数项级数收敛性判别法
级数收敛与发散的判定方法

级数收敛与发散的判定方法级数是由一系列连加的无穷项组成的数列。
在数学中,判断一个级数是收敛还是发散是一个重要的问题。
下面我将介绍几种常见的方法来判定级数的收敛性或发散性。
一、正项级数收敛判定法正项级数是指级数的每一项都是非负数。
对于正项级数,我们可以使用以下几种方法来判定其收敛性或发散性。
1. 比较判别法:如果一个正项级数的每一项都小于等于另一个已知收敛的正项级数的对应项,那么这个级数也是收敛的;如果一个正项级数的每一项都大于等于另一个已知发散的正项级数的对应项,那么这个级数也是发散的。
2. 比值判别法:对于正项级数,计算相邻两项的比值,如果这个比值的极限存在且小于1,则级数收敛;如果大于1,则级数发散;如果等于1,则无法判定。
3. 根值判别法:对于正项级数,计算相邻两项的根的比值,如果这个比值的极限存在且小于1,则级数收敛;如果大于1,则级数发散;如果等于1,则无法判定。
二、交错级数收敛判定法交错级数是指级数的每一项交替正负。
对于交错级数,我们可以使用以下方法进行判定。
1. 莱布尼茨判别法:对于交错级数,如果级数的每一项绝对值递减趋向于零,并且满足单调性条件,即后一项的绝对值不大于前一项的绝对值,那么该级数收敛。
三、级数收敛判定法对于非正项级数,也有一些方法可以判定其收敛性。
1. 绝对收敛判别法:如果一个级数的绝对值级数收敛,那么原级数也收敛。
2. 条件收敛判别法:如果一个级数是收敛的但不是绝对收敛的,那么它是条件收敛的。
四、其他级数的判定方法除了上述常见的判定法外,还有一些特殊的级数判定方法。
1. 积分判别法:将一个级数与一个函数的积分进行比较,如果积分收敛,则级数收敛;如果积分发散,则级数发散。
2. 定积分法:将级数的前n项求和表示为一个关于n的函数,然后对该函数进行定积分,如果定积分收敛,则级数收敛;如果定积分发散,则级数发散。
总结:级数的收敛与发散的判定方法有比较判别法、比值判别法、根值判别法、莱布尼茨判别法、绝对收敛判别法、条件收敛判别法、积分判别法和定积分法等。
数学中的数列与级数收敛性判定方法

数学中的数列与级数收敛性判定方法数学中的数列与级数收敛性判定方法是数学分析中的重要概念,它对于理解和应用各类数学问题具有重要意义。
本文将介绍数学中的数列与级数收敛性判定方法,分别从数列的收敛性判定和级数的收敛性判定两个方面进行论述。
一、数列的收敛性判定方法数列是按照一定规律排列的一组数。
在数列中,如果随着项数的增加,数列中的数值逐渐趋近于某个确定的数,那么我们称这个数列是收敛的。
否则,如果数列不存在极限或者极限为无穷大或无穷小,我们称这个数列是发散的。
下面介绍几种数列的收敛性判定方法。
首先是数列极限的定义。
对于一个数列{an},如果存在一个数L,使得对于任意给定的正数ε,总存在项数N,使得当n>N时,对应的数列的项与L之差的绝对值小于ε,那么我们称L为数列的极限。
这是最基本的数列收敛性判定方法。
其次是数列极限的性质。
如果数列{an}收敛,那么它必然有界,即存在一个正数M,使得对于任意的项数n,都有|an|≤M成立。
这是利用数列极限性质的一种常用收敛性判定方法。
同时,我们还可以通过夹逼定理来判定数列的收敛性。
夹逼定理是利用三个数列夹在一起的方式来判断数列的收敛性。
如果对于数列{an}、{bn}和{cn},当n趋于无穷大时,an≤bn≤cn,并且数列{an}和{cn}都收敛于同一个极限L,那么数列{bn}也收敛于L。
最后,我们还可以通过数列的单调性来判定其收敛性。
单调数列是指数列中的项随着项数的增加而保持单调递增或递减的性质。
如果数列{an}单调递增有上界,那么它必然收敛;如果数列{an}单调递减有下界,那么它也必然收敛。
二、级数的收敛性判定方法级数是将一个数列的各个项按照一定顺序进行求和得到的一类数列。
在级数中,如果求和的结果逐渐趋近于某个确定的数,那么我们称这个级数是收敛的。
否则,如果级数的和不存在或者为无穷大,我们称这个级数是发散的。
接下来介绍几种级数的收敛性判定方法。
首先是级数收敛的定义。
级数收敛的判别技巧

级数收敛的判别技巧级数是数学中一个重要的概念,它是由一系列数相加而成的。
在数学中,我们经常需要判断一个级数是否收敛,即求出它的和。
本文将介绍几种常用的级数收敛的判别技巧。
一、正项级数的判别法正项级数是指级数的每一项都是非负数的情况。
对于正项级数,我们可以使用以下几种方法来判断其是否收敛。
1. 比较判别法比较判别法是最常用的判别法之一。
它的基本思想是将待判别的级数与一个已知的级数进行比较,通过比较它们的大小关系来判断级数的收敛性。
比较判别法分为两种情况:(1)若存在一个收敛的级数∑an,使得对于所有的n,都有an≤bn,则待判别的级数∑bn也收敛。
(2)若存在一个发散的级数∑an,使得对于所有的n,都有an≥bn,则待判别的级数∑bn也发散。
2. 比值判别法比值判别法是判别正项级数收敛性的常用方法之一。
它的基本思想是通过计算级数相邻两项的比值的极限来判断级数的收敛性。
具体步骤如下:(1)计算级数相邻两项的比值:rn=an+1/an。
(2)求出极限limn→∞rn。
(3)根据极限的大小判断级数的收敛性:- 若0≤limn→∞rn<1,则级数收敛;- 若limn→∞rn>1,则级数发散;- 若limn→∞rn=1,则判别不出级数的收敛性,需要使用其他方法进行判别。
3. 根值判别法根值判别法也是判别正项级数收敛性的常用方法之一。
它的基本思想是通过计算级数项的根号的极限来判断级数的收敛性。
具体步骤如下:(1)计算级数项的根号:rn=(an)^(1/n)。
(2)求出极限limn→∞rn。
(3)根据极限的大小判断级数的收敛性:- 若0≤limn→∞rn<1,则级数收敛;- 若limn→∞rn>1,则级数发散;- 若limn→∞rn=1,则判别不出级数的收敛性,需要使用其他方法进行判别。
二、任意项级数的判别法任意项级数是指级数的每一项都可以是正数、负数或零的情况。
对于任意项级数,我们可以使用以下几种方法来判断其是否收敛。
函数项级数收敛性

函数项级数收敛性函数项级数是指由函数项按照一定规则排列组成的级数。
在研究级数的收敛性时,我们通常关注的是序列的部分和序列,即部分和序列的极限是否存在。
在本文中,我们将介绍函数项级数的收敛性及其相关概念。
1. 函数项级数的定义考虑一个函数项级数$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x)$,其中$\displaystyle a_{n} ( x)$为关于变量$\displaystyle x$的函数。
对于任意固定的$\displaystyle x$,元素$\displaystyle a_{n} ( x)$称为级数的通项。
部分和序列$\displaystyle S_{n} ( x)$定义为$\displaystyle S_{n} ( x) =\sum _{k=1}^{n} a_{k} ( x)$。
2. 函数项级数的收敛性函数项级数的收敛性与序列的收敛性密切相关。
函数项级数$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x)$在某一点$\displaystylex$收敛,即当$\displaystyle n$趋于无穷时,部分和序列$\displaystyleS_{n} ( x)$的极限存在,记为$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x) =S( x)$。
如果对于所有$\displaystyle x$都有$\displaystyle S( x) \neq\infty ,S( x) \neq -\infty$,则称级数在$\displaystyle x$上绝对收敛。
3. 收敛性判定准则对于函数项级数的收敛性判定,有以下几个准则:3.1 Cauchy准则函数项级数$\displaystyle \sum _{n=1}^{\infty } a_{n} ( x)$在某一点$\displaystyle x$处收敛的充分必要条件是,对于任意正数$\displaystyle \varepsilon$,存在一个正整数$\displaystyle N$,使得当$\displaystyle m,n>N$时,$\displaystyle \left| \sum _{k=n}^{n+m} a_{k} ( x)\right|<\varepsilon$。
级数收敛的比较判别法与根值判别法

级数收敛的比较判别法与根值判别法在数学中,级数是由一系列的项相加得到的,判断级数的收敛性是数学分析中的一个重要问题。
为了判断一个级数是否收敛,数学家们发展了多种方法和判别法,其中比较判别法和根值判别法是较为常用和重要的两种方法。
一、比较判别法比较判别法是用来判断正项级数收敛与发散的方法之一。
该方法可以将一个给定级数与一个已知的收敛或发散的级数进行比较,从而得出所要判断的级数的收敛性。
比较判别法分为比较法和比较审敛法两种情况。
1. 比较法比较法又分为大于、小于比较法和极限形式比较法。
(1)大于、小于比较法:当一个级数的每一项都大于(或小于)另一个级数的每一项,并且另一个级数是收敛的,则可以得出原级数也是收敛的结论。
同样,如果另一个级数发散,那么原级数也是发散的。
(2)极限形式比较法:当一个级数a_n和一个已知的级数b_n满足以下条件时,可以利用极限形式比较法。
\lim_{n \to \infty} \frac{a_n}{b_n} = L其中,L是一个常数且0<L<∞。
如果收敛级数\sum b_n收敛,则a_n的级数也收敛;如果收敛级数为无穷大(发散),则a_n的级数也发散。
2. 比较审敛法当一个级数内的每一项都与一个已知收敛的“比较级数”的每一项都取不等号,并且比较级数的部分和是有界的,则原级数也是收敛的;反之,如果比较级数的部分和是无界的,则原级数发散。
比较判别法的基本思想在于将要研究的级数与已知的级数进行比较,通过比较得出原级数的收敛性。
虽然比较法的应用范围较广,但也存在一些局限性,例如比较级数必须满足一定条件,才能得出准确的结论。
二、根值判别法根值判别法是一种判断级数收敛性的重要方法。
它通过计算级数的一般项的n次根的极限来判断级数的收敛性。
根值判别法的基本思路是计算级数的一般项 a_n 的 n 次根:\sqrt[n]{a_n}如果极限\lim_{n \to \infty} \sqrt[n]{a_n} = L满足 L<1,则原级数收敛;如果 L>1 或该极限不存在(L为无穷大),则原级数发散。
数项级数和函数项级数及其收敛性的判定

学号数项级数和函数项级数及其收敛性的判定学院名称:数学与信息科学学院专业名称:数学与应用数学年级班别:姓名:指导教师:2012年5月数项级数和函数项级数及其收敛性的判定摘要 本文主要对数项级数中的正项级数与函数项级数收敛性判定进行研究,总结了正项级数和函数项级数一致收敛的部分判别法,并且介绍两种特别判别法:导数判别法和对数判别法。
关键词:数项级数;正项级数;函数项级数;一致收敛性;导数判别法;对数判别法.Several series and Function of series and the judgment of theirconvergenceAbstract In this paper, the author mainly discusses two series: Several series of positive series and Function of series. Summarizing the positive series and function of the part of the uniform convergence series discriminant method .And it presents two special discriminant method: derivative discriminant method and logarithmic discriminant method.Keywords Several series; Positive series; Function of series; uniform convergence; derivative discriminant method; logarithmic discriminant method前 言在数学分析中,数项级数和函数级数是全部级数理论的基础,而且数项级数中的正项级数和函数级数是基本的,同时也是十分重要的两类级数。
10.3数项级数的收敛性判别法(1)

1+ n 由比较判别法知,级数∑ un = ∑ 发散. 2 n =1 n =1 1 + n
12
∞
∞
n! 例5 判断级数 ∑ n 的敛散性. n =1 n
但
p ≤ 1, 级数发散 .
21
∞
例12 讨论级数
∑n x
n =1
n −1
( x > 0 ) 的敛散性 .
u n +1 (n + 1) x n = lim =x 解: ∵ lim n − 1 n →∞ u n n →∞ n x
根据定理4可知:
当0 < x < 1 时, 级数收 敛 ; 当 x > 1时, 级数发散 ;
n− N
u N +1
k ( ρ + ε ) 收敛 , 由比较判别法可知 ∑
∑ un 收敛 .
20
(2) 当ρ > 1 或 ρ = ∞ 时,必存在 N ∈ Z + , u N ≠ 0, 当n ≥ N
u n +1 > 1, 从而 时 un u n +1 > u n > u n −1 > ⋯ > u N
(1) 当0 < l <∞时, 取 ε < l , 由定理 2 可知
∑ u n 与 ∑ vn
n =1 n =1
∞
∞
(2) 当l = 0时, 利用 u n < ( l + ε ) vn (n > N ), 由定理2 知 若 ∑ vn 收敛 , 则 ∑ u n 也收敛 ;
高中数学中的数列与级数的收敛性判定方法

高中数学中的数列与级数的收敛性判定方法数列与级数是高中数学中的重要概念,它们在数学和实际问题中具有广泛的应用。
在数学中,我们经常需要判断一个数列或级数是否收敛,以便进一步研究其性质和应用。
本文将介绍几种常见的数列与级数收敛性判定方法。
一、数列的收敛性判定方法1. 有界性判定法数列的有界性是判断其收敛性的基本条件。
如果一个数列有上界和下界,即存在常数M和N,使得对于数列中的所有项an,都有N≤an≤M,那么这个数列就是有界的。
根据数学中的单调有界原理,如果一个数列是单调递增且有上界的,或者是单调递减且有下界的,那么这个数列就是收敛的。
2. 极限定义法数列的极限定义是判断其收敛性的另一种方法。
对于数列{an},如果存在一个常数L,对于任意给定的正数ε,都存在正整数N,使得当n>N时,|an-L|<ε成立,那么这个数列就是收敛的,L就是该数列的极限。
3. 夹逼准则夹逼准则是判断数列收敛性的一种常用方法。
如果数列{an}、{bn}和{cn}满足对于所有的n,an≤bn≤cn,并且lim(an)=lim(cn)=L,那么数列{bn}也收敛于L。
二、级数的收敛性判定方法1. 正项级数的收敛性判定法正项级数是指级数中的每一项都是非负数。
对于正项级数∑an,如果其部分和数列{Sn}有界,即存在常数M,使得对于所有的n,Sn≤M,那么这个正项级数就是收敛的。
这是由于部分和数列是递增的,且有界的,根据数列的收敛性判定方法可知。
2. 比较判别法比较判别法是判断级数收敛性的一种常用方法。
对于两个级数∑an和∑bn,如果存在正数C和正整数N,使得当n>N时,an≤Cbn成立,那么如果级数∑bn收敛,那么级数∑an也收敛;如果级数∑bn发散,那么级数∑an也发散。
3. 部分和数列的单调性判定法对于级数∑an,如果其部分和数列{Sn}是单调递增的,并且有上界,即存在常数M,使得对于所有的n,Sn≤M,那么这个级数就是收敛的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解
sin 1
因为 lim n
1.而级数
1 是发散
n 1
n1 n
n
的,根据比较审敛法的极限形式知,级数
sin 1 发散.
n1 n
2020/6/10
9
目录
上页
下页
返回
例 6 判别下列级数的敛散性:
(1)
n1
n3 2n3 n
;
(2)
1;
n n1
1 1 n
(3)
n1
1 n
ln
1
1 n
;
n3
(4) n2en . n1
1 n1 n p
:
lim u n 1 n un
1
lim ( n 1) p
n
1 np
1
p1, 级数收敛 ;
但 p1, 级数发散 .
2020/6/10
14
目录
上页
下页
返回
例6
判别级数 12 2
22 22
32 23
L
n2 2n
L
的敛散性.
解:(1)令 un
n2 2n
,则
(n 1)2
lim un1 lim
第七章
第二节 数项级数收敛性判别法
(Interrogate of constant term series)
一、正项级数及其审敛法 二、交错级数及其审敛法 三、绝对收敛与条件收敛 四、小结与思考练习
2020/6/10
1
目录
上页
下页
返回
一、正项级数及其审敛法
(Interrogate of positive term series)
n
1
1 n
1
发散
,
由比较审敛法可知
p
级数
n
1
n
p
发散 .
2020/6/10
5
目录
上页
下页
返回
2) 若
因为当n 1 x n 时,
故
n1 n1xp
dx
p1 1(n1 1)p1np 11
考 1 虑 强2 p 1 级 1 数 n 22 p 1 ( n1 113 )pp 1 11 n p11 n 的p 1 部 1 分 ( 和n 1 1 )p 1
n 1
n 1
数 N ,使当 n N 时有 un kvn (k 0) ,
(1)如果 vn 收敛,则 un 也收敛;
n 1
n 1
(2)如果 un 发散,则 vn 也发散.
2020/6/10
n 1
3
n 1 目录
上页
下页
返回
例 1 证明级数
1 1 1 L 1 L , (k 0)
2 k 22 k 23 k
1 发散.
n n1
1 1 n
(3)因为 lim
1 n
ln
1
1 n
lim
ln
1
1 n
1
,
n
1
n
1
3
n
n2
而级数
1
3
n n1 2
收敛,所以级数
n1
1 n
ln
1
1 n
收敛.
(4)因为
n2en lim n 1
n4 lim
e n n
0 ,而级数
1
n2
n 1
收敛,
n2
所以级数 n2en 收敛.
n
kn1k1p1(k11)p1
1
1 (n1)p1
n 1
故强级数收敛 , 由比较审敛法知 p 级数收敛 .
2020/6/10
6
目录
上页
下页
返回
例 3 判别级数
1
的敛散性.
n1 (n 1)(n 4)
解
因为 0
1 (n 1)(n 4)
1 n2
,而级数
n 1
1 n2
是
p2 的 p 级数,它是收敛的.所以级数
n 1
2020/6/10
11
目录
上页
下页
返回
说明:判别级数的敛散性,如果已知一些收敛级数和 发散级数,则可以以它们为标准进行比较.
常用于比较的级数有 p 级数、等比级数与调和级数, 因此必须记住它们.
另一方面,由比较审敛法的定理我们知道,它是通过与 某个敛散性已知的级数的比较来判断给定级数的敛散性, 但有时作为比较对象的级数不容易找到,那么能不能从给
解:(1)因为
lim
2n3
n
n3 lim
3n2
1,
n 1
n 2n3 n 2
n2
而
1 收敛,所以级数
n 3 收敛.
n2
n 1
1 n1 2n3 n
(2)因为
2020/6/10
1 1
lim n n n 1
n
lim
1
1 ,又级数
1 发散,
n n n
n1 n
10
目录
上页
下页
返回
所以级数
若 un 0, 则称 u n 为正项级数 .
n 1
定理 1 正项级数 u n 收敛
部分和序列 S n
n 1
(n1,2,)有界 .
证: “
” 若 u n 收敛 , 则 Sn收,敛 故有界.
n 1
“
” un0,∴部分和数列 Sn单调递增,
又已知 Sn有界, 故Sn收敛 , 从而 u n 也收敛.
u n n
n
2n1 n2
lim
n
1 2
n
n
1
2
1 2
1,
2n
根据比值审敛法知,原级数是收敛的.
例 7
判别级数
3n
的敛散性.
n1 n2 2n
提示:解法与例 6 完全类似!
收敛 , 由比较审敛法可知
13
目录
上页
下页
返回
(2) 当1或 时 ,必N 存 Z ,u 在 N 0 ,当nN
时 u n 1 1, 从而
un
un1unun1 uN
因此 n l i m unuN0,所以级数发散.
说明: 当 lim un1 1 时,级数可能收敛也可能发散.
n un
例如, p – 级数
1
也是收敛的.
n1 (n 1)(n 4)
2020/6/10
7
目录
上页
下页
返回
定理3 (比较审敛法的极限形式) 设两正项级数
满足
则有
(1) 当 0 < l <∞ 时, 两个级数同时收敛或发散 ; (2) 当 l = 0
(3) 当 l =∞
2020/6/10
8目录上页来自下页返回例 5 判别级数 sin 1 的敛散性. n1 n
定的级数自身直接判别级数的敛散性?
为此,下面我们将给出使用上很方便的比值审敛法和 根值审敛法.
2020/6/10
12
目录
上页
下页
返回
定理4 比值审敛法 ( D’ Alembert 判别法)
设
为正项级数, 且
则
(1) 当 (2) 当
时, 级数收敛 ;
或
时, 级数发散 .
证: (1)
2020/6/10
n 1
2020/6/10
2
目录
上页
下页
返回
定理 2 设 un 和 vn 都是正项级数,且 un vn ,
n 1 n 1
(1) 如果级数 vn 收敛,则级数 un 也收敛;
n 1
n 1
(2) 如果级数 un 发散,则级数 vn 也发散.
n 1
n 1
推论 设 un 和 vn 都是正项级数,且存在自然
2n k
是收敛的.
证
因为 0
1 2n k
1 2n
,而级数
n 1
1 2n
是收敛的.
根据比较审敛法可知所给级数也是收敛的.
2020/6/10
4
目录
上页
下页
返回
例2 讨论 p 级数 121p31pn1p(常数 p > 0)
的敛散性.
解: 1) 若 p1, 因为对一切 nZ ,
1 np
1 n
而调和级数