17届高二理科数学下期半期考试试卷
成都七中17届高二理科数学下期半期考试试卷答案

22
k )x
2kmx
2
m
4
0.
1
4
4k2m2 4(4 k2)(m2 4) 0, 得 k2 4 m2.
设 M ( x1, y1) , N (x2, y2 ) ,线段 MN 的中点为 Q (x0, y0) .
则 x1 x2
2 km 4 k2
, x1x2
m2
4 ,所以
2
x0
4k
km 4 k2
, y0
kx0 m
成都七中 2015-2016 学年下期 2017 届半期考试数学(理科)试卷 ( 参考答案)
一.选择题 CBABD ADACD BA 二、填空题
13. 2 3, 2
1 14. y
4
15. 2 3 或 2 5
3
5
16. ①④
三.解答题
17.解:(1)共有 36 个不同的基本事件,列举如下: ( 1, 1),(1,2),(1,3),(1,4),( 1, 5),(1,6),
6
210 . …… 10 分
3
则d1
1
y
2 0
4y 0
26
2
5
1 10 ( y 0
4) 2
36 ,
当 y 0 4 时,(d 1) min 3. 6 ,此时 x 0
y
2 0
6
8, 3
∴当 P
8 ,
4 时,(d 1) min
3
3. 6 .……6分
3
( 2)设抛物线的焦点为 F,则 F , 2
0 ,且 d 2
4
4
1 (x1 2)(x2 2)
2,
x1 2 x2 2 x1 2 x2 2 16
人教版2017高二(下学期)数学(理)期中试卷附答案

一、选择题(本题共12小题,每小题5分,共60分)1.“金导电、银导电、铜导电、锡导电,所以一切金属都导电”.此推理方法是()A.完全归纳推理B.归纳推理C.类比推理D.演绎推理2.已知曲线y=x2+2x﹣2在点M处的切线与x轴平行,则点M的坐标是()A.(﹣1,3)B.(﹣1,﹣3)C.(﹣2,﹣3)D.(﹣2,3)3.有一段“三段论”推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中()A.大前提错误B.小前提错误C.推理形式错误D.结论正确4.已知二次函数f(x)的图象如图所示,则其导函数f′(x)的图象大致形状是()A. B. C.D.5.若复数z2+2=0,则z3等于()A.±2B.2 C.±2i D.﹣2i6.复数(3﹣i)m﹣(1+i)对应的点在第三象限内,则实数m的取值范围是()A.B.m<﹣1 C.D.或m<﹣17.由曲线y=x2,y=x3围成的封闭图形面积为()A.B.C.D.8.设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.e C. D.ln29.由数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数共有()A.60个B.48个C.36个D.24个10.n∈N且n<55,则乘积(55﹣n)(56﹣n)…(69﹣n)等于()A.B.C.D.11.在(1﹣x3)(1+x)10展开式中,x5的系数是()A.﹣297 B.﹣252 C.297 D.20712.在的展开式中的常数项是()A.7 B.﹣7 C.28 D.﹣28二、填空题(本题共4小题,每小题5分,共20分)13.过抛物线y=f(x)上一点A(1,0)的切线的倾斜角为45°则f′(1)=.14.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共种(用数字作答).15.已知集合S={﹣1,0,1},P={1,2,3,4},从集合S,P中各取一个元素作为点的坐标,可作出不同的点共有个.16.满足条件|z﹣i|=|1+i|的复数z在复平面上对应的点(x,y)的轨迹方程为.三、解答题(本题共70分,解答应写出文字说明、演算步骤或推证过程)17.(10分)(1)计算()2+;(2)复数z=x+yi(x,y∈R)满足z+2i=3+i求复数z.18.(12分)计算:(1);(2).19.(12分)(1)在(1+x)n的展开式中,若第3项与第6项系数相等,且n 等于多少?(2)(x+)n的展开式奇数项的二项式系数之和为128,则求展开式中二项式系数最大项.20.(12分)已知函数f(x)=3x3﹣9x+5.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)求函数f(x)在[﹣2,2]上的最大值和最小值.21.(12分)5个排成一排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、乙、丙三人必须在一起(4)甲、乙、丙三人两两不相邻(5)甲在乙的左边(不一定相邻)(6)甲不排头,乙不排当中.22.(12分)已知f(x)=ax3+bx2+cx(a≠0)在x=±1处取得极值,且f(1)=﹣1.(Ⅰ)求常数a,b,c的值;(Ⅱ)求f(x)的极值.参考答案一、BBABC CABCB DA二、13. 114. 418615. 2316. x2+(y﹣1)2=4.三、17.【解答】解:(1)原式==(2)∵z=x+yi且满足z+2i=3+i,∴(x+yi)+2i(x﹣yi)=3+i,即(x+2y)+(2x+y)i=3+i,由复数相等的定义可得.解得,∴z=﹣i.18.【解答】解:(1)原式=.(2)原式=.另一方法:=.19.【解答】解:(1)由已知得C n2=C n5⇒n=7(2)由已知得C n1+C n3+C n5+ (128)∴2n﹣1=128∴n=8,而展开式中二项式系数最大项是=70.20.【解答】解:(I)f′(x)=9x2﹣9.(2分)令9x2﹣9>0,(4分)解此不等式,得x<﹣1或x>1.因此,函数f(x)的单调增区间为(﹣∞,﹣1)和(1,+∞).((6分)(II)令9x2﹣9=0,得x=1或x=﹣1.(8分)当x变化时,f′(x),f(x)变化状态如下表:(10分)从表中可以看出,当x=﹣2或x=1时,函数f(x)取得最小值﹣1.当x=﹣1或x=2时,函数f(x)取得最大值11.(12分)21.【解答】解:(1)甲固定不动,其余全排列,故有A44=24种;(2)甲有中间3个位置供选择,故有C31A44=72种;(3)先排甲、乙、丙三人,再把该三人当成一个整体,再加上另2人,相当于3人的全排列,故有A33A33=36种;(4)先排甲、乙、丙之外的2人,形成了3个空,将甲、乙、丙三人排这3个空位,故有A22A33=12种;(5)不考虑限制条件有,甲在乙的左边(不一定相邻),占总数的一半,即A55=60种;(6)第一类,甲排列当中,有A44=24种,第二类,甲不排在当中,有A31A31A33=54种,故有24+54=78种22.【解答】解:(Ⅰ)由f(x)=ax3+bx2+cx,得f'(x)=3ax2+2bx+c,由已知有f'(1)=f'(﹣1)=0,f(1)=﹣1,即:⇒,解得:;(Ⅱ)由(Ⅰ)知,,∴.当x<﹣1时,或x>1时,f'(x)>0,当﹣1<x<1时,f'(x)<0.∴f(x)在(﹣∞,﹣1)和(1,+∞)内分别为增函数;在(﹣1,1)内是减函数.因此,当x=﹣1时,函数f(x)取得极大值f(﹣1)==1;当x=1时,函数f(x)取得极小值f(1)==﹣1.。
人教版2017高二(下学期)数学期中联考(理)试卷附答案

一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.关于复数,给出下列判断:①3>3i;②16>(4i)2;③2+i>1+i;④|2+3i|>|2+i|.其中正确的个数为()A.1 B.2 C.3 D.42.下面四个推理中,属于演绎推理的是()A.观察下列各式:72=49,73=343,74=2401,…,则72015的末两位数字为43 B.观察(x2)′=2x,(x4)′=4x3,(cosx)′=﹣sinx,可得偶函数的导函数为奇函数C.在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,类似的,在空间中,若两个正四面体的棱长比为1:2,则它们的体积之比为1:8 D.已知碱金属都能与水发生还原反应,钠为碱金属,所以钠能与水发生反应3.函数f(x)=(2x﹣1)e x的递增区间为()A.(﹣∞,+∞)B.C.D.4.已知(n∈N*),则当k∈N*时,f(k+1)﹣f(k)等于()A.B.C. D.5.已知复数z满足(z﹣5)(1﹣i)=1+i,则复数z的共轭复数为()A.5+i B.5﹣i C.﹣5+i D.﹣5﹣i6.如图所示,阴影部分的面积为()A.B.C.1 D.7.若函数f(x)=x3+x2+(a+6)x+a有极大值和极小值,则()A. B. C. D.8.观察数组:(﹣1,1,﹣1),(1,2,2),(3,4,12),(5,8,40),…,(a n,b n,c n),则c n的值不可能为()A.112 B.278 C.704 D.16649.P为椭圆上异于左右顶点A1、A2的任意一点,则直线PA1与PA2的斜率之积为定值.将这个结论类比到双曲线,得出的结论为:P为双曲线上异于左右顶点A1、A2的任意一点,则()A.直线PA1与PA2的斜率之和为定值B.直线PA1与PA2的斜率之和为定值2C.直线PA1与PA2的斜率之积为定值D.直线PA1与PA2的斜率之积为定值210.已知对于任意的x∈(1,+∞)恒成立,则()A.a的最小值为﹣3 B.a的最小值为﹣4C.a的最大值为2 D.a的最大值为411.已知复数z=x+(x﹣a)i,若对任意实数x∈(1,2),恒有|z|>|z+i|,则实数a的取值范围为()A.B.C.D.12.定义在(0,+∞)上的函数f(x)的导函数f′(x)满足,则下列不等式中,一定成立的是()A.f(9)﹣1<f(4)<f(1)+1 B.f(1)+1<f(4)<f(9)﹣1 C.f(5)+2<f(4)<f(1)﹣1 D.f(1)﹣1<f(4)<f(5)+2二、填空题13复数在复平面内对应的点位于第象限.14.若(x>0),则.15.已知[x]表示不大于x的最大整数,设函数f(x)=[log2x],得到下列结论:结论1:当1<x<2时,f(x)=0;结论2:当2<x<4时,f(x)=1;结论3:当4<x<8时,f(x)=2;照此规律,得到结论10:.16.若函数f(x)=x3﹣3x+5﹣a(a∈R)在上有2个零点,则a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知f(x)=|x+2|﹣|2x﹣1|,M为不等式f(x)>0的解集.(1)求M;(2)求证:当x,y∈M时,|x+y+xy|<15.18.(12分)已知复数z满足,|z|=5.(1)求复数z的虚部;(2)求复数的实部.19.(12分)已知函数f(x)=|2x﹣1|+|2x﹣3|,x∈R.(1)解不等式f(x)≤5;(2)若不等式m2﹣m<f(x),∀x∈R都成立,求实数m的取值范围.20.(12分)(1)当x>1时,求证:;(2)若a<e,用反证法证明:函数f(x)=xe x﹣ax2(x>0)无零点.21.(12分)现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB分别交弧AB于点E、F,且BD=AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的养殖区域.已知OA=1km,∠AOB=,∠EOF=θ(0<θ<).(1)若区域Ⅱ的总面积为,求θ的值;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是30万元、40万元、20万元,试问:当θ为多少时,年总收入最大?22.(12分)已知f(x)=ln(1+x)﹣,x∈R.(1)若曲线y=f(x)在点(0,f(0))处的切线的斜率为5,求a的值;(2)若函数f(x)的最小值为﹣a,求a的值;(3)当x>﹣1时,(1+x)ln(1+x)+(lnk﹣1)x+lnk>0恒成立,求实数k的取值范围.参考答案一、BDDDB CCBCA CA二、13. 四14. 115. 当29<x<210时,f(x)=9.16.三、17.【解答】解:(1)f(x)=,当x<﹣2时,由x﹣3>0得,x>3,舍去;当﹣2≤x≤时,由3x+1>0得,x>﹣,即﹣<x≤;当x>时,由﹣x+3>0得,x<3,即<x<3,综上,M=(﹣,3);(2)证明:∵x,y∈M,∴|x|<3,|y|<3,∴|x+y+xy|≤|x+y|+|xy|≤|x|+|y|+|xy|=|x|+|y|+|x||y|<3+3+3×3=15.18.【解答】解:(1)设复数z=a+bi(a,b∈R),∴=a﹣bi,∴,∴a=3.∴⇒b=±4,即复数z的虚部为±4.(2)当b=4时,==,其实部为.当b=﹣4时,==,其实部为.19.【解答】解:(1)原不等式等价于①,或②,或③.解①求得,解②求得,解③求得,因此不等式的解集为.(2)∵f(x)=|2x﹣1|+|2x﹣3|≥|2x﹣1﹣(2x﹣3)|=2,∴m2﹣m<2,解得﹣1<m<2,即实数m的取值范围为(﹣1,2).20.【解答】证明:(1)分析法:∵x>1,∴要证,只需证2x4+1>2x3+x,即证2x3(x﹣1)>x﹣1,∵x>1,∴只需证2x3>1,∵x>1,∴2x3>2>1,故得证.令,则,即,则,从而.(2)反证法:假设函数f(x)=xe x﹣ax2(x>0)有零点,则f(x)=0在(0,+∞)上有解,即在(0,+∞)上有解.设(x>0),(x>0),当0<x<1时,g'(x)<0;当x>1时,g'(x)>0.∴g(x)≥g(x)min=g(1)=e,∴a≥e,但这与条件a<e矛盾,故假设不成立,即原命题得证.21.【解答】解:(1)∵BD=AC,OB=OA,∴OD=OC.∵∠AOB=,DE∥OA,CF∥OB,∴DE⊥OB,CF⊥OA.又∵OE=OF,∴Rt△ODE≌Rt△OCF.∴∠DOE=∠COF=,又OC=OF•cos∠COF=•OC•OF•sin∠COF=cosθ∴S△COF=(0<θ<).∴S区域Ⅱ由,得cosθ=,∵0<θ<,∴θ=.=,∴S区域Ⅲ=S总﹣S区域Ⅰ﹣S区域Ⅱ=cosθ.(2)∵S区域Ⅰ记年总收入为y万元,则y=30×cosθ=5π+5θ+10cosθ(0<θ<),所以y'=5(1﹣2sinθ),令y'=0,则θ=.当0<θ<时,y'>0;当时,y'<0.故当θ=时,y有最大值,即年总收入最大.22.【解答】解:(1)∵,∴f'(0)=1﹣a=5,∴a=﹣4.(2)函数f(x)的定义域为(﹣1,+∞),=,令f'(x)=0,则x=a﹣1,①当a﹣1≤﹣1,即a≤0时,在(﹣1,+∞)上,f'(x)>0,函数f(x)单调递增,无最小值.②当a﹣1>﹣1,即a>0时,在(﹣1,a﹣1)上,f'(x)<0,函数f(x)单调递减;在(a﹣1,+∞)上,f'(x)>0,函数f(x)单调递增,所以函数f(x)的最小值为f(a﹣1)=lna﹣a+1=﹣a,解得.综上,若函数f(x)的最小值为﹣a,则.(3)由(1+x)ln(1+x)+(lnk﹣1)x+lnk>0,得, +lnk>0,即﹣lnk<,令a=1,则f(x)=,由(1)可知,当a=1时,f(x)在(﹣1,0)上单调递减,在(0,+∞)上,f (x)单调递增,所以在(﹣1,+∞)上,f(x)min=f(0)=0,所以﹣lnk<0,即k>1.。
2017-2018学年高二下学期期中考试数学(理)试题 word版含答案

2017-2018学年度高二年级期中考试数学(理科)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设正弦函数y =sinx 在x =0和x =π2附近的瞬时变化率为k1、k2,则k1、k2的大小关系为( )A .k1>k2B .k1<k2C .k1=k2D .不确定2.命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,使得20x <B .不存在x R ∈,使得20x <C .存在0x R ∈,都有200x ≥D .存在0x R ∈,都有200x <3.设z 是复数,则下列命题中的假命题是( )A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <4.一物体以速度v =(3t2+2t)m/s 做直线运动,则它在t =0s 到t =3s 时间段内的位移是( )A .31mB .36mC .38mD .40m5.3.复数31iz i +=-(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.对于命题p 和q ,若p 且q 为真命题,则下列四个命题:①p 或¬q 是真命题;②p 且¬q 是真命题;③¬p 且¬q 是假命题;④¬p 或q 是假命题.其中真命题是( )A .①②B .③④C .①③D .②④7.三次函数f(x)=mx3-x 在(-∞,+∞)上是减函数,则m 的取值范围是( )A .m<0B .m<1C .m≤0D .m≤18.已知抛物线y =-2x2+bx +c 在点(2,-1)处与直线y =x -3相切,则b +c 的值为( )A .20B .9C .-2D .29.设f(x)=cos 2tdt ,则f =( )A.1B.sin 1C.sin 2D.2sin 410.“ a=b ”是“直线与圆22()()2x a y b -++=相切的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件11.设函数f(x)的图象如图,则函数y =f ′(x)的图象可能是下图中的( )12.若关于x 的不等式x3-3x2-9x +2≥m 对任意x ∈[-2,2]恒成立,则m 的取值范围是( )A .(-∞,7]B .(-∞,-20]C .(-∞,0]D .[-12,7]二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.若曲线f(x)=x4-x 在点P 处的切线垂直于直线x -y =0,则点P 的坐标为________14.f(x)=ax3-2x2-3,若f′(1)=2,则a 等于________.15.220(4)x x dx --=⎰_______________.16.已知z C ,且|z|=1,则|z-2i|(i 为虚数单位)的最小值是________三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本题满分10分) (1) 求导数22sin(25)y x x =+ (2)求定积分:10(1)x x dx +⎰18. (本题满分12分)设:x2-8x-9≤0,q :,且非p 是非q 的充分不必要条件,求实数m 的取值范围.19.(本题满分12分)已知z 为复数,i z +和i z-2均为实数,其中i 是虚数单位. (Ⅰ)求复数z 和||z ;(Ⅱ)若immzz27111+--+=在第四象限,求m的范围.20.(本题满分12分)已知函数f(x)=-x3+3x2+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.21.(本题满分12分) 设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+4.(1)求y=f(x)的表达式;(2)求直线y=2x+4与y=f(x)所围成的图形的面积.22.(本题满分12分) 设函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,4),且在点P处有相同的切线y=4x+4.(1)求a,b,c,d的值.(2)若存在x≥-2时,f(x)≤k-g(x),求k的取值范围.20[解析] (1)f ′(x)=-3x2+6x.令f ′(x)<0,解得x<0,或x>2,∴函数f(x)的单调递减区间为(-∞,0)和(2,+∞).(2)∵f(-2)=8+12+a=20+a,f(2)=-8+12+a=4+a,∴f(-2)>f(2).∵在(0,2)上f ′(x)>0,∴f(x)在(0,2]上单调递增.又由于f(x)在[-2,0]上单调递减,因此f(0)是f(x)在区间[-2,2]上的最大值,于是有f(0)=a=20∴f(x)=-x3+3x2-20∴f(2)==-16,即函数f(x)在区间[-2,2]上的最小值为-16.21[解析] (1)f ′(x)=-3x2+6x.令f ′(x)<0,解得x<0,或x>2,∴函数f(x)的单调递减区间为(-∞,0)和(2,+∞).(2)∵f(-2)=8+12+a=20+a,f(2)=-8+12+a=4+a,∴f(-2)>f(2).∵在(0,2)上f ′(x)>0,∴f(x)在(0,2]上单调递增.又由于f(x)在[-2,0]上单调递减,因此f(0)是f(x)在区间[-2,2]上的最大值,于是有f(0)=a=20∴f(x)=-x3+3x2-20∴f(2)==-16,即函数f(x)在区间[-2,2]上的最小值为-16.22【解题指南】(1)根据曲线y=f(x)和曲线y=g(x)都过点P(0,2),可将P(0,2)分别代入到y=f(x)和y=g(x)中,再利用在点P处有相同的切线y=4x+2,对曲线y=f(x)和曲线y=g(x)进行求导,列出关于a,b,c,d的方程组求解.(2)构造函数F(x)=kg(x)-f(x),然后求导,判断函数F(x)=kg(x)-f(x)的单调性,通过分类讨论,确定k的取值范围.【解析】(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=ex(cx+d+c).故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知f(x)=x2+4x+2,g(x)=2ex(x+1).设F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2,则F′(x)=2kex(x+2)-2x-4=2(x+2)(kex-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0,即2(x+2)(kex-1)=0,得x1=-lnk,x2=-2.①若1≤k<e2,则-2<x1≤0,从而当x∈(-2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在x∈(-2,x1)上单调递减,在x∈(x1,+∞)上单调递增,故F(x)在[-2,+∞)上有最小值为F(x1).F(x1)=2x1+2--4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).②若当k=e2,则F′(x)=2e2(x+2)(ex-e-2),当x>-2时,F′(x)>0,即F(x)在(-2,+∞)上单调递增,而F(-2)=0,故当且仅当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).③若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围为[1,e2].。
2016_2017学年度高二第二学期期末考试理科数学试题与答案

试卷类型:A高二数学(理科)试题2017.7 注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页。
2.答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的、号填写清楚,并粘好条形码。
请认真核准条形码上的号、和科目。
3.答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在本试卷上无效。
4.答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域作答。
答在本试卷上无效。
5.第(22)、(23)小题为选考题,请按题目要求从中任选一题作答,并用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。
6.考试结束后,将本试卷和答题卡一并收回。
附:回归方程ˆˆˆybx a =+中斜率与截距的最小二乘估计公式分别为: ∑∑∑∑====--=---=ni ini ii ni ini iixn xy x n yx x x y yx x b1221121)())((ˆ,x b y aˆˆ-= 第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
(1)已知复数iiz +-=122,其中i 是虚数单位,则z 的模等于 (A )2- (B) 3 (C) 4 (D) 2(2)用反证法证明某命题时,对结论:“自然数c b a ,,中恰有一个偶数”正确的反设为 (A) c b a ,,中至少有两个偶数 (B)c b a ,,中至少有两个偶数或都是奇数 (C) c b a ,,都是奇数 (D) c b a ,,都是偶数 (3)用数学归纳法证明:对任意正偶数n ,均有41212111 (41)31211+++=--++-+-n n n n ( )21...n++,在验证2=n 正确后,归纳假设应写成 (A )假设)(*N k k n ∈=时命题成立 (B )假设)(*N k k n ∈≥时命题成立 (C )假设)(2*N k k n ∈=时命题成立 (D )假设))(1(2*N k k n ∈+=时命题成立(4)从3男4女共7人中选出3人,且所选3人有男有女,则不同的选法种数有 (A )30种 (B) 32 种 (C) 34种 (D) 35种 (5)曲线xe y =在点()22e ,处的切线与坐标轴所围三角形的面积为(A)22e (B)2e (C) 22e (D) 492e(6)已知随机变量X 服从正态分布()2,3σN ,且)3(41)1(>=<X P X P ,则)5(<X P 等于(A)81 (B) 85 (C) 43 (D) 87(7)已知⎰≥3sin 2πxdx a ,曲线)1ln(1)(++=ax aax x f 在点())1(,1f 处的切线的斜率为k ,则k 的最小值为 (A)1 (B)23(C)2 (D) 3 (8)甲、乙、丙三人独立参加体育达标测试,已知甲、乙、丙各自通过测试的概率分别为p ,4332,,且他们是否通过测试互不影响.若三人中只有甲通过的概率为161,则甲、丙二人中至少有一人通过测试的概率为 (A)87 (B) 43 (C) 85 (D) 76(9)函数)1(2)(3-'+=f x x x f ,则函数)(x f 在区间[]3,2-上的值域是 (A) ]9,24[- (B) ]24,24[- (C) ]24,4[ (D)[]9,4 (10)设()()5522105)1(...1)1(1x a x a x a a x +++++++=-,则420a a a ++等于(A) 242 (B) 121 (C) 244 (D)122(11)已知函数)()()(2R b x bx x e x f x ∈-=.若存在⎥⎦⎤⎢⎣⎡∈2,21x ,使得0)()(>'+x f x x f ,则实数b 的取值围是(A) ⎪⎭⎫ ⎝⎛∞-65, (B) ⎪⎭⎫ ⎝⎛∞-38, (C) ⎪⎭⎫⎝⎛-65,23 (D) ⎪⎭⎫⎝⎛∞+,38 (12)中国南北朝时期的著作《子算经》中,对同余除法有较深的研究.设)0(,,>m m b a 为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为)(mod m b a =.如9和21被6除得的余数都是3,则记)6(mod 219=.若20202022201200202...22⋅++⋅+⋅+=C C C C a ,)10(mod b a =,则b 的值可以是(A) 2011 (B) 2012 (C) 2013 (D) 2014第II 卷本卷包括必考题和选考题两部分。
成都七中17届高二理科数学下期零诊模拟考试试卷答案

/ /
∵ 1 + e−|r| ∈ (1,2],3 + sin������ ∈ [2,4],
1 e
|r |
) 0
∴ f / (2) 0, f / (4) 0 ∴ m 1, n
1 2 , f (2) 0
/
即:
1 2 3 6 m 4 8 n 0 48 72m 48n 0
1 8 ( k 1) e
恒成立
∴k
1
1
, x ( 0 , ) 恒成立。 令:t x 1( t 1)
t
t 1 e 1
t
, t (1, ) 恒成立。
令: u ( t ) t
t 1 e 1
t
, t (1, ), u ( t )
化简得7������2 = 12 + 12������ 2 . 得3 + 4(
7 12
4������2 −12 3+4������ 2
− ������������ ⋅ 3+4������ 2 + ������2 = 0,
8������������
将������ 2 =
3
7 12
������2 − 1代入3 + 4������ 2 > ������2 中,
/
x0 (
2
k , k ), 即 x 0 在第二或第四象限内.由②式,p ( x ) co s x (tan x x ) 在第二
/
象限或第四象限中的符号可列表如下: x
p ( x ) 的符号
辽宁省沈阳市17学年高二数学下学期第二阶段测试试题理

2016-2017学年度下学期高二年级第二次阶段性考试理科数学考试时间:6月8日 答题时间:120分钟 满分:150分一、选择题:(每题5分,满分60分) 1.复数122ii+=- A. iB. 1i +C. i -D. 1i -2.下列说法:①将一组数据中的每个数据都乘以同一个非零常数a 后,标准差也变为原来的a 倍; ②设有一个回归方程35y x =-,变量x 增加1个单位时,y 平均减少5个单位; ③线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱;④在某项测量中,测量结果ξ服从正态分布()()21,0N σσ>,若ξ位于区域()0,1的概率为0.4,则ξ位于区域()1,+∞内的概率为0.6⑤利用统计量2χ来判断“两个事件,X Y 的关系”时,算出的2χ值越大,判断“X 与Y 有关”的把握就越大 其中正确的个数是A .1B .2C .3D .43. )120x dx ⎰的值是A .143π- B .14π-C .123π- D .12π-4.设定义在R 上的函数()f x 的导函数为()f x ',且满足()()2f x f x -=,()01f x x '<-,若122x x +>,12x x <则A .()()12f x f x <B .()()12f x f x =C .()()12f x f x >D .()1f x 与()2f x 的大小不能确定5.书架上有三本数学书和两本语文书,某同学两次分别从书架各取一本书,取后不放回,若第一次从书架取出一本数学书记为事件A ,第二次从书架取出一本数学书记为事件B ,则()|P B A =A .12B .110C .310D .356.如图,一个树形图依据下列规律不断生长,1个空心圆点到下一行仅生长出1个实心圆点,1个实心圆点到下一行生长出1个实心圆点和1个空心圆点,则第11行的实心圆点的个数是A .21B .34C .55D .89 7.若()()2311()nx x x n x++++∈N 的展开式中没有常数项,则n 的可能取值是 A .7B .8C .9D .108.三位同学乘一列火车,火车有10节车厢,则至少有2位同学上了同一车厢的概率为A .29200B .7125 C .718 D .7259.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为A .B .C .D .10.某城市关系要好的A ,B ,C ,D 四个家庭各有两个小孩共8人,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A 户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有A .18种B .24种C .36种D .48种11.设函数()y f x =在区间(),a b 上的导函数为()f x ',()f x '在区间(),a b 上的导函数为()f x '',若在区间(),a b 上()0f x ''<恒成立,则称函数()f x 在区间(),a b 上为“凸函数”.已知()4321131262f x x mx x =--,若对任意的实数m 满足||2m ≤时,函数()f x 在区间(),a b 上为“凸函数”,则区间(),a b 可以是A .()2,0-B .()0,2C .()1,1-D .()1,312.函数()()12ln x f x a x e x x=-++在()0,2上存在两个极值点,则实数a 的取值范围为 A .21(,)4e -∞- B .211(,)(1,)4e e -+∞ C .1(,)e-∞- D .2111(,)(,)4e e e -∞---二、填空题:(每题5分,满分20分)13.如果复数z 满足|3||3|6z i z i ++-=,那么|1|z i ++的最小值是14.将A ,B ,C ,D ,E 这5名同学从左至右排成一排,则A 与B 相邻且A 与C 之间恰好有一名同学的排法有 种15.甲、乙两人进行“石头、剪子、布”游戏.开始时每人拥有3张卡片,每一次“出手”(双方同时):若分出胜负,则负者给对方一张卡片;若不分胜负,则不动卡片.规定:当一人拥有6张卡片或“出手”次数达到6次时游戏结束.设游戏结束时“出手”次数为ξ,则()E ξ= . 16.对任意的正数x ,都存在两个不同的正数y ,使()22ln ln 0x y x ay --=成立,则实数a 的取值范围是三、解答题:17.(本小题满分10分)“开门大吉”是中央电视台推出的娱乐节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.(Ⅰ) 完成下列2×2列联表(见答题纸);(Ⅱ)判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由.(下面的临界值表供参考)0.005 (参考公式:2112212211212()n n nn n K n n n n ++++-=,1+2++1+2n n n n n =+++)18.(本小题满分12分)若等差数列{}n a 的首项为1122211135mm m ma C A ---=-()m N ∈,公差是5(2nx 展开式中的常数项,其中n 为777715-除以19的余数,求通项公式n a .19.(本题满分12分)浑南“万达广场”五一期间举办“万达杯”投掷飞镖比赛.每3人组成一队,每人投掷一次.假设飞镖每次都能投中靶面,且靶面上每点被投中的可能性相同.某人投中靶面内阴影区域记为“成功”(靶面正方形ABCD 如图所示,其中阴影区域的边界曲线近似为函数x A y sin =的图像).每 队有3人“成功”获一等奖,2人“成功” 获二等奖,1 人“成功” 获三等奖,其他情况为鼓励奖(即四等奖) (其中任何两位队员“成功”与否互不影响).(I )求某队员投掷一次“成功”的概率;(II )设X 为某队获奖等次,求随机变量X 的分布列 及其期望.20.(本小题满分12分)在数列{}n a 中,11a =,当2n ≥时,1,,2n n n a S S -成等比数列。
2017年第二学期高二数学理答案

ξ 犘
1 5 8
3 5 1 1 5 故随机变量ξ 的数学期望犈( ) =1× +3× +5× = . ξ 8 1 6 1 6 8 ( ) 证明: 2 0 . 1 ∵ 矩形 犅 犅1 犆 犆1 所在平面与底面 垂直 , 则 底面 犃 犅 犅1犖 犆 犅⊥ 犃 犅 犅1犖. / / , , 则 如 ∵ 犃 犖 犅 犅1 犃 犅 ⊥犃 犖 犃 犅 ⊥犅 犅1, 图, 以 犅 为坐标原点, 以犅 犃, 犅 犅1, 犅 犆 为坐标 建立空间直角坐标系, 不妨设 犅 , 轴, 犅1 =4 则 犖( , , , , , , , , , 2 2 0) 犆 0 4 2) 犅 0 4 0) 1( 1( , , 犆( 0 0 2) → 犖 → 4 4 0 则犅 ∵ 犅 犖·犅 犖 ⊥犅 犖, = - = , 1 1 犅 犖 ⊥犅 犆 1 1, 且犅 则犅 犖 ∩犅 犆 犖 ⊥ 平面 犆 犅 犖. 1 1 1 =犅 1, 1 1
1 · 1 1 1 1 ) , = ( - 2 狀-1 2 狀+1 2 2 狀-1 2 狀+1 …… 8分 1( 1 1 1 … 1 1 ) ∴犜 犫 犫 1- + - + + - 狀 =犫 1+ 2+… + 狀 = 2 3 3 5 2 狀-1 2 狀+1 …… 1 0分 =
1( 1 ) 1 …… 1- 1 2分 < . 2 2 2 狀+1 2 ( ) 依题意甲, 乙, 丙三人的分配方法只有 2 种, 其余二人的分配方法有 2 种, 故 1 9 . 1 2 …… 共有2×2 =8种不同的分配方案. 2分 ( ) 设 名学生中恰有 名被分到王城公园的事件为 ( , , , , , ) , 2 5 犻 犃犻 犻=012345 ξ的所 有可能取值是1 , , …… 3 5 . 3分 高二理数答案 第 共 3 页) ) 1 页 ( 2 0 1 7 . 6 (
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
2
2
1, 过右焦点 F 作一条与 x 轴不垂直的直线交椭圆于 A、
B 两点,线段 AB 的中垂线分别交直线 x 值范围是( ) A.[ 2 ,
)
2
和 AB 于 P、C,则
PC AB
的取
B.[ 1 ,
)
C.[
1 2
,
5)
D.[
3 2
,
)
二、填空题(本大题共 4 小题,每题 5 分,共 20 分,把答案填在题中的横线上。 )
13.点 M 的极坐标 4,
x s in c o s y 1 s in 2
5 化成直角坐标的结果是 6
.
14.方程
( 为参数)所表示曲线的准线方程是
1 的一个焦点坐标为 F 0
.
15.已知圆锥曲线 x 2
成都七中 2015-2016 学年下期 2017 届半期考试数学试卷(理科)
考试时间:120 分钟总分:150 分
一.选择题(每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项符合要求. )
1.椭圆
x
2
25
y
2
1 上一点
P 到焦点 F1 的距离等于 6,则点 P 到另一个焦点 F2
的距离为( ) A.10 B.8 C.4 上的点为( ) D. (2,2) D.3
2.以下各点,在曲线 x 2 A. (2, 3.双曲线 x 2 A.
2
3
xy 2 y 1 0
)
2
B. (3,10) 的离心率为( ) B.
3
C. (1,0)
y
2
C.2 )
2
D. 2
2
4.焦点为(2,0)的抛物线的标准方程为( A. y
21. 已知抛物线 C 的顶点在坐标原点 O, 其图象关于 y 轴对称且经过点 M (2,1) , (1)求抛物线 C 的方程; (2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上, 求该等边三角形的面积; (3)过点 M 作抛物线 C 的两条弦 MA,MB,设 MA,MB 所在直线的斜率 分别为 k1,k2,当 k1k2= 点坐标.
4
,求直线 l
19.已知 P 为抛物线 y 为 d1.
2
6x
上一点,点 P 到直线 l :3 x
4 y 26 0
的距离
(1)求 d1 的最小值,并求此时点 P 的坐标; (2)若点 P 到抛物线准线的距离为 d2,求 d1+d2 的最小值.
20.在一个盒子中装有 6 枚圆珠笔,其中 4 枚一等品,2 枚二等品,从中依次抽 取 2 枚,求下列事件的概率. (1)恰有一枚一等品; (2)有二等品.
ay
2
2
,
,则该圆锥曲线的
a
离心率为 16.已知椭圆 C:
x
4
2
.
y
2
1 ,过点
D(0,4)的直线 l 与椭圆 C 交于不同两
点 M,N(M 在 D、N 之间) ,有以下四个结论: ①若 DN
DM
,则 的取值范围是 1
5 3
;
2;
②若 A 是椭圆 C 的右顶点,且 MAN 的角平分线是 x 轴,则直线 l 的斜率为 ③若以 MN 为直径的圆过原点 O,则直线 l 的斜率为 ④若
17.甲、乙两人各掷一枚骰子,试解答下列各问: (1)列举所有不同的基本事件; (2)求事件“向上的点数之差为 3”的概率; (3)求事件“向上的点数之积为 6”的概率.
18.已知双曲线 C: 标为(
x a
2 2
y b
2 2
1 (a>0,b>0)的实轴长为 2 3
,一个焦点的坐
5,
0
).
(1)求双曲线的方程; (2)若斜率为 2 的直线 l 交双曲线 C 交于 A、B 两点,且 AB 的方程.
1 右焦点 F
的直线 l 交双曲线于 A、B 两点,点 M 是直线
上任意一点,直线 MA、MF、MB 的斜率分别为 k 1 、 k 2 、 k 3 ,则( )
k1 k 3 k 2
A.
B. k 1 k 3
y
2
2k2
C.
2
12. 已知椭圆
x y 9
,
其中为“好集合”的个数为( ) A.1 10.若直线 x B.2
y 1 0
C.3 与抛物线 y ) C.4
2x
2
D.4 交于 A,B 两点,则点 M(1,0)
到 A、B 两点的距离之积为( A. 4
2
x
2
B. 2
y
2
2
D.2
11.经过双曲线
x 9 5
9
16
0
2
,若对于任意( x
1
, y 1) C
,存在
,使 x 1 x 2
2
成立,则称集合 C 是“好集合” 。给出下列 4
9
个集合: C 1
C
3
(x , y )
2x
2
x
2
y
2
, C
4
2
(x , y )
2
x
2
y
2
9
,
(x , y )
y
9
, C
(x, y)
(Ⅱ)求 M A N 面积的最大值.
2
16 x
B. y
2
8x
C. y
4x
D. y
2
2x
7.短轴长等于 8,离心率等于 的椭圆的标准方程为(
5
3
)
2
A.
x
2
100
y
2
64
1
B.
x
2
100
y
64
1
或
x
2
64
y
2
100
1
9 .已知集合 C
(x 2 , y 2 ) C
(x , y )
y 1y
f (x , y ) 0
2 时,试证明直线
AB 恒过定点,并求出该定
22. 已知椭圆 C 的一个焦点为 ( 0 ,
3)
,且经过点 P (
1 2
,
3)
.
AN
(1)求椭圆 C 的标准方程; (2)已知 A (1, 0 ) ,直线 l 与椭圆 C 交于 M、N 两点,且 A M (Ⅰ)若
AM AN
;
,求直线 l 的方程;
x x y 2 y
2 5
;
,椭圆 C 变成曲线 E,点 M,N 变成 M
、N
,曲线 E 与 y 轴交于点
P,Q,则直线 P N 与 Q M 的交点必在一条定直线上. 其中正确的序号是 .
三.解答题(17-18 题每小题 10 分,19-21 每小题 12 分, 22 题 14 分,共 70 分.解答应写出 文字说明,证明过程或演算步骤.)