点差法求椭圆中点弦

合集下载

点差法求椭圆中点弦

点差法求椭圆中点弦

用点差法解圆锥曲线的中点弦问题与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。

解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。

若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。

我们称这种代点作差的方法为“点差法”。

本文用这种方法作一些解题的探索。

一、以定点为中点的弦所在直线的方程例1、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。

解:设直线与椭圆的交点为),(11y x A 、),(22y x B)1,2(M 为AB 的中点 ∴421=+x x 221=+y y又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x两式相减得0)(4)(22212221=-+-y y x x于是0))((4))((21212121=-++-+y y y y x x x x ∴21244)(421212121-=⨯-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(211--=-x y ,即042=-+y x 。

例2、已知双曲线1222=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。

若存在这样的直线l ,求出它的方程,若不存在,说明理由。

策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。

本题属于中点弦问题,应考虑点差法或韦达定理。

解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B则221=+x x ,221=+y y122121=-y x ,122222=-y x 两式相减,得0))((21))((21212121=-+--+y y y y x x x x ∴22121=--=x x y y k AB 故直线)1(21:-=-x y AB 由⎪⎩⎪⎨⎧=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=⨯⨯--=∆这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。

椭圆的弦中点问题--解析版

椭圆的弦中点问题--解析版

东光一中高二年级 数学 学科课时练出题人: 许淑霞 出题时间:2015.1.22椭圆的中点弦问题学案学习目标:会求与椭圆的中点弦有关的问题掌握一种思想:设而不求,整体代换的思想体会两种方法:判别式法与点差法学习重点:能解决与椭圆的中点弦有关的问题 学习过程:一、方法总结:1、与椭圆的弦的中点有关的问题,我们称之为椭圆的中点弦问题。

2、解椭圆的中点弦问题的一般方法是:(1)判别式法:联立直线和椭圆的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式求解。

(2)点差法:若设直线与椭圆的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入椭圆的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。

我们称这种代点作差的方法为“点差法”。

3、设直线的技巧:(1)直线过定点时引入参数斜率,利用点斜式设方程,注意讨论斜率存在与不存在两种情况。

(2)直线斜率一定时引入参数截距,利用斜截式设方程。

(3)已知一般直线可设直线的斜截式方程,利用条件寻找k 与b 的关系。

3、直线与椭圆相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。

这类问题一般有以下三种类型:(1)求过中点的弦所在直线方程问题; (2)求弦中点的轨迹方程问题;(3)求与中点弦有关的圆锥曲线的方程二、题型复习:(一)、求过中点的弦所在直线方程问题例1、已知椭圆1222=+y x ,求过点p (12,12)且被点p 平分的弦所在直线方程 注意:解决过中点的弦的问题时判断点M 位置非常重要。

(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。

结论:(1) 设椭圆12222=+b y a x 的弦AB 的中点为P ),(00y x ()00≠y ,则0022y x a b k AB•-=,22AB op b k k a=- (2) 设双曲线12222=-b y a x 的弦AB 的中点为P ),(00y x ()00≠y 则0022y x a b k AB •=。

椭圆的中点弦

椭圆的中点弦

5 x 9 y 14 0
小结
弦中点问题的两种处理方法:
(1)联立方程组,消去一个未知数,利用韦达定理;
(2)设两端点坐标,代入曲线方程相减可求出弦的斜率。
谢谢 O(∩_∩)O
椭圆的中点弦问题
例1 :已知椭圆
过点P(2,1)引一弦,使弦在这点被
平分,求此弦所在直线的方程. 解:
韦达定理→斜率 韦达定理Leabharlann :利用韦达定理及中点坐标公式来构造
例 1:已知椭圆 过点P(2,1)引一弦,使弦在这点被 平分,求此弦所在直线的方程.
点 作差
点差法:利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率.
两式相减得:
b2 ( x12 x22 ) a2 ( y12 y12 ) 0
由b2 ( x12 x22 ) a2 ( y12 y12 ) 0
y12 y12 b2 即 2 2 2 x1 x2 a k AB y1 y1 b2 x1 x2 2 x1 x2 a y1 y1 b2 x0 2 a y0
直线和椭圆相交有关弦的中点问题,常用设而不求的 思想方法.
练习: 已知椭圆5x2+9y2=45,椭圆的右焦点为F, (1)求过点F且斜率为1的直线被椭圆截得的弦长.
x2 y2 F (2, 0) 直线l:y x 2 解 : (1)椭圆 1 9 5 得: 14 x 2 36 x 9 0 y x 2 由 2 18 9 2 5 x 9 y 45 x1 x2 , x1 x2 7 14 6 11 2 2 弦长 1 k ( x1 x2 ) 4 x1 x2 7
中点弦问题
点差法:利用端点在曲线上,坐标满足方程,作 差构造出中点坐标和斜率.

点差法求解中点弦问题

点差法求解中点弦问题

点差法求解中点弦问题点差法就是在求解圆锥曲线并且题目中交代直线与圆锥曲线相交被截的线段中点坐标的时候,利用直线和圆锥曲线的两个交点,并把交点代入圆锥曲线的方程,并作差。

求出直线的斜率,然后利用中点求出直线方程。

用点差法时计算量较少,解决直线与圆锥曲线的位置关系时非常有效,但有一个弊端,不能保证直线与圆锥曲线一定有两个交点,故有时要用到判别式加以检验。

【定理1】在椭圆12222=+by a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN -=⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=+=+)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=-+-byy a x x.2212121212ab x x y y x x y y -=++⋅--∴又.22,21211212x y x y x x y y x x y y k MN ==++--=.22a b x y k MN -=⋅∴ 【定理2】在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN =⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=---b y y a x x .2212121212ab x x y y x x y y =++⋅--∴ 又.22,000021211212x y x y x x y y x x y y k MN==++--= .2200a b x y k MN =⋅∴ 【定理3】 在抛物线)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN=⋅0.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎩⎪⎨⎧==)2(.2)1(,2222121 mx y mx y)2()1(-,得).(2212221x x m y y -=-.2)(121212m y y x x y y =+⋅--∴又01212122,y y y x x y y k MN =+--=.m y k MN =⋅∴0.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在.一、椭圆1、过椭圆x 216+y 24=1内一点P (2,1)作一条直线交椭圆于A 、B 两点,使线段AB 被P 点平分,求此直线的方程.【解】 法一:如图,设所求直线的方程为y -1=k (x -2),代入椭圆方程并整理,得(4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0, (*)又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2), 则x 1、x 2是(*)方程的两个根,∴x 1+x 2=8(2k 2-k )4k 2+1.∵P 为弦AB 的中点,∴2=x 1+x 22=4(2k 2-k )4k 2+1.解得k =-12,∴所求直线的方程为x +2y -4=0.法二:设直线与椭圆交点为A (x 1,y 1),B (x 2,y 2), ∵P 为弦AB 的中点,∴x 1+x 2=4,y 1+y 2=2.又∵A 、B 在椭圆上,∴x 21+4y 21=16,x 22+4y 22=16.两式相减,得(x 21-x 22)+4(y 21-y 22)=0,即(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0.∴y 1-y 2x 1-x 2=-(x 1+x 2)4(y 1+y 2)=-12,即k AB =-12.∴所求直线方程为y -1=-12(x -2),即x +2y -4=0.2、已知椭圆+=1,求它的斜率为3的弦中点的轨迹方程.【解答】解:设P (x ,y ),A (x 1,y 1),B (x 2,y 2). ∵P 为弦AB 的中点,∴x 1+x 2=2x ,y 1+y 2=2y .则+=1,①+=1,②②﹣①得,=﹣.∴﹣=3,整理得:x+y=0.由,解得x=所求轨迹方程为:x+y=0.(﹣<x <)∴点P 的轨迹方程为:x+y=0(﹣<x <);3、(2013秋•启东市校级月考)中心在原点,焦点坐标为(0,±5)的椭圆被直线3x ﹣y ﹣2=0截得的弦的中点的横坐标为,则椭圆方程为=1 .【解答】解:设椭圆=1(a >b >0),则a 2﹣b 2=50①又设直线3x ﹣y ﹣2=0与椭圆交点为A (x 1,y 1),B (x 2,y 2),弦AB 中点(x 0,y 0) ∵x 0=,∴代入直线方程得y 0=﹣2=﹣,由 ,得,∴AB 的斜率k==﹣•=﹣•=3∵=﹣1,∴a 2=3b 2②联解①②,可得a 2=75,b 2=25,∴椭圆的方程为:=1故答案为:=1.4、例1(09年四川)已知椭圆12222=+by a x (a >b >0)的左、右焦点分别为1F 、2F ,离心率22=e ,右准线方程为2=x .(Ⅰ) 求椭圆的标准方程;(Ⅱ) 过点1F 的直线l 与该椭圆相交于M 、N 两点,且3262||22=+N F M F ,求直线l 的方程. 解:(Ⅰ)根据题意,得⎪⎪⎩⎪⎪⎨⎧====.2,222c a x a c e ∴1,1,2===c b a .∴所求的椭圆方程为1222=+y x . (Ⅱ)椭圆的焦点为)0,1(1-F 、)0,1(2F . 设直线l 被椭圆所截的弦MN 的中点为),(y x P .由平行四边形法则知:P F N F M F 2222=+.由3262||22=+N F M F 得:326||2=P F .∴.926)1(22=+-y x ①y D若直线l 的斜率不存在,则x l ⊥轴,这时点P 与)0,1(1-F 重合,4|2|||1222==+F F N F M F ,与题设相矛盾,故直线l 的斜率存在.由22a b x y k MN -=⋅得:.211-=⋅+x y x y ∴).(2122x x y +-=② ②代入①,得.926)(21)1(22=+--x x x 整理,得:0174592=--x x . 解之得:317=x ,或32-=x .由②可知,317=x 不合题意. ∴32-=x ,从而31±=y .∴.11±=+=x yk∴所求的直线l 方程为1+=x y ,或1--=x y .6、(2009秋•工农区校级期末)已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点M ,则点M 的坐标为.【解答】解:设直线与椭圆的交点分别为(x 1,y 1),(x 2,y 2),则,两式相减,得=0,(y 1﹣y 2)(y 1+y 2)=﹣3(x 1﹣x 2)(x 1+x 2),=﹣3×,因为直线斜率为3,∴=3,∵两交点中点在直线x=,x 1+x 2=1,∴3=﹣3×1÷(y 1+y 2),∴=﹣.所以中点M 坐标为(,﹣).故答案为:(,﹣).7、如图,在DEF R t ∆中,25||,2||,90=+=︒=∠ED EF EF DEF ,椭圆C :12222=+by a x ,以E 、F为焦点且过点D ,点O 为坐标原点。

高中数学:中点弦问题

高中数学:中点弦问题

⾼中数学:中点弦问题
⼀、⽤点差法求斜率及常⽤公式
在圆锥曲线中涉及弦中点问题,如果涉及斜率,则常⽤点差法求斜率,关于点差法求斜率的⽅法,证明过程如下:
这是⼀个标准的点差法求斜率的例题,不过需要注意最后的结论,
因为⽅法过程简单但是繁琐,在⼩题⾥⾯可以直接利⽤结论来求
出相关的斜率,常⽤结论如下:
⼆、利⽤导数法求解中点弦问题
探究:在点差法中我们设了两个点,每个点中⼜有两个量,能不能减少未知量的个数,利⽤中点坐标公式我们可以将四个未知量变成两个,如下:
从图左中可以看出点A其实是两个椭圆的对称点,⽽过A点的直线则是两个椭圆的公共弦,两个椭圆式⼦相减得到公共弦,这跟两个圆⽅程相减得到相交弦⽅程⼀样。

那么如果点A的位置不在椭圆内⽽在椭圆上的话,从上⾯可知点A依旧是两椭圆的对称点,此时两个椭圆的位置关系相切,如上图右。

所以上⾯的结论可以直接⽤来写出椭圆的切线⽅程,当然先⽤导数求得斜率,再⽤点斜式写出切线⽅程也可以,只不过没有上⾯的结论简洁直接,但是这跟⽤导数法求斜率有什么关系?我们继续以这个例题为例:
很多学⽣问点A⼜不在椭圆上,为什么求导可以直接代⼊点A呢,其实很简单,点A虽然不在椭圆上,但是⼀定在把椭圆按⽐例缩⼩的椭圆上,此时对缩⼩之后的椭圆进⾏求导可以发现不改变原椭圆⽅程求导之后的结果,因此可以直接对原椭圆⽅程进⾏求导,代⼊点求得过点A的直线的斜率。

【高中数学】秒杀秘诀MS03椭圆的弦长公式与中点弦问题

【高中数学】秒杀秘诀MS03椭圆的弦长公式与中点弦问题

椭圆的弦长公式与中点弦问题1.k 为何值时,直线y=kx+2和曲线2x +3y =6有两个公共点?有一个公共点?没有公共点?秒杀秘籍:椭圆的弦长公式与面积(不过焦点的弦)椭圆()222210,0x y a b a b+=>>与直线l :y kx m =+相交于AB 两点,求AB 的弦长。

设:()()1122,,,A x y B x y 则()()()22222121121214AB x x y y k x x x x =-+-=++-将y kx m =+代入22221x y a b +=得:()22222222220b k a x a km x a m a b +++-=()212222222122222a kmx x b k a a m b x x b k a ⎧-+=⎪+⎪∴⎨-⎪⋅=⎪+⎩()22222222221121222221141ab b k a m AB k x x k x x x x kb k a +-∴=+-=++-=++例1:已知椭圆方程为1222=+y x 与直线方程21:+=x y l 相交于A、B 两点,求AB 的弦长解:设:()()1122,,,A x y B x y 则()()()22222121121214AB x x y y k x x x x =-+-=++-将12y x =+代入2212x y +=得:233202x x +-=12122312x x x x ⎧+=-⎪⎪∴⎨⎪⋅=-⎪⎩222121113AB k x x ∴=+-=椭圆与直线交点的判别式:()2222224a b b k a m ∆=+-用来判断是否有交点问题。

面积问题:椭圆与直线m kx y l +=:相交与两点,()00,y x C 为AB 外任意一点,求ABC S ∆。

设C 到l 的距离为d ,则22220000222211221ABCkx y m kx y m ab b k a m S AB d AB b k a k ∆-+-+⋅+-===++例2:已知椭圆C :22221x y a b +=22221(0)x y a b a b+=>>A B 、的一个顶点为(2,0)A ,离心率为22.直线(1y k x =-)与椭圆C 交于不同的两点M 、N .(Ⅰ)求椭圆C 的方程;(Ⅱ)当△AMN 得面积为103时,求k 的值.解:(Ⅰ)22;2,22c a e c b a ===⇒==;故椭圆方程为22142x y +=;(Ⅱ)12AMN S MN d ∆=,设()()1122,,,M x y N x y 则()()()22222121121214MN x x y y k x x x x =-+-=++-;将y kx k=-代入22142x y +=得:()2222428480k x k x k +---=212221228424842k x x k k x x k ⎧+=⎪⎪+∴⎨--⎪⋅=⎪+⎩;222011k k k d k k --==++;22422222411072502243AMN k k k S MN d k k k ∆⋅⋅+-===⇒--=+,即()()2275101k k k +-=⇒=±。

(完整)点差法求解中点弦问题

(完整)点差法求解中点弦问题

点差法求解中点弦问题点差法就是在求解圆锥曲线并且题目中交代直线与圆锥曲线相交被截的线段中点坐标的时候,利用直线和圆锥曲线的两个交点,并把交点代入圆锥曲线的方程,并作差。

求出直线的斜率,然后利用中点求出直线方程。

用点差法时计算量较少,解决直线与圆锥曲线的位置关系时非常有效,但有一个弊端,不能保证直线与圆锥曲线一定有两个交点,故有时要用到判别式加以检验。

【定理1】在椭圆12222=+by a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN -=⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=+=+)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=-+-b y y a x x .2212121212ab x x y y x x y y -=++⋅--∴又.22,21211212x y x y x x y y x x y y k MN ==++--=.22a b x y k MN -=⋅∴ 【定理2】在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200a b x y k MN =⋅. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=---b y y a x x .2212121212a b x x y y x x y y =++⋅--∴ 又.22,000021211212x y x y x x y y x x y y k MN==++--= .2200ab x y k MN =⋅∴ 【定理3】 在抛物线)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =⋅0。

点差法求椭圆的中点弦

点差法求椭圆的中点弦

部)
解:设(1 , 1 ),(2 , 2 )为弦的坐标.
因为点、在椭圆上,所以
12
2
൞ 2
2
2
12
+ 2

22
+ 2

=1
=1
两式相减得
(1 +2 )(1 −2 )
(1 +2 )(1 −2 )

2
2
=0
2
求椭圆 2

2
+ 2

= 1以点(, )为中点的弦的斜率。(在椭圆内
(1 +2 )(1 −2 )
=
2
− 2

(1 +2 )(1 −2 )
2

(1 −2 )
(1 −2 )
因为
(1 +2 )(1 −2 )
2
=0
(1 +2 )
(1 +2 )
= ,
= =


2
求椭圆 2

2
+ 2

= 1以点(, )为中点的弦的斜率。(在椭圆内
部)
解:设(1 , 1 ),(2 , 2 )为弦的坐标.
因为点、在椭圆上,所以
12
2
൞ 2
2
2
+
+
12
2
22
2
=1
=1
两式相减得
( + )( − )
整理得 (1 +2 )(1 −2 )
1
2
1
2

所以
=
2
− 2
=
2
− 2
(1 +2 )(1 −2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用点差法解圆锥曲线的中点弦问题
与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。

解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。

若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。

我们称这种代点作差的方法为“点差法”。

本文用这种方法作一些解题的探索。

一、以定点为中点的弦所在直线的方程
例1、过椭圆14
162
2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。

解:设直线与椭圆的交点为),(11y x A 、),(22y x B
)1,2(M 为AB 的中点 ∴421=+x x 221=+y y
又A 、B 两点在椭圆上,则1642121=+y x ,1642
222=+y x
两式相减得0)(4)(22212221=-+-y y x x
于是0))((4))((21212121=-++-+y y y y x x x x ∴
2
1244)(421212121-=⨯-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2
11--=-x y ,即042=-+y x 。

例2、已知双曲线12
2
2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。

若存在这样的直线l ,求出它的方程,若不存在,说明理由。

策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。

本题属于中点弦问题,应考虑点差法或韦达定理。

解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B
则221=+x x ,221=+y y
122121=-y x ,122
222=-y x 两式相减,得
0))((2
1))((21212121=-+--+y y y y x x x x ∴22121
=--=x x y y k AB 故直线)1(21:-=-x y AB 由⎪⎩
⎪⎨⎧=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=⨯⨯--=∆
这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。

评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。

由此题可看到中点弦问题中判断点的M 位置非常重要。

(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)
若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。

二、过定点的弦和平行弦的中点坐标和中点轨迹
例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2
1=x 的交点恰为这条弦的中点M ,求点M 的坐标。

解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则2
10=x 12021==+x x x , 0212y y y =+
又 125752121=+x y ,125
752
222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y
即0)(3)(221210=-+-x x y y y ∴0
212123y x x y y -=-- 32
121=--=x x y y k ∴ 3230=-y ,即210-=y ∴点M 的坐标为)2
1,21(-。

例4、已知椭圆125
752
2=+x y ,求它的斜率为3的弦中点的轨迹方程。

解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(y x M ,则
x x x 221=+, y y y 221=+
又 125752121=+x y ,125
752222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y
即0)(3)(2121=-+-x x x y y y ,即y
x x x y y 32121-=-- 32121=--=x x y y k ∴33=-y x ,即0=+y x 由⎪⎩⎪⎨⎧=+=+125
75022x y y x ,得)235,235(-P )235,235(-Q 点M 在椭圆内
∴它的斜率为3的弦中点的轨迹方程为)2
35235(0<<-=+x y x 三、求与中点弦有关的圆锥曲线的方程
例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为
2
1,求椭圆的方程。

解:设椭圆的方程为122
22=+b
x a y ,则5022=-b a ┅┅① 设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则
210=x ,2
12300-=-=x y ∴12021==+x x x ,12021-==+y y y
又1221221
=+b x a y ,122
2222
=+b
x a y 两式相减得0))(())((2121221212=-++-+x x x x a y y y y b
即0)()(212212=-+--x x a y y b ∴ 22
2121b
a x x y y =-- ∴ 322=
b a ┅┅② 联立①②解得752=a ,252
=b ∴所求椭圆的方程是125
752
2=+x y 四、圆锥曲线上两点关于某直线对称问题
例6、已知椭圆13
42
2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。

解:设),(111y x P ,),(222y x P 为椭圆上关于直线m x y +=4的对称两点,),(y x P 为弦21P P
的中点,则12432121=+y x ,12432
222=+y x
两式相减得,0)(4)(322212221=-+-y y x x
即0))((4))((321212121=-++-+y y y y x x x x x x x 221=+,y y y 221=+,
4
12121-=--x x y y ∴x y 3= 这就是弦21P P 中点P 轨迹方程。

它与直线m x y +=4的交点必须在椭圆内
联立⎩⎨⎧+==m x y x y 43,得⎩⎨⎧-=-=m y m x 3 则必须满足22433x y -<, 即224
33)3(m m -<,解得1313213132<<-m 五、注意的问题
(1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。

利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。

Email :******************。

相关文档
最新文档