拉维娜式行星齿轮机构工作原理
拉维娜式行星齿轮机构工作原理

拉维娜式行星齿轮机构工作原理
拉维娜式行星齿轮机构是一种常用于传动和减速的机械装置。
该装置由中央太阳齿轮、行星齿轮和内外环齿轮组成。
工作原理如下:
1. 中央太阳齿轮:太阳齿轮位于行星齿轮机构的中央,通过输入动力来驱动整个装置。
太阳齿轮上的外齿轮与行星齿轮相啮合。
2. 行星齿轮:行星齿轮通常有多个,围绕中央太阳齿轮旋转。
每个行星齿轮的内齿
轮与中央太阳齿轮的外齿轮相啮合。
3. 内外环齿轮:内环齿轮位于行星齿轮内部,并且与行星齿轮上的外齿轮相啮合。
外环齿轮则位于整个齿轮机构的外部。
4. 动力传递:当中央太阳齿轮转动时,外齿轮带动行星齿轮绕中央太阳齿轮旋转。
行星齿轮齿面同时与中央太阳齿轮上的外齿轮和内环齿轮啮合,形成一个闭合的传动链。
最终,齿轮机构的输出动力通过内环齿轮传递到外环齿轮上。
5. 动力减速:由于行星齿轮机构的结构,每个行星齿轮和内环齿轮的齿数比外环齿
轮少。
输入动力经过行星齿轮机构转动后,会被减速输出到外环齿轮上。
通过这种拉维娜式行星齿轮机构,可以实现动力的传递和减速。
其紧凑的结构和高效
的传动特性使其广泛应用于机械动力传动系统中。
项目2拉维娜行星齿轮结构与工作原理

表3-2-2
改进后拉维娜式3档行星齿轮变速机构 换档执行组件工作规律
换档操纵手柄位置 档位
换档执行组件
C1 C2 C3 C4 B1 B2 F1 F2
1
●
2
●
D
3
●
● ●
●●
● ●
超速档 ○
●●
R
倒档
●●
●
1 S、L或2、1
●
●
●●●
注:●——接合、制动或锁止。 ○――接合或制动,但不传递动力。
当汽车滑行、输出轴反向驱动行星齿轮变速机构时,齿圈 通过长行星轮对行星架产生朝顺时针方向的力矩,此时1 档单向超越离合器F1脱离锁止状态,使行星架朝顺时针方 向自由转动,行星齿轮机构因此失去传递动力的能力,无 法实现发动机制动。
为了使1档能产生发动机制动作用,可将操纵手柄拨入前 进低档(S、L或2, 1)位置,这样在1档时,前进档离合器 C1和低速档及倒档制动器B2同时工作,行星架由低速档 及倒档制动B2固定,此时动力传递路线及传动比和前述1 档时完全相同(图3-2-4),而且汽车加速器滑行时,行 星架固定不动。在汽车下坡或滑行时,驱动轮可以通过行 星齿轮变速机构反向制动发动机,利用发动机怠速运转阻 力实现发动机制动作用。
图3-2-4 1-输入轴;2-行星架;3-后太阳轮;4-输出轴; 5-短行星轮;6-齿圈;7-长行星架;C1-前进离 合器;B2-低速成档及倒档制动器
2档
2档时,前进档离合器C1和2档制动器B1一起 工作。发动机动力经输入轴和前进档离合器C1传 至后太阳轮,使后太阳轮朝顺时针方向转动,并 通过短行星轮带动长行星轮朝顺时针方向转动。 由于前太阳轮被2档制动器B1固定,因此长行星 轮在做顺时针自转时,还将朝顺时针方向作公转, 从而带动齿圈和输出轴以较快转速朝顺时针方向 转动。此时发动机动力是由后太阳轮经短行星轮、 长行星轮传至前行星排,再由前行星排传至齿圈
拉维娜式自动变速器原理

∴ 太阳轮力矩M1、齿圈 力矩M2、行星架力矩M3分别 为:
M1 F1r1
M 2 F2r2 F2 (r1 2rd 2rc)
M3 Fa (rd r1) Fb (r1 2rd rc)
2019/5/8
5
拉维娜式行星齿轮机构的受力分析
根据能量守恒定律,太阳轮、 齿圈和行星架上的输入与输出功 率的代数和应等于零。即
拉维娜式行星齿轮机构的受力分析
假设小太阳轮顺时针旋转,
则短行星轮逆时针旋转,长行星
轮顺时针旋转,齿圈顺时针旋转.
右图所示.图上标出了两行星轮
的受力情况.
设小太阳轮1的半径为r1,齿
圈的半径为r2,短行星轮的半径
为rd;长行星轮的半径为rc;齿圈
的半径为r2.
1、 以短行星轮为研究对象,则 有: 作用在太阳轮1上的力矩为:
2019/5/8
12
拉维娜式各档的传动分析
2019/5/8
13
拉维娜式各档的传动分析
2. 传动比
∵ 大太阳轮固定
∴ n1 0
∴ n1 n2 (1 )n3 0
n' 1
'n2
(1 )n3
0
∴ i n1' ' n3 1
2019/5/8
原理图
14
拉维娜式各档的传动分析
2. 传动比
∵ 行星架固定(F0 作用使其没
有逆转而被固定),只有后排工作。
n3 0
∴ n1 'n2 (1)n3 0
∴ ∴
n3
i
0
'
n1
n2
(完整版)拉维娜式自动变速器资料

2 / 1 r2 / r1
∵ r2 2a 2b r1 ∴ a b (r2 r1) / 2
由受力平衡条件可得:
F1 FX F2
Fa 2F1 2FX 2F2 Fb
拉维娜式行星齿轮机构的受力分析
∴ 太阳轮力矩M1、齿圈 力矩M2、行星架力矩M3分别 为:
泵轮轴 涡轮轴
拉维娜式各档的传动分析
一、D1档 1.传动路线:涡轮→输入轴→ 离合器K1 →小太阳轮→ 短行星轮
→长行星轮,此时F0作用限制行星轮架逆转→齿圈→输出齿 轮。
拉维娜式各档的传动分析
2. 传动比
∵ 行星架固定(F0 作用使其没
有逆转而被固定),只有后排工作。
n3 0
∴ n1 'n2 (1)n3 0
L位一档与D1档的传动比相同,前者有发动机制动 (B1作用),而后者没有发动机制动。 传动比
i ' n1
n2
拉维娜式各档的传动分析
六、R档
1. 传动路线:涡轮轴→离合器K2 → 大太阳轮 →长行星轮, 由于B1作用,制动行星架。动力从长行星轮→ 齿圈→输出齿
轮。
n3
拉维娜式各档的传动分析
2、传动比 ∵ B1作用制动了行星架, 只有前排工作
一、结构特点 一个单行星轮行星排,一个双行星轮行星排组成. 长行星轮共用,齿圈共用,行星架共用。 二、运动方程 前排:n1 n2 (1 )n3 0 后排:n1' 'n2 (1 ' )n3 0 三、优点:
尺寸小,传动比范围大,两排可以实现四档。
四、拉维娜式行星齿轮机构变速器原理
1. 结构原理图
'n2
(1 ' )n3
第三章 拉维娜式行星齿轮自动变速器的结构与原理

图 双行星齿轮式行星齿轮机构的结构简图
• 双行星轮齿轮排运动特性方程:
n1 an3 (1 a)nH
3.2.1P位和N位
• 无任何元件工作,不传递动力。
3.2.2R位
• (C3、 B1工作) • 发动机工作→动力→输入轴→C3→大太阳
C3
B1
B2
F
P
停车
R
倒档
○
○
N
空档
D1
○
○
D2
○
D
D3
○○○○源自D4○OL
1
○
○
3.2 大众01N型自动变速器 行星齿轮变速机构的原理
• 知识链接:双行星齿轮式行星齿轮机构的 传动原理
• 3.2.1P位和N位 • 3.2.2R位 • 3.2.3D位 • 3.2.4L位
双行星轮式行星齿轮机构的结构和 传动原理
名称
前进档离合器 直接档离合器 倒档离合器 1、倒档制动器 超速档和2档制动器 1档单向离合器
作用
可使动力由输入轴传给小太阳轮 可使动力由输入轴传给行星齿轮架 可使动力由输入轴传给大太阳轮 固定行星架 固定大太阳轮 锁止行星架逆时针转动
表 大众01N自动变速器换档执行元件工作表
变速杆位置
档位 C1 C2
3.2.4L位
• (C1、 B1工作 )
汽车自动变速器构造与维修
第三章 拉维娜式行星齿轮 自动变速器的结构与原理
• 3.1 大众01N型自动变速器行星齿轮变速机构的 结构
• 3.2 大众01N型自动变速器行星齿轮变速机构的 原理
3.1 大众01N型自动变速器行星齿轮 变速机构的结构
拉维娜式自动变速器的原理

拉维娜式自动变速器的原理拉维娜式自动变速器是一种常见的汽车变速器,它是由一系列的离合器、制动器、行星齿轮等组成的机构,通过自动化的机械传动系统来调整发动机输出的扭矩大小,并将车辆的速度分配到发动机和车轮之间。
下面将进一步介绍其原理。
拉维娜式自动变速器是一种基于液压控制的变速器,它可以通过一系列的动力元件来改变档位。
首先,它的离合器和制动器主要负责连接和断开输入轴与输出轴之间的联系。
在拉维娜式自动变速器中,行星齿轮是一个非常重要的部分,它通过一系列的行星齿轮组件将传动能力分配给前后轮和高低档位。
此外,电子控制单元(ECU)也是拉维娜式自动变速器中的关键部件,它可以对机械系统进行控制,从而实现自动变速器的功能。
拉维娜式自动变速器的基本原理是将发动机驱动输出轴的动力通过车辆的转换装置分配到车轮上。
其中,发动机输出的扭矩首先经过转子,在这里液压行星齿轮组件通过制动器和离合器的控制将扭矩分配给不同的转子和反转子。
此外,小行星组件可以通过单字母和双字母的长度配对产生不同的行星组合,并在不同的转速下提供不同的扭矩输出。
这些不同的组合可以通过变速器中的齿轮和离合器等部件的调整来调整变速器的工作方式。
拉维娜式自动变速器的关键部件是电子控制单元(ECU),它可以通过传感器测量发动机转速、油门信号和车速等参数,然后指导系统控制离合器、制动器和行星组件的调整,从而为车辆提供合适的扭矩输出,并按照不同的路况来调整变速器的工作方式。
在汽车行驶时,ECU会根据不同的车速和发动机转速调整离合器和制动器的工作,从而实现自动变速和良好的行驶效果。
总之,拉维娜式自动变速器是一种基于液压控制的变速器,它通过离合器、制动器和行星齿轮等部件的有序调整和控制来实现自动变速,并通过电子控制单元(ECU)来实现自动控制,从而为驾驶员提供舒适和安全的行驶体验。
拉维娜式行星齿轮机构组成

拉维娜式行星齿轮机构组成近年来,随着科技的不断进步和工业制造的发展,机械设备的设计和制造也在不断地创新和改进。
其中,拉维娜式行星齿轮机构作为一种新型的传动机构,正逐渐被广泛应用于各个领域。
拉维娜式行星齿轮机构由太阳轮、行星轮和内齿环组成,它们的相互作用和运动使得整个机构能够实现传递力和转矩的功能。
太阳轮位于齿轮机构的中心位置,行星轮则围绕太阳轮旋转,而内齿环则与行星轮外部齿轮相连。
在拉维娜式行星齿轮机构中,太阳轮扮演着传递力和转矩的角色。
当太阳轮转动时,它通过行星轮上的行星齿轮使行星轮旋转。
行星轮上的行星齿轮与太阳轮上的齿轮相互啮合,形成传递力和转矩的作用。
而内齿环则通过与行星轮外部齿轮的啮合来固定行星轮的位置。
拉维娜式行星齿轮机构具有传动效率高、传动比范围广等优点。
其传动效率高主要是因为在整个传动过程中,传递力和转矩的路径相对较短,能够减少能量损失。
而传动比范围广,则是因为行星轮上行星齿轮的个数可以根据需要进行设计和调整。
在实际应用中,拉维娜式行星齿轮机构被广泛应用于各种机械设备中,如汽车变速器、航空航天设备、工业机械等。
它们的优点使得机械设备在传递力和转矩时更加高效和可靠。
然而,拉维娜式行星齿轮机构也存在一些挑战和问题。
首先,由于结构较为复杂,制造和装配的难度较大。
其次,在高速和高负载的情况下,机构的工作稳定性和可靠性可能会受到一定的影响。
此外,机构的噪音和振动问题也需要进一步解决。
为了克服这些问题,研究人员们正在不断努力地进行改进和优化。
他们通过改变行星轮上行星齿轮的结构和材料,以提高机构的工作稳定性和可靠性。
同时,他们还通过优化齿轮的几何形状和表面处理技术,以减少机构的噪音和振动。
拉维娜式行星齿轮机构作为一种新型的传动机构,具有传动效率高、传动比范围广等优点。
它在各个领域中的应用越来越广泛,但也面临着一些挑战和问题。
通过不断的研究和改进,相信拉维娜式行星齿轮机构将会在未来得到更广泛的应用和发展。
拉维娜式行星齿轮自动变速器的认识与拆装课件

拉维娜式行星齿轮自动变速器在未来的应用前景
广泛应用于各类车型
随着拉维娜式行星齿轮自动变速器技术的不断完善,它将 被广泛应用于各类车型中,包括轿车、SUV、跑车等。
满足不同驾驶需求
针对不同的驾驶需求,拉维娜式行星齿轮自动变速器将会 有更加个性化的配置和设计,以满足不同消费者的需求。
助力实现节能减排
随着环保意识的不断提高,拉维娜式行星齿轮自动变速器 将在助力实现节能减排方面发挥重要作用,为环保事业做 出贡献。
换挡冲击 电磁阀工作不良
离合器、制动器调整不当
拉维娜式行星齿轮自动变速器的常见故障及原因分析
不能升档或降档 换挡阀卡滞
节气门位置传感器故障
拉维娜式行星齿轮自动变速器的故障诊断方法
初步检查 检查油位、油质 检查变速器各部件连接是否牢固
拉维娜式行星齿轮自动变速器的故障诊断方法
手动换挡试验
逐个挡位进行换挡试验,观察换挡是否顺畅,以及是否有异常声音或振动
根据需要加注润滑剂和清洗剂,以确保变速器 良好运转。
拉维娜式行星齿轮自动变速器的拆卸与安装注意事项
使用专用工具
使用专用工具进行拆卸和安装 ,不要使用不合适的工具。
清洁和润滑
在安装过程中,确保部件清洁 并加注适量的润滑剂。
安全第一
在拆卸和安装过程中,始终注 意安全,避免受伤或损坏部件 。
确认零件完好
,提高了驾驶舒适性。
拉维娜式行星齿轮自动变速器的工作原理
拉维娜式行星齿轮自动变速器主要通过控制电磁阀和液压阀 来实现换挡过程。当需要换挡时,控制电磁阀打开液压阀, 使得液压油进入执行机构,推动活塞和离合器执行换挡动作 。
在换挡过程中,行星轮系中的太阳轮、行星轮和齿圈之间的 啮合关系发生变化,从而实现不同挡位的变换。同时,通过 控制电磁阀和液压阀的配合,使得换挡过程平稳且无冲击。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉维娜式行星齿轮机构工作原理
引言:
拉维娜式行星齿轮机构是一种常见的传动装置,广泛应用于工业机械和汽车传动系统中。
它由一个太阳齿轮、多个行星齿轮和一个内齿圈组成,具有高扭矩传递、紧凑结构和高效率的特点。
本文将详细介绍拉维娜式行星齿轮机构的工作原理。
一、拉维娜式行星齿轮机构的构成
拉维娜式行星齿轮机构由太阳齿轮、行星齿轮和内齿圈三部分组成。
太阳齿轮位于中心位置,行星齿轮通过一个行星架与太阳齿轮相连,内齿圈则包围在行星齿轮的外侧。
二、拉维娜式行星齿轮机构的工作原理
当太阳齿轮转动时,它驱动行星齿轮同时绕太阳齿轮公转。
行星齿轮也可以绕着自身的轴旋转。
内齿圈的内齿与行星齿轮的外齿咬合,使内齿圈保持静止。
在工作过程中,太阳齿轮是输入轴,内齿圈是输出轴,行星齿轮是传动中的行星轮。
太阳齿轮的转动通过行星齿轮的旋转和公转,最终驱动内齿圈的转动,实现了输入转矩到输出转矩的传递。
三、拉维娜式行星齿轮机构的特点
1. 高扭矩传递能力:由于太阳齿轮和行星齿轮多点接触,行星齿轮
与内齿圈齿数之和大于太阳齿轮的齿数,因此拉维娜式行星齿轮机构具有较高的扭矩传递能力。
2. 紧凑结构:拉维娜式行星齿轮机构的构造紧凑,体积小,适合在有限空间内安装和布置。
3. 高效率:拉维娜式行星齿轮机构的传动效率较高,可以达到90%以上,能够满足工业机械和汽车传动系统对高效率的要求。
四、拉维娜式行星齿轮机构的应用
拉维娜式行星齿轮机构广泛应用于工业机械和汽车传动系统中。
在工业机械中,它常用于工厂生产线上的传动装置,如输送带、机床等。
在汽车传动系统中,拉维娜式行星齿轮机构常用于自动变速器、差速器等部件。
五、拉维娜式行星齿轮机构的优化设计
为了提高拉维娜式行星齿轮机构的性能,人们进行了许多优化设计。
其中一个重要的优化目标是降低噪声和振动。
通过改进齿轮的几何形状、增加齿轮的表面硬度和润滑方式等方法,可以有效减少噪声和振动。
另一个优化目标是提高传动效率。
通过优化齿轮的啮合条件、减小齿轮的摩擦损失和机械损失等方法,可以提高传动效率,降低能量损耗。
六、结论
拉维娜式行星齿轮机构是一种常见的传动装置,具有高扭矩传递、紧凑结构和高效率的特点。
它的工作原理简单清晰,通过太阳齿轮的转动,驱动行星齿轮和内齿圈的运动,实现输入转矩到输出转矩的传递。
在工业机械和汽车传动系统中有广泛的应用,并且不断进行优化设计,以提高性能和降低噪声振动。
拉维娜式行星齿轮机构的工作原理的研究和应用将继续为工程领域带来更多的创新和发展。