运动,设运动时间为t,当t为( )s时,以A,F,C,E为顶点的四边形是平行四边形?()A.2 B.3 C.6 D.2或6【答案】D分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案.【详解】①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC-BF=6-2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=6-2t,解得:t=2;②当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF-BC=2t-6(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t-6,解得:t=6;综上可得:当t=2或6s时,以A、C、E、F为顶点四边形是平行四边形.故选D.【点睛】本题考查了平行四边形的判定.此题难度适中,注意掌握分类讨论思想、数形结合思想与方程思想的应用.3.如图.在△ABC中,AB=AC,AD为∠BAC的平分线,AN为△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.(1)求证:四边形ADCE是矩形.(2)若连接DE,交AC于点F,试判断四边形ABDE的形状(直接写出结果,不需要证明).(3)△ABC再添加一个什么条件时,可使四边形ADCE是正方形.并证明你的结论.【答案】(1)证明见解析;(2)四边形ABDE是平行四边形;(3)当∠BAC=90°时,四边形ADCE是正方形,证明见解析【分析】(1)由等腰三角形的性质可得AD⊥BC,∠BAD=∠CAD,又由AN为△ABC的外角∠CAM的平分线,可得∠DAE=90°,又由CE⊥AN,由矩形的判定可证四边形ADCE 为矩形;(2)利用(1)中矩形的对角线相等推知:AC=DE;结合已知条件可以推知AB∥DE,又AE=BD,则易判定四边形ABDE是平行四边形;(3)由等腰直角三角形的性质可得AD=CD=BD,即可证四边形ADCE是正方形.【详解】证明:(1)∵在△ABC中,AB=AC,AD为∠BAC的平分线,∴AD⊥BC,∠BAD=∠CAD,∴∠ADC=90°,∵AN为△ABC的外角∠CAM的平分线,∴∠MAN=∠CAN,∴∠DAE=90°,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形;(2)四边形ABDE是平行四边形,理由如下:由(1)知,四边形ADCE为矩形,则AE=CD,AC=DE.又∵AB=AC,BD=CD,∴AB=DE,AE=BD,∴四边形ABDE是平行四边形;(3)当∠BAC=90°时,四边形ADCE是正方形,理由:∵∠BAC=90°,AB=AC,AD为∠BAC的平分线,∴AD=CD=BD,又∵四边形ADCE是矩形,∴四边形ADCE是正方形.【点睛】本题考查平行四边形、矩形和正方形的判定方法,掌握特殊四边形的判定定理是解题的关键.4.如图,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB.(1)试判断∠DEF与∠B的大小关系,并说明理由;(2)若D、E、F分别是AB、AC、CD边上的中点,S△DEF=4,S△ABC=【答案】(1)∠DEF=∠B,理由见解析;(2)32【分析】(1)延长EF交BC于G,根据平行四边形的判定和性质即可得到结论;(2)根据三角形一边的中线平分三角形的面积,即可得到结论.【详解】(1)∠DEF=∠B,理由如下:延长EF交BC于G,∵∠BDC=∠EFD,∴EF∥BD,∵∠AED=∠ACB,∴DE∥BC,∴四边形DEGB是平行四边形,∴∠DEF=∠B ;(2)∵F 是CD 边上的中点,S △DEF =4,∴S △DEC =2S △DEF =8,∵E 是AC 边上的中点,∴S △ADC =2S △DEC =16,∵D 是AB 边上的中点,∴S △ABC =2S △ACD =32.【点睛】本题考查了平行线的性质和判定,平行四边形的判定和性质,三角形的面积,正确的识别图形是解题的关键.5.已知,菱形ABCD 中,60B ∠=︒,E 、P 分别是边BC 和CD 上的点,且60EAP ∠=︒.(1)求证:BC EC CP =+(2)如图2,F 在CA 延长线上,且FE FB =,求证:AF EC =(3)如图3,在(2)的条件下,6AF =,10BE =,O 是FB 的中点,求OA 的长.【答案】(1)证明见解析;(2)证明见解析;(3)7【分析】(1)连接AC ,如图1,根据菱形的性质得AB=BC ,而∠B=60°,则可判定△ABC 为等边三角形,得到∠BAC=60°,AC=AB ,易得∠ACF=60°,∠BAE=∠CAF ,然后利用ASA 可证明△AEB ≌△AFC ,即可解答;(2)过点F 作FH ∥AB ,交CB 的延长线于点H ,利用平行线的性质求得△FHC 是等边三角形,得到CF=CH=FH ,然后利用AAS 定理求得△HBF ≌△CEF ,从而问题得解; (3)过点B 作BK ∥FC ,交HF 于点K ,根据两组对边分别平行求得四边形KBAF 是平行四边形,从而求得12OA AK =,FK=16,过点A 作AM ⊥FH ,然后利用含30°的直角三角形的性质求得MF=132AF =,AM ==从而求得KM=13,然后利用勾股定理求解即可.【详解】解:(1)连接AC ,如图1,∵四边形ABCD 为菱形,∴AB=BC ,∵∠B=60°,∴△ABC 为等边三角形,∴∠BAC=60°,AC=AB ,∴∠BAE+∠EAC=60°,∵AB ∥CD ,∴∠BAC=∠ACP=60°,∵∠EAP=60°,即∠EAC+∠CAP=60°, ∴∠BAE=∠CAP ,在△AEB 和△APC 中,BAE CAP AB ACB ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEB ≌△APC ,∴BE=CF∴BC EC BE EC CP =+=+;(2)过点F 作FH ∥AB ,交CB 的延长线于点H∵FH∥AB∴∠H=∠CGH=60°∴△FHC是等边三角形∴CF=CH=FH又∵△ABC是等边三角形∴CA=CB∴AF=BH又∵FB=FE∴∠FEB=∠FEB,即∠FBH=∠FEC在△HBF和△CEF中FBH FECFHB FCE FH FC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△HBF≌△CEF∴BH=EC∴AF=EC(3)过点B作BK∥FC,交HF于点K,∵BK ∥FC ,FH ∥AB∴四边形KBAF 是平行四边形∴KB=AF=EC=6,12OA AK = ∴FK=AB=BC=BE+EC=BE+AF=16过点A 作AM ⊥FH由(2)可知,∠CFH=60°∴在Rt △AMF 中,∠MAF=30°∴MF=132AF =,AM == ∴KM=16-3=13在Rt △AKM 中,14AK ===∴AO=7.【点睛】本题考查全等三角形的判定与性质,等边三角形的判定与性质,及平行四边形的判定和性质,题目有一定的综合性,正确添加辅助线解题是关键的突破点.6.如图,反比例函数y =k x(x >0)过点A (3,4),直线AC 与x 轴交于点C (6,0),过点C 作x 轴的垂线交反比例函数图象于点B ,(1)求反比例函数和直线AC 的解析式;(2)求△ABC的面积;(3)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,请直接写出符合条件的所有D点的坐标.【答案】(1)反比例函数解析式为:y=12x;直线AC的解析式为:y=﹣43x+8;(2)3;(3)符合条件的点D的坐标是:(3,2)或(3,6)或(9,﹣2).【分析】(1)将A点的坐标代入反比例函数y=kx求得k的值,然后将A,C坐标代入直线解析式解答即可;(2)把x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标,进而利用三角形面积公式解答即可;(3)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D 的坐标即可.【详解】解:(1)把点A(3,4)代入y=kx(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=12x,把A(3,4),C(6,0)代入y=mx+n中,可得:34 60 m nm n+=⎧⎨+=⎩,解得:438mn⎧=-⎪⎨⎪=⎩,所以直线AC的解析式为:y=﹣43x+8;(2)∵点C(6,0),BC⊥x轴,∴把x=6代入反比例函数y=12x,得y=126=2,则B(6,2),所以△ABC的面积=1(63)232⨯-⨯=;(3)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y A﹣y D=y B﹣y C即4﹣y D=2﹣0,故y D=2.所以D(3,2).②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y D′﹣y A=y B﹣y C即y D﹣4=2﹣0,故y D′=6.所以D′(3,6).③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC∥BD″.∵A(3,4)、B(6,2)、C(6,0),∴x D″﹣x B=x C﹣x A即x D″﹣6=6﹣3,故x D″=9.y D″﹣y B=y C﹣y A即y D″﹣2=0﹣4,故y D″=﹣2.所以D″(9,﹣2).综上所述,符合条件的点D 的坐标是:(3,2)或(3,6)或(9,﹣2).【点睛】本题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(3)题时,采用了“数形结合”和“分类讨论”的数学思想. 7.如图所示,90BAC DAE ∠=∠=︒,M 是BE 的中点,AB AC =,AD AE =,求证AM CD ⊥.【答案】见解析【分析】延长AM 到F ,使MF =AM ,交CD 于点N ,构造平行四边形,利用条件证明△ABF ≌△CAD ,可得出∠BAF =∠ACD ,再结合条件可得到∠ANC =90°,可证得结论.【详解】证明:延长AM 到F ,使MF =AM ,交CD 于点N ,∵BM =EM ,∴四边形ABFE 是平行四边形,∴BF=AE,∠ABF+∠BAE=180°,∵∠BAC=∠DAE=90°,∴∠CAD+∠BAE=180°,∴∠ABF=∠CAD,∵BF=AE,AD=AE,∴BF=AD,在△ABF和△CAD中,BF ADABF CADAB AC⎧⎪∠∠⎨⎪⎩===,∴△ABF≌△CAD(SAS),∴∠BAF=∠ACD,∵∠BAC=90°,∴∠BAF+∠CAF=90°,∴∠ACD+∠CAF=90°,∴∠AHC=90°,∴AM⊥CD.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,通过辅助线构造平行四边形证明三角形全等得到∠BAF =∠ACD 是解题的关键.8.如图所示,CD 是ABC ∆的中线,12∠=∠,求证:AE BC =.【答案】见解析【解析】【分析】要证AE BC =,可设法将AE 、BC 集中到一个图形中,由已知CD 是ABC ∆的中线,故倍长中线可得到平行四边形AFBC .【详解】证明:延长CD 至F ,使DF CD =,连AF ,BF ,又∵DA DB =,∴四边形AFBC 为平行四边形,21AFC ∴∠=∠=∠,AE AF BC ∴==.【点睛】中线倍长,利用平行四边形的判定定理对角线互相平分的四边形是平行四边形,据此达到转移线段或角的目的.9.如图所示,ABCD 中,E 是BC 的中点,9AE =,12BD =,10AD =.求证:AE BD ⊥.【答案】见解析【解析】【分析】过D 作DF AE ∥交BC 的延长线于F ,得四边形AEFD 为平行四边形,由已知可得△BDF 三边长,再由勾股定理可知∠BDF =90°,即可证明结论.【详解】证明:过D 作DF AE ∥交BC 的延长线于F ,AE DF ∴∥,又AD EF ,∴四边形AEFD 为平行四边形,10EF AD ∴==,9DF AE ==,15BF ∴=.22222129225BD DF BF +=+==,90BDF ∴∠=︒,∴AE BD ⊥.【点睛】此题主要考查了勾股定理逆定理,平行四边形的性质,关键是平移AE 构造△DBF ,证出△BDF 是直角三角形.10.如图所示,ABC ∆中,90C ∠=︒,D ,E 分别为BC ,AC 上一点,BD CE =,AE BC =,求证:AD .【答案】见解析【解析】【分析】过A 作AG BD ,且AG BD =,连BG ,EG ,则ADBG 为平行四边形.再证明AEG CBE ∆∆≌,则GE =BE ,得△ADF 为等腰直角三角形即可证明结论【详解】证明:过A 作AG BD ,且AG BD =,连BG ,EG ,则四边形ADBG 为平行四边形,∵∠C =90°,∴∠GAE =∠C =90°,在△AEG 和△CBE 中,AG=CE AE=CB GAE C ⎧⎪∠=∠⎨⎪⎩,AEG CBE ∆∆≌,∴GE =BE ,∠GEA =∠EBC ,∴∠GEB =90°. BEG ∴为等腰直角三角形,∴AD BG ==【点睛】本题考查了等腰直角三角形的性质的运用,平角的性质的运用,平行四边形的判定及性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键. 11.如图所示,四边形ACED 中,CE AD ∥,以DC ,DE 为边作平行四边形DCFE ,EC 的延长线交AF 于B ,求证:AB FB =.【答案】见解析【解析】【分析】延长FC 交AD 于点G ,可证明四边形CEDG 为平行四边形,可得FC =DE =CG ,可知BC 为△F AG 的中位线,可证明AB =FB .【详解】证明:如图,延长FC 交AD 于点G ,∵四边形CDEF 为平行四边形,∴CF ∥DE ,CF =DE ,又∵CE ∥AD ,∴四边形CEDG 为平行四边形,∴CG =DE ,∴CF =CG ,且BC ∥AG ,∴BC 是△F AG 的中位线,∴B 为AF 的中点,即AB =FB .【点睛】本题主要考查平行四边形的性质和判定,掌握平行四边形的性质和判定是解题的关键,即①两组对边分别平行的四边形⇔平行四边形,②两组对边分别相等的四边形⇔平行四边形,③一组对边分别平行且相等的四边形⇔平行四边形,④两组对角分别相等的四边形⇔平行四边形,⑤对角线互相平分的四边形⇔平行四边形.12.如图所示,ABC ∆中,90ACB ∠=︒,CD AB ⊥于D ,AE 平分CAB ∠交BC 于E ,交CD 于F ,FG AB ∥交BC 于G .求证:CE BG =.【答案】见解析【解析】【分析】要证CE BG∥,故过F作=,可设法将CE、BG集中到一个图形中,由已知FG ABFM BC,从而得到平行四边形FMBG.【详解】证明:过F作FM BC交AB于M,又FG AB∥,∴四边形FMBG是平行四边形,B BAC ACD BAC∠+∠=︒=∠+∠,∴=,由90BG FM∴∠=∠=∠,又AE平分CABB ACD AMF∠,∴=,又CEF B BAE ACD CAE CFE∠=∠+∠=∠+∠=∠,∴∆≅∆,CF MFACF AMF∴=,CE CF∴=.CE BG【点睛】此题主要考查平行四边形性质和判断理解及运用.利用平行四边形的判定定理作平行线,可构造平行四边形来达到转移线段或角的目的. 正确作出辅助线是解答本题的关键.13.如图所示,四边形ACED中,CE AD∥,以DC,DE为边作平行四边形DCFE,EC的延长线交AF于B,求证:2.AF BF【答案】见解析【解析】【分析】∥交CB的延长线于M,连结FM,先证明四边形AMED是平行四边形,过A作AM DE再证明四边形AMFC为平行四边形,然后根据平行四边形的性质即可得证.【详解】∥交CB的延长线于M,连结FM,证明:过A作AM DE∥,∵CE AD∴四边形AMED是平行四边形,∴AM=ED,∵四边形DCFE是平行四边形,∴DE∥CF,DE=CF,∴AM平行且等于CF,∴四边形AMFC为平行四边形,∴AB FB=,∴2=.AF BF【点睛】本题考查了平行四边形的判定与性质,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形.=.14.如图所示,在三角形ABC中,AD是中线及角平分线,求证:AB AC【答案】见解析【解析】【分析】=,连结BE,CE,证四边形ABEC是平行四边形,得到BE=AC,延长AD至E,使DE ADBE∥AC,再证明△ABE是等腰三角形即可.【详解】证明:延长AD到E,使AD=DE,连接BE,CE,∵ BC、AE,相互平分,∴ ABEC是平行四边形,∴BE=AC,BE∥AC,∴∠BAD=∠DAC=∠BED,∴ AB=BE ,∴ AB=AC.【点睛】本题考查了平行四边形的判定与性质,及等腰三角形的判定,正确作出辅助线是解答本题的关键.15.如图所示,ABC ∆中,90ACB ∠=︒,CD AB ⊥于D ,AE 平分CAB ∠交BC 于E ,交CD 于F ,FG AB ∥交BC 于G .求证:CG BE =.【答案】见解析【解析】【分析】过F 作FM BC 交AB 于M ,可证四边形BMFG 为平行四边形,从而FM BG =,再证明AFM AFC ∆≅∆,可证CF FM =,再证明CE=CF ,即可得出结论.【详解】证明:过F 作FM BC 交AB 于M ,∵FG AB∥,∴四边形BMFG为平行四边形,∴FM BG=,∵∠ACD+∠BAC=90°,∠B+∠BAC=90°,∴∠B=∠ACD,∵FM BC,∴AMF B∠=∠.∠=∠=∠.∴AMF B ACD∵AE平分CAB∠,∴∠CAF=∠BAF,∆≅∆.∴AFM AFC=.∴CF FM∠=∠+∠+∠=∠,又CEF B ACF CAE CFE∴CE=CF,∴CE CF BG==,∴CG BE=.【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,三角形外角的性质及等腰三角形的的判定,正确作出辅助线是解答本题的关键.16.如图,已知AD 为△ABC 的中线,点E 为AC 上一点,连接BE 交AD 于点F ,且AE =FE.求证:BF =AC .【答案】证明见解析【分析】方法一:当题中有三角形中线时,常加倍中线构造平行四边形,利用平行四边形和等腰三角形的性质证得结论.方法二:向中线作垂线,证明BDG CDH ∆≅∆,得到BG CH =,再根据AE =FE ,得到角的关系,从而证明BGF CHA ∆≅∆,最终得到结论.【详解】方法一:延长AD 到G ,使DG =AD ,连接BG ,CG ,∵DG =AD ,BD =DC ,∴四边形ABGC 是平行四边形,∴AC//BG ,∠CAD =∠BGD ,又∵AE =FE ,∴∠CAD =∠AFE ,∴∠BGD =∠AFE =∠BFG ,∴BG =BF ,∵BG =A C ,∴BF =AC方法二:如图,分别过点B 、C 作BG AD ⊥,CH AD ⊥,垂足为G 、H ,则90BGD CHD ∠=∠=︒.BD CD =,BDG CDH ∠=∠,BDG CDH ∴∆≅∆,BG CH ∴=.AE FE =,EAF EFA ∴∠=∠,BFG EFA ∠=∠,BFG CAH ∴∠=∠,又90BGF CHA ∠=∠=︒,BGF CHA ∴∆≅∆,BF AC ∴=.【点睛】本题是较为典型的题型,至少可以用到两种方法来解题,此题的特点就是必须有中线这个条件才能构造平行四边形或双垂线.17.如图,D 为ABC 的AB 边上一点,E 为AC 延长线上的一点,且CE=BD . (1)当AB=AC 时,求证:DE>BC(2)当AB≠AC 时,DE 与BC 有何大小关系?给出结论,画出图形,并证明.【答案】(1)见解析;(2)见解析【解析】试题分析:(1)如图1,过点D作DF∥BC,过点C作CF∥AB,连接EF,从而可得DF=BC,这样就把分散的线段集中到了△DEF中,只需证DE>DF即可;易证∠1=∠2,∠3=∠4,∠3>∠5,从而可得∠DFE>∠DEF,∴DE>DF,从而得到:DE>BC;(2)当AB AC时,我们要分AB>AC和AB<AC两种情况来讨论,其中:①当AB>AC,且AB=AE时,如图2,结合已知条件此时我们易证△ABC≌△AED,从而得到BC=DE;②当AB>AC,且AB>AE时,如图3,延长AE到F,使AF=AB,在AB上截取AN=AC,易证△ABC≌△AFN,得到∠F=∠B;再过D作DM∥BC,过C作CM∥BD,得到四边形DBCM是平行四边形,由此可得∠DMC=∠B=∠F,DM=BC;连接ME,则法通过在△DME中证∠DEM>∠DME得到DM>DE,从而得到BC>DE;③当AB>AC,且AB<AE时,如图4,延长AB到F,使AF=AE,在AE上截取AN=AD,连接NF,易证△AFN≌△AED,可得∠F=∠AED,由∠ABC>∠F得到∠ABC>∠AED;再作DM∥BC,CM∥AB,可得四边形DBCM是平行四边形,得到DM=BC,∠DMC=∠ABC,就可得∠DMC>∠AED;连接ME,在△DME中通过证∠DME>∠DEM,得到DE>DM,就可得到DE>BC;④当AB<AC<AE时,如图5,延长AB至F,使AF=AE,在AC上截取AN=AD;过点D作DM∥BC,过点C作CM∥AB,连接ME;同上可证:DE>BC.试题解析:(1)作DF∥BC,CF∥BD(如图1),得□BCFD,从而∠DFC=∠B,DF=BC,CF=BD.又BD=CE,∴CF=CE,∴∠1=∠2.∵AB=AC,∴∠ACB=∠B.而∠DFE=∠DFC+∠1=∠B+∠1=∠ACB+∠2>∠AED+∠2=∠DEF,即在△DEF中,∵∠DFE>∠DEF,∴DE>DF,即DE>BC.(2)当AB≠AC时,DE与BC的大小关系如下:当AB>AC但AB=AE时,DE=BC;当AB>AC且AB>AE时,DE<BC;当AB>AC但AB<AE时,DE>BC;当AB<AC时,DE>BC.证明如下:①当AB>AC但AB=AE时(如图2),∵BD=CE,∴AB-BD=AE-CE,即AD=AC.在△ABC和△AED中,∵AB=AE,∠A=∠A,AC=AD,∴△ABC≌△AED(SAS),∴BC=ED;②当AB>AC且AB>AE时,延长AE到F,使AF=AB,在AB上截取AN=AC(如图3),连结NF.在△ABC和△AFN中,∵AB=AF,∠A=∠A,AC=AN,∴△ABC≌△AFN(SAS),∴∠B=∠F.∵∠AED>∠F,∴∠AED>∠B.过D点作DM∥BC,过点C作CM∥AB,连结EM,则四边形DBCM为平行四边形,∴∠DMC=∠B,CM=BD,DM=BC,∵BD=CE,∴CM=CE,∴∠CME=∠CEM,∵∠DMC=∠B<∠AED,∴∠CME+∠DMC<∠AED+∠CEM,即∠DME<∠DEM,∴DE<DM,∴DE<BC;③当AB>AC但AB<AE时,延长AB到F,使AF=AE,在AE上截取AN=AD(如图4),连结NF,在△AFN和△AED中,∵AF=AE,∠A=∠A,AN=AD,∴△AFN≌△AED(SAS),∴∠F=∠AED,∵∠ABC>∠F,∴∠ABC>∠AED,过D点作DM∥BC,过点C作CM∥AB,连接EM,则四边形DBCM为平行四边形,∴∠DMC=∠ABC,CM=BD,∵BD=CE,∴CM=CE,∴∠CME=∠CEM,∵∠DMC=∠ABC>∠AED,∴∠DMC+∠CME>∠AED+∠CEM,即∠DME>∠DEM,∴ DE>DM,∴ DE>BC;④当AB<AC时,此时,AB必小于AE,即AB<AE延长AB到F,使AF=AE,在AE上截取AN=AD(如图5).连结NF.在△AFN和△AED中,∵AF=AE,∠A=∠,AN=AD,∴△AFN≌△AED(SAS),∴∠F=∠AED,即∠F=∠4.∵∠ABC>∠F,∴∠ABC>∠AED,过D作DM∥BC,过点C作CM∥AB,连结CM,则四边形DBCM平行四边形,∴∠DMC=∠ABC,CM=BD,DM=BC,∵BD=CE,∴CM=CE,∴∠CME=∠CEM.∵∠DMC=∠ABC>∠AED,∴∠DMC+∠CDE>∠AED+∠CEM,即∠DME>∠DEM,∴DE>DM,∴DE>BC.点睛:本题这种由一个“基本情形”(特殊情形)推广到“一般情形”的探究型问题,首要的是要弄清基本问题的解题思路(本题就是把线段BC通过平移到DM的位置,从而使两条分散的线段集中到一个△DME中,再利用“在同一个三角形中,较大的角所对的边也较大”来解决问题的);而在推广到“一般情形”时,就是通过作辅助线把“一般情形”转化为“基本情形”来解(本题中第二问就是按这样的思路来寻找到解题方法的).三、填空题18.如图,在梯形ABCD 中,AB CD AD BC =,∥ ,对角线AC BD ⊥,且AC =则梯形ABCD 的中位线的长为_________.【答案】5【解析】【详解】解:过C 作CE ∥BD 交AB 的延长线于E ,∵AB ∥CD ,CE ∥BD ,∴四边形DBEC 是平行四边形,∴CE=BD ,BE=CD∵等腰梯形ABCD 中,AC=BD ∴CE=AC∵AC ⊥BD ,CE ∥BD ,∴CE ⊥AC∴△ACE是等腰直角三角形,∵AC=∴AC=10,∴AB+CD =AB+BE=10,∴梯形的中位线=12AE=5,故答案为:5.【点睛】本题考查了梯形的中位线定理,牢记定理是解答本题的重点,难点是题目中的辅助线的做法.。

平行四边形判定经典题型

平行四边形判定经典题型

平行四边形判定经典题型(实用版)目录1.平行四边形的定义和性质2.平行四边形的判定方法3.经典题型及解题方法正文一、平行四边形的定义和性质平行四边形是指四边形中的两组对边分别平行的四边形。

根据平行四边形的定义,我们可以知道平行四边形具有以下性质:1.对边平行且相等。

2.对角线互相平分且相等。

3.对角线上的点到对角线两端点的距离相等。

4.相邻角互补,即两相邻角的和为 180 度。

二、平行四边形的判定方法在解决平行四边形的相关问题时,我们需要掌握一些判定方法。

以下是几种常见的平行四边形判定方法:1.同旁内角互补。

当两条直线被一条横穿线分成四个内角,如果同旁内角互补,则这两条直线平行。

2.内错角相等。

当两条直线被一条横穿线分成四个内角,如果内错角相等,则这两条直线平行。

3.对角线互相平分。

在四边形中,如果对角线互相平分,则这个四边形是平行四边形。

4.一组对边平行且相等。

如果一个四边形的一组对边平行且相等,则这个四边形是平行四边形。

三、经典题型及解题方法在解决平行四边形的相关问题时,我们需要注意以下几点:1.熟练掌握平行四边形的判定方法,能够快速判断出题目中的四边形是否为平行四边形。

2.注意题目中的条件,充分利用已知条件进行推导。

3.在解题过程中,注意挖掘题目中的隐含条件,这有助于快速解决问题。

以下是一个经典题型及解题方法:例题:已知四边形 ABCD 中,AB 平行于 CD,AB=CD,AD 平行于 BC,AD=BC,求证四边形 ABCD 是平行四边形。

解题过程:根据题目已知条件,我们可以知道 AB 平行于 CD,AB=CD,AD 平行于 BC,AD=BC。

平行四边形存在性问题的解题策略

平行四边形存在性问题的解题策略

平行四边形存在性问题的解题策略
平行四边形存在性问题是一个常见的几何问题,即给定4条线段,判断它们是否可以构成一个平行四边形。

虽然这个问题看起来很简单,但是解决起来却并不容易。

解决平行四边形存在性问题的第一步是要判断这四条线段是否为平行线段。

根据对称性,可以把这四条线段分成两组,分别是AB和CD,那么AB两条线段是否平行,与CD两条线段是否平行,就可以用一般平行线段的性质来判断,即两条平行线段之间的角度是180°。

若AB和CD两组线段都是平行线段,则说明这四条线段可能构成平行四边形,接下来就要判断对角线的关系。

可以用向量的性质来判断,即对角线的夹角是90°,判断时要将AB和CD两组线段的终点向量相加,若其夹角为90°,则说明这四条线段可以构成平行四边形。

另外,若AB两条线段不是平行线段,则这四条线段一定不能构成平行四边形。

因为平行四边形的4条边都是平行线段,而AB两条线段不是平行线段,则说明这四条线段不可能构成平行四边形。

总之,解决平行四边形存在性问题的关键是要判断四条线段之间的关系,即AB两条线段是否平行,以及AB两条线段的终点向量之和的夹角是否为90°。

只有当这两个条件都满足时,这四条线段才能构成平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档