1080工程数学(本)
电大 工程数学试卷及答案汇总(完整版)

当1 x 2 时, F(x) P(X 1) 1 ; 6
当 2 x 3时, F(x) P( X 1) P( X 2) 2 ; 3
当 x 3 时, F(x) 1;
(2)EX=1 x 1/6+2 x 3/6+3 x 2/6= 13/6
(3 分) (1 分) (1 分) (1 分)
(1 分) (1 分) (1 分)
1 )n) N
15.解答: (1)随机变量 X 的取值为 1,2,3。
(2 分) (1 分)
《工程数学》试题
第 7 页 共6 页
依题意有: P{X 1} 1 ; P{X 2} 3 ; P( X 3) 2
6
6
6
X 的分布函数 F(x) P{X x} 由条件知:当 x 1时, F(x) 0;
《工程数学》试题
第 3 页 共6 页
15.设一口袋中依此标有 1,2,2,2,3,3 数字的六个球。从中任取一球,记随机 变量 X 为取得的球上标有的数字,求 (1)X 的概率分布律和分布函数。(2)EX
得分 评卷人
四、证明题(共 10 分)
16.设 a=(a1,a2,…,an)T,a1≠0,其长度为║a║,又 A=aaT, (1)证明 A2=║a║2A; (2) 证明 a 是 A 的一个特征向量,而 0 是 A 的 n-1 重特征值; (3) A 能相似于对角阵Λ吗?若能,写出对角阵Λ.
=0.8x0.6+0.1 x0.4=0.52
(2)由贝叶斯公式
有
P(A1|A)=P(A|A1)P(A1)/ P(A)
=0.8x0.6/0.52=12/13
(2 分) (1 分) (2 分) (1 分) (1 分) (2 分) (1 分)
工程数学(本)形考作业4

工程数学(本)形考作业4工程数学涉及多个数学领域的应用,包括微积分、线性代数、概率统计等。
在工程领域中,数学的应用非常广泛,可以帮助工程师解决实际问题。
在工程数学的形考作业4中,主要涉及了微积分中的极限、导数和积分等概念。
首先,极限是微积分的基础概念之一、在形考作业4中,我们需要求解一些函数的极限,通过分析函数的性质和极限定义,可以求得极限的值。
例如,在求解函数$lim\frac{某^2-1}{某-1}$的极限时,我们可以将其化简成$\frac{(某-1)(某+1)}{某-1}$,然后消去(某-1),得到极限的值为2、通过这样的练习,我们可以加深对极限概念的理解,并掌握求解极限的技巧。
其次,导数也是工程数学中常用的概念。
在形考作业4中,我们需要求解一些函数的导数。
通过求解函数的导数,我们可以求得函数的变化率,并且可以确定函数的最大值、最小值等信息。
例如,在求解函数$f(某)=某^2+某$的导数时,我们可以使用求导法则,得到导数为$f'(某)=2某+1$。
掌握导数的计算方法,可以帮助我们更好地理解函数的变化规律,并且可以在工程实践中进行更精确的分析和计算。
最后,积分也是工程数学中重要的概念之一、在形考作业4中,我们需要求解一些函数的不定积分和定积分。
通过求解函数的积分,我们可以得到函数的原函数,并且可以计算函数所代表的面积或者体积。
例如,在求解函数$f(某)=2某$的不定积分时,我们可以得到原函数为$F(某)=某^2$,并且可以计算函数在某一区间上的定积分。
掌握积分的方法,可以帮助我们求解实际问题中的面积、体积等参数,并且可以进一步推导和分析函数的性质。
综上所述,工程数学形考作业4涉及的概念包括极限、导数和积分等,通过求解函数的极限、导数和积分,我们可以加深对这些概念的理解,并且可以掌握求解极限、导数和积分的方法和技巧。
这对于工程师来说,是非常重要的,因为数学在工程领域中的应用非常广泛,可以帮助我们解决各种实际问题。
国开电大《工程数学(本)》形考任务四答案

国家开放大学《工程数学(本)》形成性考核作业四测验答案一、解答题(答案在最后)
二、证明题(答案在最后)
参考答案
试题1答案:解:
试题2答案:
试题3答案:解:
试题4答案:
试题5答案:
试题6答案:
试题7答案:
试题8答案:
试题9答案:
试题10答案:
证明:(A+A′)′=A′+(A′)′=A′+A=A+A′∴A+A′是对称矩阵
试题11答案:
证明:∵A是n阶方阵,且AA′=I
∴|AA′|=|A||A′|=|A|2=|I|=1
∴|A|=1或|A|=-1
试题12答案:
证明:设AX=B为含n个未知量的线性方程组
该方程组有解,即R(Ā)=R(A)=n
从而AX=B有唯一解当且仅当R(A)=n
而相应齐次线性方程组AX=0只有零解的充分必要条件是R(A)=n
∴AX=B有唯一解的充分必要条件是:相应的齐次线性方程组AX=0只有零解。
1080【工程数学】小抄4证明题

(四)证明题(每小题4分,共12分)⒎对任意方阵A ,试证A A +'是对称矩阵.∴ 4321⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解. 证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(∴ B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=A∴ξξλλξξξξ=====----1111)()()(A A A A A A I∴ξλξ11=-A即λ1是矩阵1-A 的特征值 10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型.解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++= 222423221)()(x x x x x x -+-++= ∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x = 即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+=。
《工程数学》广播电视大学历年期末试题及答案课件

试卷代号:1080中央广播电视大学2011~2012学年度第一学期“开放本科”期末考试(半开卷)工程数学(本) 试题2012年1月一、单项选择题(每小题3分,共15分)1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( B )成立. A . A B A B +=+B .AB A B '=C . 1AB A B -= D .kA k A =2. 设A 是n 阶方阵,当条件( A )成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( B )。
A .0,2 B .0,6 C .0,0 D .2,64.若随机变量(0,1)X N ,则随机变量32Y X =- ( D ).5. 对正态总体方差的检验用( C ).二、填空题(每小题3分,共15分)6. 设,A B 均为二阶可逆矩阵,则111OA BO ---⎡⎤=⎢⎥⎣⎦.8. 设 A , B 为两个事件,若()()()P AB P A P B =,则称A 与B . 9.若随机变量[0,2]XU ,则()D X = .10.若12,θθ都是θ的无偏估计,且满足 ______ ,则称1θ比2θ更有效。
三、计算题(每小题16分,共64分)11. 设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗?若可逆,求逆矩阵1()A B --. 12.在线性方程组123121232332351x x x x x x x x λλ++=⎧⎪-+=-⎨⎪++=⎩ 中λ取何值时,此方程组有解。
在有解的情况下,求出通解。
13. 设随机变量(8,4)XN ,求(81)P X -<和(12)P X ≤。
(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。
1080电大工程数学期末复习

《工程数学》期末综合练习题工程数学(本)课程考核说明(修改稿)I. 相关说明与实施要求本课程的考核对象是国家开放大学(中央广播电视大学)理工类开放教育专升本土木工程专业及水利水电工程专业的学生.本课程的考核形式为形成性考核和期末考试相结合的方式。
考核成绩由形成性考核成绩和期末考试成绩两部分组成,考核成绩满分为100分,60分为及格。
其中形成性考核成绩占考核成绩的30%,期末考试成绩占考核成绩的70%。
形成性考核的内容及成绩的评定按《国家开放大学(中央广播电视大学)人才培养模式改革与开放教育试点工程数学形成性考核册》的规定执行。
工程数学(本)课程考核说明是根据《国家开放大学(中央广播电视大学)专升本“工程数学(本)”课程教学大纲》制定的,参考教材是《大学数学-—线性代数》和《大学数学——概率论与数理统计》(李林曙主编,中央广播电视大学出版社出版)。
考核说明中的考核知识点与考核要求不得超出或超过课程教学大纲与参考教材的范围与要求。
本考核说明是工程数学(本)课程期末考试命题的依据。
工程数学(本)是国家开放大学(中央广播电视大学)专升本土木工程专业学生的一门重要的必修基础课,其全国统一的结业考试(期末考试)是一种目标参照性考试,考试合格者应达到普通高等学校理工类专业的本科水平.因此,考试应具有较高的信度、效度和一定的区分度。
试题应符合课程教学大纲的要求,体现广播电视大学培养应用型人才的特点。
考试旨在测试有关线性代数、概率论与数理统计的基础知识,必要的基础理论、基本的运算能力,以及运用所学基础知识和方法,分析和解决问题的能力。
期末考试的命题原则是在考核说明所规定的范围内命题,注意考核知识点的覆盖面,在此基础上突出重点。
考核要求分为三个不同层次:有关定义、定理、性质和特征等概念的内容由低到高分为“知道、了解、理解”三个层次;有关计算、解法、公式和法则等内容由低到高分为“会、掌握、熟练掌握”三个层次。
三个不同层次由低到高在期末试卷中的比例为:2:3:5。
电大工程数学2009-2011期末考试试题答案
试卷代号:1080中央广播电视大学 2009 — 2010学年度第二学期“开放本科”期末考试(半开卷)工程数学(本)试题2010年7月一、单项选择题(每小题3分,本题共15分) 1.设A , B 都是,I 阶方阵,则下列命题正确的是 ( ).A . /AB/ = /A//B/B . (A — B )2= A2 一 2AB+B2 C. AB = BA D .若 AB = O ,贝U A = O 或 B = OC T£向量组-1・ 2 1 —3的秩是(X0. _ 0_3_{ 7A. 1 B . 3 C. 2 D . 43.n 元线性方程组,AX = &有解的充分必要条件是().A . r (A ) = r (A ; b )B . A 不是行满秩矩阵 C. r (A )<n D . r (A ) = n4. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都 是红球 的概率是( ).A. 6/25B. 310 c. 320D. 9/25设5皿宀丑是来自iE 态总体N%啲样本观( 、是津无備估计.、填空题(每小题3分,共15分)1.设 A , B 均为 3 阶方阵,/A/ = 2, /B/ = 3,则 /一 3A'B — 1/ =2.设A 为n 阶方阵,若存在数和非零n 维向量x ,使得 ------------ 一,则称入为A的特征值.”0 1 2'3.设牖机变量X -刚口 = _________ .0. 26 5 a4. 设X 为随机变量,已知 D (X )= 3,此时D (3X — 2)= .5. 设[是未知参数口的一个无偏估计量,则有 三、计算题(每小题16分,共64分)rl-1 2| \2-1印1.设矩阵A —275■01 1_,且有虚X — 求X 、3 -2 4X\ — 3远£ + .巧'—X r1 =1一2王]斗7丄'艺一 2上:;丄工1 = —22*求线性方程^的全罚解.工 1 一 4x24'3兀3 + 2J .\ = 12xi —4卫 十8.丁m —2T 4 =23-设 X-NXMj •试求]l>Fl5<X<<O ;(2)P(X>7k <巨知 触“ =「Mbg 〔即= 0- 977趴①(3)^6 99S7)4•据资料分析,某厂生产的一批砖,其抗断强度X 〜N(32 . 5, 1. 21),今从这批砖中随机地抽取了 9块,测得抗断强度(单位:kg /cm2)的平均值为31. 12,问这批砖的抗断强 度是否合格Ka —0. 05,他帖5 —1- 96)四、证明题(本题6分)设A , B 是n 阶对称矩阵,试证: A+B 也是对称矩阵.1 -2 -I -57 一?10分由矩阵乘法和转置运算得-2・2©■ 11 -2-iT I11一:;.......................................... IMn -1 2 1 0 T1 -1 21 Q0"2 -3 5 0 1 「 —fr0 -1 1 -2 1 0 _3 -2 4 0 (1 Ii —2 -3 0 1_ D 0 I1 I三、计算题(每小题16分,本题共64分)1.解:利用初等行变换得一]CT—\-1.L 5_ 6-sj■ 1-31一]1_31一]I]—27_2 1 -2»Ifc010一].01—4321:■ ■0 (1230)_ 2-4822j LPZ64O'~td \1-3 1—1r i r l一厂1—1r1Q 1 0一1Q00■'10f―00 220002200o 66_1p c000_方程组的一般解为卜?=如(其中◎为自由未知量)]坨=—斗令4x=o,得到方程的一个特解x°= (1 o o o), 方程组相应的齐次方程的一般解为-r l =5卫(其中街为自由未知量)= 一H令1X4=1,得到方程的一个基础解系x1 = (5 1 — 1 1),于是,方程组的全部解为x=x。
工程数学广播电视大学历年期末试题及答案
试卷代号:1080工程数学(本) 试题2012年1月 一、单项选择题1. 设A ,B 为三阶可逆矩阵,且0k >,那么以下〔 〕成立.B .AB A B '= 2. 设A 是n 阶方阵,当条件〔 A 〕成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,那么3A 的特征值为〔 〕。
B .0,6 4.假设随机变量(0,1)XN ,那么随机变量32Y X =-( D ).5. 对正态总体方差的检验用( C ).二、填空题(每题3分,共15分)6. 设,A B 均为二阶可逆矩阵,那么111OA B O ---⎡⎤=⎢⎥⎣⎦.8. 设 A , B 为两个事件,假设()()()P AB P A P B =,那么称A 与B .9.假设随机变量[0,2]XU ,那么()D X =.10.假设12,θθ都是θ的无偏估计,且满足 ______ ,那么称1θ比2θ更有效。
三、计算题(每题16分,共64分)11.设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗?假设可逆,求逆矩阵1()A B --.12.在线性方程组123121232332351x x x x x x x x λλ++=⎧⎪-+=-⎨⎪++=⎩ 中λ取何值时,此方程组有解。
在有解的情况下,求出通解。
13. 设随机变量(8,4)XN ,求(81)P X -<和(12)P X ≤。
((0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。
从一批产品中随机地抽取4段进展测量,测得的结果如下:〔单位:cm 〕10.4, 10.6, 10.1, 10.4 问:该机工作是否正常〔0.9750.05, 1.96u α==〕?四、证明题〔此题6分〕15. 设n 阶矩阵A 满足2,A I AA I '==,试证A 为对称矩阵。
工程数学(本)形考一资料答案
工程数学(本)形考一资料答案一、选择题1.答案:B解析:选项 A 是指数函数,B是幂函数, C 是常数,D 是常数函数。
2.答案:C解析:通过计算得出,$\frac{{\ln 81}}{{\ln 3}}= 4 $3.答案:D解析:上面的系数矩阵 A 不是奇异的,所以行列式|A|AA0。
4.答案:A解析:根据题目给出的数据,化简得出 $\\frac{21}{40} = 0.525$。
5.答案:C解析:若 $f(x) = C\\text{e}^{\\lambda x}$ 是微分方程$f'(x) = \\lambda f(x)$ 的解,其中A是常数,则 $f(x) =C\\text{e}^{- x}$ 是所给微分方程的解。
6.答案:D解析:可以根据数据计算出$\\sqrt{\\frac{{\\sum\\limits_{i=1}^{n} x_i -\\overline{x}}^2}{n-1}} = 4.47$。
7.答案:C解析:能够观察到 $\\sin x$ 的周期为 $2\\pi$,所以$[\\sin(\\pi/2) - \\sin (pi/6)]^2$ 上周期相等,根据选项得出答案。
8.答案:B解析:根据几何級数公式,可知 $S = \\frac{4}{1 - 0.5} = \\frac{8}{0.5} = 16$。
9.答案:D解析:利用计算器或计算机程序计算得出结果为−1。
10.答案:C解析:经过计算得到 $\\cos 2\\alpha = -\\frac{4}{5}$,所以 $\\cos \\alpha = \\sqrt{\\frac{1}{2} -\\frac{1}{2}\\sqrt{\\frac{4}{5}}}$。
二、填空题1.答案:偏导数解析:题目描述了对多元函数的求导,输入输出都是多维的,因此可以判断出应为偏导数。
2.答案:1/2解析:这是一道求概率题,设 A 为事件“至少有一个 A 测试装置坏”,则 $P(A) = 1-P(\\overline{A})=1-P(\\text{A,\\text{B},\\text{C} 都正常工作})=1-0.4*0.6*0.8=0.488$。
电大《工程数学》期末真题(含31套历年真题:2002年至2017年)
) 。
D. D. 秩(A)<n 或秩(B)<n
三、计算题(每小题 10 分,共 30 分)
2
一、单项选择题(每小题 3 分,本题共 21 分) 1. 1. B 2. 2. D 3. 3. B 4. 4. D 5. 5. C 6. 6. A 7. 7. C 二、填空题(每小题 3 分,共 15 分) 1. 1. 相等 2. 2. t,s(答对一个给 2 分) 3. 3. P(A)P(B) 4. 4. p(1-p)
1
中央广播电视大学 2001—2002 学年度第一 学期“开放本科”期末考试土木专业工程数 学(本)试题
2002 年 1 月
一、单项选择题(每小题 3 分,本题共 21 分)
4.设 A,B 均为 n 阶方阵,若 AB=0,是一定有( A. A. A=0 或 B=0 B. B. 秩(A)=0 或秩(B)=0 C. C. 秩(A)=n 或秩(B)=n
0 00
, 则{ A} 今(
0 0
A . 2 4
1 3 . 一 2 4
C.0
U . 1 2
’,口“ z + " + a . } , 若有 O a , 十O a z - } - . . . 0 a . = 0 , 则向量组 a } , a z ・, 对 于向量组 a ' ,a
(含 31 套历年真题)2002 年 1 月至 2017 年 7 月 国家开放大学(中央电大)“开放本科”期末考 试《工程数学》(本)试题及参考答案(含 15 年 31 套真题)
试卷代号:1080
《工程数学》真题目录(31 套)
1、2002 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 2、2003 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 3、2003 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 4、2004 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 5、2004 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 6、2005 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 7、2005 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 8、2006 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 9、2006 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 10、2007 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 11、2007 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 12、2008 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 13、2008 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 14、2009 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 15、2009 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 16、2010 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 17、2010 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 18、2011 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 19、2011 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 20、2012 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 21、2012 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 22、2013 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 23、2013 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 24、2014 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 25、2014 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 26、2015 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 27、2015 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 28、2016 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 29、2016 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 30、2017 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 31、2017 年 6 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案