疲劳强度 PPT课件
合集下载
机械零件的疲劳强度与疲劳断裂ppt(共37页)

s
2s1 s0 s0
对于碳钢,σ≈0.1~0.2,对于合金钢,σ≈0.2~0.3。
§3-3影响机械零件疲劳强度的主要因素
一、应力集中:
有效应力集中系数 Ks1q(s1)
s —几何形状决定的理论系数 ( 图3-9) q—敏感系数 (图3-10) 铸铁:(q=0) 定性: 跟材料、形状有关
σB A B C
可用下式描述
srm N N = C (N C≤ N ≤ N D )
σrN σr
潘存云教授研制
D点以后的疲劳曲线呈 一水平线,代表着无限寿命
N=1/4
103 104 N
D N0≈107 N
区其方程为
s s rN r N ( N D )
由于ND很大,所以在作疲劳试验时,常规定一个
N=1/4 103 104 N
D N
N0≈107
式中, sr、N0及m的值由材料试验确定。 试验结果表明在CD区间内,试件经过相应次数的
边应力作用之后,总会发生疲劳破坏。而D点以后,如 果作用的变应力最大应力小于D点的应力(σmax<σr),
则无论循环多少次,材料都不会破坏。
CD区间——有限疲劳寿命阶段 D点之后——无限疲劳寿命阶段 高周疲劳
循环次数N0(称为循环基数),用N0及其相对应的疲劳
极限σr来近似代表ND和 σr∞。
于是有 srm N NsrmN0C
CD区间内循环次数N与疲 劳极限srN的关系为
srN
sr
m
N0 N
KNsr
N
sr s rN
m N0
σmax σB A B C
σ 潘存云教授研制 rN σr
二、极限应力图(σ m——σ a)
《飞机疲劳强度计算》课件

基于疲劳试验的方法
通过进行疲劳试验获取材料的 S-N曲线和疲劳极限,进而评 估结构的疲劳寿命。
试验参数
需考虑加载模式、温度、湿度 等试验参数。
试验成本
试验成本较高,且需要大量时 间进行试验。
不同计算方法的比较与选择
比较
基于应力的方法简单易行,但精度有 限;基于损伤的方法考虑因素较为全 面,但计算复杂;基于循环特性的方 法依赖于试验数据,成本较高。
详细描述
针对某型飞机起落架,通过分析起落架在起降、滑行和刹车过程中的应力分布、循环次数和材料特性,采用疲劳 分析方法和安全系数法,评估起落架的疲劳性能和寿命,以确保起落架的结构安全。
05
飞机疲劳强度计算的发展趋势与展望
基于大数据和人工智能的疲劳强度预测
总结词
利用大数据技术,对飞机结构进行全面 的疲劳强度分析,通过人工智能算法预 测结构疲劳寿命,提高预测精度。
基于损伤的疲劳强度计算
80%
损伤容限方法
通过引入裂纹扩展速率模型,预 测裂纹在循环载荷下的扩展行为 ,从而评估结构的剩余寿命。
100%
裂纹闭合效应
考虑了裂纹在载荷循环过程中闭 合的现象,提高了预测精度。
80%
适用范围
适用于已知初始裂纹尺寸的情况 ,常用于飞机结构的定期检查和 维护。
基于循环特性的疲劳强度计算
01
根据飞机结构和材料特性,建立 详细的有限元模型,用于模拟飞 机的应力分布和变形情况。
02
有限元模型应包括飞机的所有主 要结构部件,如机身、机翼、尾 翼等。
计算应力应变
利用有限元模型,计算飞机在各种载荷条件下的应力应变分 布。
考虑材料的弹塑性、蠕变等特性,确保应力应变计算的准确 性。
通过进行疲劳试验获取材料的 S-N曲线和疲劳极限,进而评 估结构的疲劳寿命。
试验参数
需考虑加载模式、温度、湿度 等试验参数。
试验成本
试验成本较高,且需要大量时 间进行试验。
不同计算方法的比较与选择
比较
基于应力的方法简单易行,但精度有 限;基于损伤的方法考虑因素较为全 面,但计算复杂;基于循环特性的方 法依赖于试验数据,成本较高。
详细描述
针对某型飞机起落架,通过分析起落架在起降、滑行和刹车过程中的应力分布、循环次数和材料特性,采用疲劳 分析方法和安全系数法,评估起落架的疲劳性能和寿命,以确保起落架的结构安全。
05
飞机疲劳强度计算的发展趋势与展望
基于大数据和人工智能的疲劳强度预测
总结词
利用大数据技术,对飞机结构进行全面 的疲劳强度分析,通过人工智能算法预 测结构疲劳寿命,提高预测精度。
基于损伤的疲劳强度计算
80%
损伤容限方法
通过引入裂纹扩展速率模型,预 测裂纹在循环载荷下的扩展行为 ,从而评估结构的剩余寿命。
100%
裂纹闭合效应
考虑了裂纹在载荷循环过程中闭 合的现象,提高了预测精度。
80%
适用范围
适用于已知初始裂纹尺寸的情况 ,常用于飞机结构的定期检查和 维护。
基于循环特性的疲劳强度计算
01
根据飞机结构和材料特性,建立 详细的有限元模型,用于模拟飞 机的应力分布和变形情况。
02
有限元模型应包括飞机的所有主 要结构部件,如机身、机翼、尾 翼等。
计算应力应变
利用有限元模型,计算飞机在各种载荷条件下的应力应变分 布。
考虑材料的弹塑性、蠕变等特性,确保应力应变计算的准确 性。
疲劳强度

8.2.1 材料的疲劳极限
疲劳极限(持久极限) ——试件可经无限次应力循环而不发 生疲劳破坏,交变应力最大值
疲劳极限测定方法
1.将被测材料按国家标准加工一组疲劳光滑小试件,至少7 根 (直径d=7~10mm、表面磨光)。 2.对这组试件分别在不同的σmax下施加交变应力(保持循环 特征r不变),直到破坏,记录下每根试件破坏前经历的循 环次数N(常称为疲劳寿命) 。 3.在以横轴为循环寿命,纵轴为应力的坐标系中,将试验所 得结果描点并拟合成曲线,该曲线称为疲劳极限曲线或称为 曲线(应力——寿命曲线)。
对称循环条件下,疲劳极限值记为σ-1
8.2.1 材料的疲劳极限
疲劳极限(持久极限) ——试件可经无限次应力循环而不发 生疲劳破坏,交变应力最大值
应力—疲劳寿命曲线含义:
•σmax >σr, 试件经历有限次循环就破坏
•σmax <σr, 试件经历无限次循环而不发生破坏
•σmax =σ-1, r=-1时材料的疲劳极限
脆性断裂
8.2 材料的疲劳极限
交变应力要素 应力循环 ——构件在交变应力下工作,应力每重复变化一次。 最大应力σmax 、最小应力σmin
循环特征(应力比) r
max 1 ( ) (1 r ) 平均应力 m 2 max min 2
min max
max 1 (1 r ) 应力幅度 a ( max min ) 2 2
轮轴45号钢,受弯曲交变应力,当σmax=-σmin=260MPa 时,大约经历107循环即可发生断裂,而45号钢在静载 荷下的强度极限是σb=600MPa。
1.疲劳破坏特点
3)材料呈脆性断裂。即使是塑性材料,材料在断裂 前也无明显的塑性变形。
第 章 疲劳强度问题(共8张PPT)

(载荷不变, 轴转动)
A
My A Iz
yARsi nt
单辉祖-材料力学教程 AM Iz Rsint
起落架因飞机起落 而反复受载
5
第5页,共8页。
循环应力
循环应力-随时间循环变化的应力 (也称交变应力)
循环应力的变化幅度,可能是恒定 的, 也可能是变化的
恒幅循环应力
变幅循环应力
单辉祖-材料力学教程
的强度计算
§7 变幅循环应力与累积损伤概念简述
单辉祖-材料力学教程
2
第2页,共8页。
§1 引 言
循环应力 疲劳破坏及其特点
单辉祖-材料力学教程
3
第3页,共8页。
循环应力
实例
载荷 F 的大小循环变化,联杆内应力随之变化
每个齿随齿轮转动循环受力,齿内应力循环变化
单辉祖-材料力学教程
4
第4页,共8页。
在循环应力作用下,材料或构件产
生可见裂纹或完全断裂的现象-称
为疲劳破坏,简称疲劳
单辉祖-材料力学教程
7
第7页,共8页。
疲劳破坏特点
破坏时应力低于b ,甚至 s
即使是塑性材料,也呈现脆性断裂
断口通常呈现光滑与粗粒状两个区域
钢拉伸疲劳断裂
断
疲劳破坏过程,可理解为裂纹萌生、 逐渐扩展与最后断裂的过程
6
第6页,共8页。
疲劳破坏及其特点
疲劳破坏
在循环应力作用下,如果应力足够大,并经
载荷 F 的大小循环变化,联杆历内应应力随力之变的化 多次循环后,构件将产生可见裂纹 或完全断裂 起§3落S架-N因曲飞线机与起材落料而的反疲复劳受极载限
§7 即变使幅是循塑环性应材力料与,累也积呈损现伤脆概性念断简裂述 §7 提变高幅构循件环疲应劳力强与度累的积措损施伤概念简述 (载提荷高不构变件, 疲轴劳转强动度)的措施 §循2环循应环力应的力变及化其幅类度型,可能是恒定的, 也可能是变化的 起§3落S架-N因曲飞线机与起材落料而的反疲复劳受极载限 在循即环使应是力塑作性用材下料,,如也果呈应现力脆足性够断大裂,并经历应力的多次循环后,构件将产生可见裂纹或完全断裂 §32 循S-环N曲应线力与及材其料类的型疲劳极限 在循提环高应构力件作疲用劳下强,度材的料措或施构件产生可见裂纹或完全断裂的现象-称为疲劳破坏,简称疲劳 每个循齿环随应齿力轮与转疲动劳循的环概受念力,齿内应力循环变化 在循提环高应构力件作疲用劳下强,度材的料措或施构件产生可见裂纹或完全断裂的现象-称为疲劳破坏,简称疲劳 每个循齿环随应齿力轮与转疲动劳循的环概受念力,齿内应力循环变化 §76 变非幅对循称环与应弯力扭与组累合积 循损环伤应概力念下简构述件 起落架因飞机起落而反复受载
03_疲劳强度计算

m
1 N0
n
m i
n
i
i 1
Sca
1 e
S
2. 当量循环次数Ne计算法:
取不稳定循环诸变应力中数值最大的应力或循环次
数最多的应力(对疲劳损伤影响最大的那个应力),
作为计算基准应力,而将诸变应力i所对应的循环次
数ni转化为当量循环次数Ne,使得应力循环Ne次后,
对材料所造成的损伤与诸应力i各自循环ni次对材料所
lim m ax ae m e s
按静应力计算:
M m e, ae M m, a
Sca
lim
m ax max
s m a
S
N
N
H
工作应力分布在: OAGH :疲劳强度计算 HGC :静强度计算
3.变应力的最小应力保持不变,即 min C(如受轴向变载荷的紧螺栓)
4)计算安全系数:Sca
lim
m ax max
S
零件的极限应力
lim m ax m e ae
零件的极限应力点的确定:
按零件的载荷变化规律不同分:
• 变应力的应力比保持不变,即:r = C • 变应力的平均应力保持不变,即:m = C • 变应力的最小应力保持不变,即:min = C
M m e, ae M m, a
1)如果此线与AG线交于M( me ,ae ),则有:
m e m
,
ae
1
m
K
lim m ax ae m e 1
K
K
m
Sca
lim
m ax max
1
K
K m m a
S
2)如果此线与GC线交于N( me ,ae ),则有:
《材料力学》第十章 疲劳强度的概念

试件分为若干组,最大应力值由高到底,以电动 机带动试样旋转,让每组试件经历对称循环的交变应 力,直至断裂破坏。
记录每根试件中的最大应力(名义应力,即疲 劳强度)及发生破坏时的应力循环次数(又称疲劳 寿命),即可得S —N应力寿命曲线。
max
m ax,1 m ax,2
O
应力—寿命曲线,也称S—N曲线。
应力循环:应力每重复变化一次,称为一个应力循环。 完成一个应力循环所需的时间T ,称为一个周期。
o
t
max
o
min
:最大应力
max
:最小应力
min
a
a m
t
:平均应力
m
:应力幅值
a
max
m in
a
a m
循环特征:r min max
o
m
1 2
max
min
t
a
1 2
max
min
max
[ 1]
0 1
nf
其中: max 是构件危险点的最大工作应力;
nf 是疲劳安全系数。
或表示成:n
0
1
max
1 K max
同理,对扭转交变应力有:n
k
1 k
1 n f
max
max
nf
10.4 提高构件疲劳强度的措施
疲劳裂纹主要形成于构件表面和应力集中部位,故提高 构件疲劳极限的措施有:
表面加工质量愈低, 愈小, r 降低愈多。 一 般 1,但可通过对构件表面作强化处理而得到大于1 的 值。
综合上述三种因素,对称循环下构件的疲劳极限为:
0
1
K
1
或
0
疲劳强度理论课件

的抗断裂能力。
疲劳强度通常以应力或应变的最 大值表示,单位为应力或应变单
位。
疲劳强度的影响因素
材料性质
不同材料的疲劳强度存在差异,与材料 的弹性模量、屈服点、抗拉强度等机械
性能有关。
环境条件
温度、湿度、腐蚀介质等环境因素对 疲劳强度有一定影响,例如高温环境
下材料的疲劳强度会降低。
应力集中
零件结构上的缺口、孔洞、台阶等引 起的应力集中,会降低疲劳强度。
通过分析汽车关键零部件如发动机、底盘和车身的应力分布和疲劳特性, 可以预测其疲劳寿命和可靠性。
此外,疲劳强度理论还用于优化汽车零部件的设计和制造工艺,以提高其 耐久性和可靠性,降低维修成本和提高车辆整体性能。
THANK YOU
疲劳强度理论课件
目录
• 疲劳强度理论概述 • 疲劳损伤累积理论 • 材料疲劳强度 • 疲劳寿命预测 • 疲劳强度的提高方法 • 疲劳强度理论的应用
01
疲劳强度理论概述
疲劳强度的定义
疲劳强度:材料在循环应力或应 变作用下,抵抗疲劳断裂的能力
。
疲劳强度是材料的一种机械性能 ,反映了材料在交变载荷作用下
其中,D为累积损伤,n为实际循环次数,N为疲 劳寿命。
基于损伤的疲劳寿命预测
总结词:基于损伤的疲劳寿命预测是通过分析材料内 部微观结构损伤的演化过程,预测结构的疲劳寿命。
输标02入题
详细描述:该方法关注材料内部微观结构的变化,如 位错、空洞和裂纹的形成和扩展,通过建立损伤演化 模型来描述疲劳过程中的微观结构变化。
线性累积损伤理论适用于低周疲劳和应力水平较高的高周疲劳。
非线性累积损伤理论
01
非线性累积损伤理论认为,疲劳 损伤的累积是非线性的,随着循 环次数的增加,疲劳损伤的增长 速度会逐渐减缓。
疲劳强度通常以应力或应变的最 大值表示,单位为应力或应变单
位。
疲劳强度的影响因素
材料性质
不同材料的疲劳强度存在差异,与材料 的弹性模量、屈服点、抗拉强度等机械
性能有关。
环境条件
温度、湿度、腐蚀介质等环境因素对 疲劳强度有一定影响,例如高温环境
下材料的疲劳强度会降低。
应力集中
零件结构上的缺口、孔洞、台阶等引 起的应力集中,会降低疲劳强度。
通过分析汽车关键零部件如发动机、底盘和车身的应力分布和疲劳特性, 可以预测其疲劳寿命和可靠性。
此外,疲劳强度理论还用于优化汽车零部件的设计和制造工艺,以提高其 耐久性和可靠性,降低维修成本和提高车辆整体性能。
THANK YOU
疲劳强度理论课件
目录
• 疲劳强度理论概述 • 疲劳损伤累积理论 • 材料疲劳强度 • 疲劳寿命预测 • 疲劳强度的提高方法 • 疲劳强度理论的应用
01
疲劳强度理论概述
疲劳强度的定义
疲劳强度:材料在循环应力或应 变作用下,抵抗疲劳断裂的能力
。
疲劳强度是材料的一种机械性能 ,反映了材料在交变载荷作用下
其中,D为累积损伤,n为实际循环次数,N为疲 劳寿命。
基于损伤的疲劳寿命预测
总结词:基于损伤的疲劳寿命预测是通过分析材料内 部微观结构损伤的演化过程,预测结构的疲劳寿命。
输标02入题
详细描述:该方法关注材料内部微观结构的变化,如 位错、空洞和裂纹的形成和扩展,通过建立损伤演化 模型来描述疲劳过程中的微观结构变化。
线性累积损伤理论适用于低周疲劳和应力水平较高的高周疲劳。
非线性累积损伤理论
01
非线性累积损伤理论认为,疲劳 损伤的累积是非线性的,随着循 环次数的增加,疲劳损伤的增长 速度会逐渐减缓。
教学课件:第十章动载荷与疲劳强度简述详解

06
结论
主要观点总结
动载荷和疲劳强度是机械工程中的重 要概念,对机械部件的寿命和可靠性 有显著影响。
疲劳强度是指材料在循环载荷作用下 抵抗疲劳失效的能力,通常通过实验 测定。
动载荷会导致材料内部产生循环应力, 从而引发疲劳裂纹的形成和扩展,最 终导致部件的疲劳失效。
提高疲劳强度的方法包括改善材料表 面质量、优化结构设计、降低应力集 中等。
对未来研究的建议
深入研究不同材料的疲劳性能和失效机制,为新材料的 开发和现有材料的优化提供理论支持。
针对复杂载荷条件下的疲劳行为进行深入研究,以更准 确地预测机械部件的寿命和可靠性。
探索新型的疲劳强度测试方法和实验技术,提高测试的 准确性和可靠性。
加强跨学科合作,将疲劳研究与计算机科学、人工智能 等相结合,推动疲劳领域的技术创新和应用拓展。
详细描述
机械零件在循环载荷的作用下,经过一段时间后会发生疲劳 断裂。这种失效通常是由于应力集中、材料缺陷或设计不当 等因素引起的。为了防止疲劳失效,可以采用优化设计、改 善制造工艺和使用高强度材料等方法。
案例二:车辆动载荷分析
总结词
车辆动载荷分析对于车辆设计和安全性至关重要,通过案例分析,了解如何进行车辆动载荷分析。
循环应力
动载荷产生的循环应力是导致材 料疲劳的主要原因,循环应力的 变化范围和平均值对疲劳强度有
显著影响。
应力集中
动载荷引起的应力集中可能加速疲 劳裂纹的形成和扩展,降低材料的 疲劳强度。
温度效应
动载荷引起的温度变化可能影响材 料的力学性能和疲劳强度,特别是 在高温环境下。
疲劳强度对动载荷的限制
材料特性
详细描述
动载荷引起的疲劳损伤是机械系统中常见的失效形式。由于动载荷的持续变化,导致材料内部应力不断变化,从 而引发疲劳裂纹的形成和扩展,最终导致断裂失效。此外,动载荷还会影响机械系统的动态响应,使系统产生振 动和噪声,影响系统的稳定性和可靠性。