已知三角函数图象求解析式方法例析

合集下载

由三角函数图像求解析式(适合讲课使用)

由三角函数图像求解析式(适合讲课使用)

图像的变换与对称性
01
平移变换
三角函数图像可以在x轴或y轴方向上平移,而不改变其形状和性质。
例如,正弦函数向右平移a个单位后变为$y=sin(x-a)$。
02
伸缩变换
三角函数图像可以在x轴或y轴方向上伸缩,从而改变其周期和振幅。
例如,正弦函数在x轴方向上伸缩a倍后变为$y=sin(frac{1}{a}x)$。
余弦函数
定义域
全体实数,即$R$。
值域
$[-1,1]$。
周期性
余弦函数具有周期性,最小正 周期为$2pi$。
单调性
在每个周期内,余弦函数在$[0, pi]$上单调递减,在$[pi, 2pi]$
上单调递增。
正切函数
定义域
01
不连续,无周期性。
值域
02
全体实数,即$R$。
单调性
03
正切函数在每一个开区间$(kpi-frac{pi}{2}, kpi+frac{pi}{2})$内
01
1. 绘制直角坐标系
根据解析式的定义域,绘制直角 坐标系。
02
03
2. 确定关键点
3. 绘制图像
根据解析式的值,确定直角坐标 系中的关键点。
根据关键点,绘制三角函数的图 像。
例题三:综合应用题
1. 分析题目
仔细阅读题目,理解题目的要求和条件。
2. 确定解题步骤
根据题目要求,确定解题步骤,包括已知条件的分析、未知条件的推导等。
由三角函数图像求解析式
contents
目录
• 引言 • 三角函数的基本性质 • 三角函数图像的绘制 • 由三角函数图像求解析式的方法 • 实例分析 • 总结与思考

求三角函数解析式遇到的烦心事

求三角函数解析式遇到的烦心事

求三角函数解析式遇到的烦心事已知三角函数图像的特征,写出解析式,是考查学生对三角函数图像和性质的常见的题型。

给出图象求sin()y A x B ωϕ=++的解析式, A 是振幅大小,一般可以观察最大值与最小值求得;B 是平衡位置在y 轴上的截距;确定ω,通常可由平衡点或最值点确定周期T ,进而求ω。

求sin()y A x B ωϕ=++的解析式难点在于ϕ的确定,常见的方法有以下三种基本方法。

①寻找特殊点(平衡点、最值点)代入解析式,代点法求ω;②图象变换法,利用函数图像变化;③逆用五点法作图的过程,五点法作图时,五个点的横坐标求解的方法是,将sin()y x ωϕ=+与函数sin y α=相比较,令0x ωϕ+=,得到x 的值,便是第一个点的横坐标;令2x πωϕ+=,得到第二个点的横坐标,等等。

一、五点法求出的ϕ不在规定的范围内怎么办 例1.已知函数sin()y A x ωϕ=+(0,A >322ππφ-<<)的一段图象如下图所示,求函数的解析式. 解:由图得32,()2882T A πππ==--=,∴T π=,∴2ω=, ∴2sin(2)y x ϕ=+,又∵图象经过点(,2)8π-,它是五点法作图时的第二点,故令 42ππϕ'-=,∴34πϕ'=,∴32sin(2)4y x π=+. 352sin(22)2sin(2)44y x x πππ=+-=-∴函数解析式52sin(2)4y x π=-说明:34πϕ'=显然不符合322ππφ-<<,这时要把求得的解析式:32sin(2)4y x π=+进行转换,注意仅仅是变换函数解析式,使得ϕ'转换到符合条件的值上,即54πϕ=-。

二、为什么给定的ϕ范围都是2π跨度大多数的此类问题都规定ϕ范围,那么,不禁还让人担心五点法得出的ϕ的值,会不会漏掉一个值?但是,仔细研究发现他们的ϕ范围都是2π跨度,是不是说命题人努力避免此类事实的发生,还是根本就不可能?例2.(福建卷)函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则( )A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==答案: C解析:4(31)8T =-=,2,84ππω==(1,1)是五点法作图时的第二点,故令 42ππϕ+=,4πϕ=。

求三角函数解析式方法总结超全面

求三角函数解析式方法总结超全面

求三角函数解析式)sin(ϕω+=x A y 常用的方法全面总结三角函数的解析式是研究三角函数图像与性质的重要依据,也是高中数学教学的重点,也是历年来高考考查的热点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。

A (振幅):A=2-最小值最大值φ+wx :相位,其中Tw π2=(T 为最小正周期) ϕ:初相,求φ常有代入法、五点法、特殊值法等一、利用五点法,逆求函数解析式三角函数五点法是三角函数图像绘制的方法,分别找三角函数一个周期内端点与终点两个点,另加周期内一个零点,两个极值点和一共零点,总共五个点第一点,即图像上升时与x 轴的交点,为φ+wx =0 第二点,即图像曲线的最高点,为φ+wx =2π 第三点,即图像下降时与x 轴的交点,为φ+wx =π第四点,即图像曲线的最低点,为φ+wx =23π 第五点,即图像最后一个端点,为φ+wx =π2例1.右图所示的曲线是)sin(ϕω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式.例2.是函数π2sin()2y x ωϕϕ⎛⎫=+< ⎪⎝⎭的图象上的一段,则( ) A.10π116ωϕ==,B.10π116ωϕ==-, C.π26ωϕ==,D.π26ωϕ==-,例3.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==例4、函数()ϕω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。

(其中 πϕπω<<->>,0,0A )变式练习1、已知函数)sin(ϕω+=x A y (A >0,ω>0,|ϕ|<π)2、已知函数)sin(ϕω+=x Ay (A >0,ω>0,|ϕ|<π)的图象如图,求函数的解析式。

高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析

高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析

高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析在高考中涉及到的三角函数图像变换主要指的是形如()sin y A x ωϕ=+的函数,通过横纵坐标的平移与放缩,得到另一个三角函数解析式的过程。

要求学生熟练掌握函数图像变换,尤其是多次变换时,图像变化与解析式变化之间的对应联系。

一、基础知识:(一)图像变换规律:设函数为()y f x =(所涉及参数均为正数) 1、函数图像的平移变换:(1)()f x a +:()f x 的图像向左平移a 个单位 (2)()f x a −:()f x 的图像向右平移a 个单位 (3)()f x b +:()f x 的图像向上平移b 个单位 (4)()f x b −:()f x 的图像向下平移b 个单位 2、函数图像的放缩变换:(1)()f kx :()f x 的图像横坐标变为原来的1k(图像表现为横向的伸缩) (2)()kf x :()f x 的图像纵坐标变为原来的k 倍(图像表现为纵向的伸缩) 3、函数图象的翻折变换: (1)()fx :()f x 在x 轴正半轴的图像不变,负半轴的图像替换为与正半轴图像关于y 轴对称的图像(2)()f x :()f x 在x 轴上方的图像不变,x 轴下方的部分沿x 轴向上翻折即可(与原x 轴下方图像关于x 轴对称)(二)图像变换中要注意的几点:1、如何判定是纵坐标变换还是横坐标变换?在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下: ① 若变换发生在“括号”内部,则属于横坐标的变换 ② 若变换发生在“括号”外部,则属于纵坐标的变换例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤()2y f x =−+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换2、解析式变化与图像变换之间存在怎样的对应?由前面总结的规律不难发现: (1)加“常数”⇔ 平移变换(2)添“系数”⇔放缩变换 (3)加“绝对值”⇔翻折变换3、多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:① 横坐标的变换与纵坐标的变换互不影响,无先后要求 ② 横坐标的多次变换中,每次变换只有x 发生相应变化 例如:()()21y f x y f x =→=+可有两种方案方案一:先平移(向左平移1个单位),此时()()1f x f x →+。

根据图像求三角函数解析

根据图像求三角函数解析
2 的 图 像 如 上 图 所 示 ,求 该 函 数 的 解 析 式 。
或y3cos(2x-5)
6
练 习 3 .函 数 yA sin ( x ),(A 0 , 0 ,|| )
的 部 分 图 像 如 图 所 示 ,求 该 函 数 的 解 析 式 。
y2sin(2x) 3
y 2
o 3
5 6
x
-2
例3: 求f(x)=Asin(ωx+φ)+B型的解析式
-2
ππ 42
3π 2
5π 2
7π 2
x
4
例2:如图为y=Asin(ωx+φ)的图象的一段,求其解析式.
练 习 1.函 数 yA sin(x),(A0,0,||)
2 的 图 像 如 图 所 示 ,求 该 函 数 的 解 析 式 。y
3
y3sin(2x) 3
2
3
o
6
x
-3
变 式 .函 数 yA cos(x),(A0,0,||)
巧记·主干知识
突破·重点要点
题型二 由图象求函数y= Asin(ωx+φ)的解析式
例 2 (1)已知函数 f(x)=2sin(ωx+
φ)(其中 ω>0,|φ|<π2)的最小正周期是
π,且 f(0)= 3,则( )
A.ω=12,φ=π6 C.ω=2,φ=π6
B.ω=12,φ=π3 D.ω=2,φ=π3
1.已知函数 f(x)=Asin(ωx+φ)+B(ω>0,
|φ|< )的图象的一部分如图所示: (1)求2f(x)的表达式;
(2)试写出f(x)的对称轴方程.
解 (1)由图象可知,函数的最大值M=3,

由图像或性质求三角函数解析式的方法

由图像或性质求三角函数解析式的方法

求三角函数解析式常用的方法三角函数是高中数学的一个重点,而三角函数图象与性质又是其中的难点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。

现就几道例题谈谈常用的求解方法。

1 利用五点法,逆求函数解析式例1.右图所示的曲线是)sin(ϕω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式. 解:由22y -≤≤,得A=2已知第二个点(,2)12π和第五个点5(,0)6π 35346124T πππ=-= T π∴= 2ω=把(,2)12π代入,2122ππφ⨯+=得3πϕ=所以y=)32sin(2π+x点评:由图像确定解析式,观察图像的特征,形助数寻找“五点法”中的整体点,从而确定初相ϕ。

2 利用图像平移,选准变换过程切入求解例2下列函数中,图象的一部分如右图所示的是( )A .sin 6y x π⎛⎫=+ ⎪⎝⎭ B.sin 26y x π⎛⎫=- ⎪⎝⎭C.cos 43y x π⎛⎫=- ⎪⎝⎭D.cos 26y x π⎛⎫=- ⎪⎝⎭解:从图象看出,41T =1264πππ+=,所以函数的最小正周期为π,函数应为y=sin 2x 向左平移了6π个单位,即sin 2()6y x π=+=sin(2)cos(2)cos(2)3236x x x ππππ+=-++=-,故选择答案D 。

点评:数形结合,由图像确定周期和初相位后,选准图像平移变换过程切入,如本题y=sin 2x 向左平移了6π个单位进行验证化简是求解的关键。

对于利用图象的变换来求解函数的解析式,一定要清楚每一种变换对,,A ωϕ的影响,注重整体变量观念的应用。

3 特殊化赋值法求解例3设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x 。

求()y f x =的解析式。

解:对称性特殊赋值切入,8x π=是函数()y f x =的图像的对称轴,()()88f x f x ππ∴+=-令8x π=,则()(0)4f f π=,即sin() =sin cos 2πϕϕϕ+=,tan 1ϕ∴=。

由三角函数图象求解析式

由三角函数图象求解析式

已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =( ) (A )23-(B) 23 (C)- 12 (D) 12【解析】选B.由图象可得最小正周期为2π3,于是f(0)=f(2π3),注意到2π3与π2关于7π12对称,所以f(2π3)=-f(π2)=23.如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值 为( ) (A )6π (B )4π (C )3π (D) 2π【解析】选A. Q 函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称 4232k ππφπ∴⋅+=+13()6k k Z πφπ∴=-∈由此易得min ||6πφ=. 已知函数y=sin (ωx+ϕ)(ω>0, -π≤ϕ<π)的图像如图所示,则 ϕ=________________【解析】由图可知,()544,,2,1255T x πωπϕ⎛⎫=∴=+ ⎪⎝⎭把代入y=sin 有: 89,510ππϕϕ⎛⎫+∴= ⎪⎝⎭1=sin已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫=⎪⎝⎭。

【解析】由图象知最小正周期T =32(445ππ-)=32π=ωπ2,故ω=3,又x =4π时,f (x )=0,即2φπ+⨯43sin()=0,可得4πφ=,所以,712f π⎛⎫=⎪⎝⎭2)41273sin(ππ+⨯=0。

)已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-.(Ⅰ)求()f x 的解析式; (Ⅱ)当[,]122x ππ∈,求()f x 的值域.【解析】(1)由最低点为2(,2)3M π-得A=2.由x 轴上相邻的两个交点之间的距离为2π得2T =2π,即T π=,222T ππωπ===由点2(,2)3M π-在图像上得242sin(2)2,)133ππϕϕ⨯+=-+=-即sin(故42,32k k Z ππϕπ+=-∈ 1126k πϕπ∴=- 又(0,),,()2sin(2)266f x x πππϕϕ∈∴==+故(2)7[,],2[,]122636x x πππππ∈∴+∈Q 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266x ππ+=即2x π=时,()f x 取得最小值-1,故()f x 的值域为[-1,2]把函数y =cos(3x +4π)的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( )A.向右平移4π B.向左平移4π C.向右平移12π D.向左平移12π分析:三角函数图象变换问题的常规题型是:已知函数和变换方法,求变换后的函数或图象,此题是已知变换前后的函数,求变换方式的逆向型题目,解题的思路是将异名函数化为同名函数,且须x 的系数相同.解:∵y =cos(3x +4π)=sin(4π-3x )=sin [-3(x -12π)]∴由y =sin [-3(x -12π)]向左平移12π才能得到y =sin(-3x )的图象.答案:D4.将函数y =f (x )的图象沿x 轴向右平移3π,再保持图象上的纵坐标不变,而横坐标变为原来的2倍,得到的曲线与y =sin x 的图象相同,则y =f (x )是( )=sin(2x +3π) =sin(2x -3π) =sin(2x +32π) =sin(2x -32π)分析:这是三角图象变换问题的又一类逆向型题,解题的思路是逆推法.解:y =f (x )可由y =sin x ,纵坐标不变,横坐标压缩为原来的1/2,得y =sin2x ;再沿x 轴向左平移3π得y =sin2(x +3π),即f (x )=sin(2x +32π).若函数f (x )=sin2x +a cos2x 的图象关于直线x =-8π对称,则a =–1. 分析:这是已知函数图象的对称轴方程,求函数解析式中参数值的一类逆向型题,解题的关键是如何巧用对称性.解:∵x 1=0,x 2=-4π是定义域中关于x =-8π对称的两点 ∴f (0)=f (-4π) 即0+a =sin(-2π)+a cos(-2π)∴a =-1若对任意实数a ,函数y =5sin(312+k πx -6π)(k ∈N)在区间[a ,a +3]上的值45出现不少于4次且不多于8次,则k 的值是( )或4 或3分析:这也是求函数解析式中参数值的逆向型题,解题的思路是:先求出与k 相关的周期T 的取值范围,再求k .解:∵T =3)3(,1263122=-++=+a a k k ππ又因每一周期内出现45值时有2次,出现4次取2个周期,出现45值8次应有4个周期.∴有4T ≥3且2T ≤3即得43≤T ≤23,∴43≤126+k ≤23 解得23≤k ≤27,∵k ∈N,∴k =2或3.巧求初相角求初相角是高中数学学习中的一个难点,怎样求初相角初相角有几个下面通过错解剖析,介绍四种方法.如图,它是函数y =A sin(ωx +ϕ)(A >0,ω>0),|ϕ|<π的图象,由图中条件,写出该函数解析式. 错解: 由图知:A =5由23252πππ=-=T 得T =3π,∴ω=T π2=32∴y =5sin(32x +ϕ)将(π,0)代入该式得:5sin(32π+ϕ)=0由sin(32π+ϕ)=0,得32π+ϕ=k πϕ=k π-32π(k ∈Z )∵|ϕ|<π,∴ϕ=-32π或ϕ=3π∴y =5sin(32x -32π)或y =5sin(32x +3π)分析:由题意可知,点(4π,5)在此函数的图象上,但在y =5sin(32x -32π)中,令x =4π,则y =5sin(6π-32π)=5sin(-2π)=-5,由此可知:y =5sin(32x -32π)不合题意.那么,问题出在哪里呢我们知道,已知三角函数值求角,在一个周期内一般总有两个解,只有在限定的范围内才能得出惟一解.正解一:(单调性法)∵点(π,0)在递减的那段曲线上∴32π+ϕ∈[2π+2k π,32π+2k π](k ∈Z ) 由sin(32π+ϕ)=0得32π+ϕ=2k π+π∴ϕ=2k π+3π(k ∈Z )∵|ϕ|<π,∴ϕ=3π正解二:(最值点法)将最高点坐标(4π,5)代入y =5sin(32x +ϕ)得5sin(6π+ϕ)=5∴6π+ϕ=2k π+2π ∴ϕ=2k π+3π (k ∈Z )取ϕ=3π正解三:(起始点法)函数y =A sin(ωx +ϕ)的图象一般由“五点法”作出,而起始点的横坐标x 正是由ωx +ϕ=0解得的,故只要找出起始点横坐标x 0,就可以迅速求得角ϕ.由图象求得x 0=-2x,∴ϕ=-ωx 0=-32 (-2π)=3π. 正解四:(平移法)由图象知,将y =5sin(32x )的图象沿x 轴向左平移2π个单位,就得到本题图象,故所求函数为y =5sin 32(x +2π),即y =5sin(32x +3π).【基础知识精讲】1.用五点法作y=Asin(ωx+φ)(ω>0)的图像时,我们采用换元法,将ωx+φ看成y=sinx 中的x ,模仿y=sinx 的五点法来作.ωx 1+φ=0⇒x 1=-ωΦ,ωx 2+φ=2π⇒x 2=ωπΦ-2ωx 3=π⇒x 3=ωπΦ-,ωx 4+φ=23π⇒x 4=ωπΦ-23,ωx 5+φ=2π⇒x 5=ωπΦ-2.即五点(-ωΦ,0),(ωπΦ-2,A),( ωπΦ-,0).(ωπΦ-23,-A).(ωπΦ-2,0)2.函数y=Asin(ωx+φ)的图像与y=sinx 的图像关系.(1)振幅变换函数y=Asinx(A >0,且A ≠1)的图像,可以看作是y=sinx 图像上所有点的纵坐标伸长(A >1)或缩短(0<A <1)到原来的A 倍(横坐标不变)而得到的.这种变换叫振幅变换,它实质上是纵向的伸缩.(2)周期变换函数y=sin ωx(ω>0,且ω≠1)的图像,可以看作是把y=sinx 的图像上各点的横坐标都缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变)而得到的,由y=sinx 的图像变换为y=sin ωx 的图像,其周期由2π变ωπ2.这种变换叫做周期变换.它实质上是横向的伸缩.(3)相位变换函数y=sin(x+φ)(φ≠0)的图像,可以看作是把y=sinx 的图像上各点向左(φ>0)或向右(φ<0)平移|φ|个单位而得到的.这种由y=sinx 的图像变换为y=sin(x+φ)的图像的变换,使相位x 变为x+φ,我们称它为相位变换.它实质上是一种左右平移变换.应用振幅变换、周期变换、相位变换(左右平移变移)和上下平移变换可由y=sinx 的图像得到y=Asin(ωx+φ)+k 的图像.事实上,设f 、t 、h 分别表示相位变换,周期变换,振幅变换,则变换作图法共有以下不同的程序.(1)f →t →h;(2)f →g →t(3)t →h →f;(4)t →f →h;(5)h →f →t;(6)h →t →f=Asin(ωx+φ)(A >0,ω>0)与振动在物理学中,y=Asin(ωt+φ)(A >0,ω>0),其中t ∈[0,+∞),表示简谐振动的运动方程.这时参数A ,ω,φ有如下物理意义.A 称为振幅,它表示振动时物体离开平衡位置的最大距离.T=ωπ2称为周期,它表示振动一次所需的时间(亦即函数y 的最小正周期).f=T = π2称为振动的频率,它表示单位时间内往复振动的次数,ωt+φ叫做相位,当t=0时的相位,即φ称为初相.4.函数图像的对称变换一个函数的图像经过适当的变换(例如对称、平移、伸缩等)得到与其图像有关函数的图像,叫做函数的初等变换.前面的平移、伸缩变换均属初等变换. 对称变换主要指下面几种:(1)函数y=-f(x)的图像与y=f(x)的图像关于x 轴对称. (2)函数y=f(-x)的图像与y=f(x)的图像关于y 轴对称. (3)函数y=f(-x)的图像与y=-f(x)的图像关于原点对称.(4)函数y=f -1(x)(或x=f(y))的图像与y=f(x)的图像关于直线y=x 对称. 【重点难点解析】重点:用“五点法”画函数y=Asin(ωx+φ)的简图及三角函数的图像变换. 难点:三角函数的图像变换.即由y=sinx 的图像变换到y=Asin(ωx+φ)的过程. 关键:理解A 、ω、φ的对图像变化所起的作用.例1 函数y=3cos(2x -4π)的图像可以由y=sinx 的图像经过怎样的变换得到 解:y=3cos(2x -4π)=3sin [2π+( 2x -4π)]=3sin(2x +4π).先将y=sinx 的图像向右平移4π个单位,得到y 1=sin(x+4π)的图像.再将y 1的图像上各点的横坐标伸长到原来的2倍,得到y 2=sin(2x +4π)的图像.再将y 2的图像上各点的纵坐标伸长到原来的3倍,就得到所求函数的图像.评析:这种图像变换的顺序通常是先作相位变换,再作周期变换,最后作振幅变换.本题中若将相位变换与周期变换的顺序交换,得到的结果将是y=3sin(2x +8π)而不是y=3sin(2+4).例2用五点法作出函数y=4sin(2x+3π)在一个周期内的简图.解:函数y=4sin(2x+3π)的振幅A=4,周期T=4π,令2x+3π=0,得初始值x0=-32π(初始值指图像由x轴下方向上经过x轴时的横截距).列表:2x+3π02ππ23π2πx-32π3π34π37π310πy040-40评注:注意到五点的横坐标是从x0开始,每次增加周期的4,即x i=x i-1+4(i=1,2,3,4)可简化x的五个值的运算.例3设三角函数f(x)=sin(5kx+3π)(k≠0).(1)写出f(x)的最大值M,最小值m和最小正周期T;(2)试求最小正整数k,使得当自变量x在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个值是M,一个值是m.解:(1)M=1,m=-1,T=52kπ=kπ10.(2)f(x)在它的每一个周期中都恰好有一个值是M 与一个值是m ,而任意两个整数间的距离都≥1,因此要使任意两个整数间函数f(x)至少有一个值是M 与一个值m ,必须且只须f(x)的周期≤1,即kπ10≤1,|k |≥10π=,可见,k=32就是这样的最小整数.例4 已知正弦数y=Asin(ωx+φ)(其中A >0,ω>0)的一个周期的图像如图所示,试求函数的解析式.分析:求函数的解析式,就是确定解析式中A ,ω,φ的值.由图像中三个已知点的坐标列出A ,ω,φ的方程组求解.若令X=ωx+φ,要注意x 0=-25π是初始值,对应于X=0,x=-π时对应于X=π.∴函数解析式为y=2sin(32x+35π).【难题巧解点拔】例1 指出将y=sinx 的图像变换为y=sin(2x+3π)的图像的两种方法.思路1 x →2x →2(x+6π)=2x+3π.解法 1 y=sinx 纵坐标不变横坐标缩短为原来的−−−−−−−−−−→−21y=sin2x −−−−−−−→−π单位向左平移6y=sin[2(x+6π)]=sin(2x+3π).思路2 x →x+3π→2x+3π.解法2y=sinx−−−−−−−→−π单位向左平移3y=sin(x+3π)纵坐标不变横坐标缩短为原来的−−−−−−−−−−→−21y=sin(2x+3π).说明:在解法1中,先伸缩,后平移.在解法2中,先平移,后伸缩.表面上看来,两种变换方法中的平移是不同的(即6π和3π),但由于伸缩变换的影响,所以实质上都是一致的.例2 函数f(x)的横坐标伸长到原来的两倍,再向左平移2π个单位,所得到的曲线是y=21sinx 的图像,试求函数y=f(x)的解析式.分析:这个问题有两种解法,一是考虑以上变换的“逆变换”(所谓“逆变换”,即将以上变换倒过来,由y=21sinx 变换到y=f(x);二是代换法,即设y=Asin(ωx+φ),然后按题设中的变换分两步得:y=Asin [2ω(x+2π)+φ],它就是y=21sinx ,即可求得A 、ω、φ的值.解法1:问题即是将y=21sinx 的图像先向右平移2π个单位,得y=21sin(x-2π);再将横坐标压缩到原来的21,得y=21sin(2x-2π),即y=-21cos2x.这就是所求函数f(x)的解析式.例2 已知正弦函数y=Asin(ωx+φ)的一段曲线(如下图),试求解析式.解:(1)因为A=3,T=π,ω=2,φ=-ωx 0=-2(-52π)=54π,所以y=3sin(2x+54π).(2)A=2,当x=0时,y=1,所以2sin φ=1,又|φ|<2π,所以φ=4π,当x=1211π时,y=0,即2sin(ω·1211π+4π)=0,所以ω=1121,所以y=2sin(1121x+4π).评析:若已知曲线与x 轴的交点的坐标,先确定ω=T π2;若已知曲线与y 轴的交点的坐标,先确定φ;若先确定ω则有φ=-ωx 0,其中x 0是离y 轴最近的递增区间的中心点的横坐标.1.如图,是正弦函数f(x)=Asin(ωx+φ)(A >0,ω>0)的一个周期的图像.(1)写出f(x)的解析式;(2)若g(x)与f(x)的图像关于直线x=2对称,写出g(x)的解析式.2.试说明y=cosx 的图像经怎样的变换可得到y=3cos(3x+2π)+1的图像3.已知y=Asin(ωx+φ)(A >0,ω>0,0<φ<π)的最小正周期为32π,最小值为-2,且过点(95π,0),求它的表达式.1.已知f(x)=Asin(ωx+φ)(A >0,ω>0,|φ|<2π)的图像在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2).(Ⅰ)求f(x)的解析式;(Ⅱ)y=f(x)的图像上所有点的横坐标缩短到原来的31(纵坐标不变),然后再将所得图像向x 轴正方向平移3个单位,得到函数y=g(x)的图像.写出函数y=g(x)的解析式并用列表作图的方法画出y=g(x)在长度为一个周期的闭区间上的图像.例2 右图为某三角函数图像的一段(1)试用y=Asin (ωx+φ)型函数表示其解析式;(2)求这个函数关于直线x=2π对称的函数解析式. 解:(1)T= 13π3- π3 =4π. ∴ω=2πT = 12 .又A=3,由图象可知所给曲线是由y=3sin x 2沿x 轴向右平移 π3而得到的.∴解析式为 y=3sin 12 (x -π3).(2)设(x ,y)为y=3sin(12 x -π6 )关于直线x=2π对称的图像上的任意一点,则该点关于直线x=2π的对称点应为(4π-x ,y),故与y=3sin(12 x -π6)关于直线x=2π对称的函数解析式是y=3sin [12(4π-x)- π6]=-3sin(12 x +π6).点评 y=sin(ωx+φ)(ω>0)的图象由y=sin ωx 的图象向左平移(φ>0)或向右平移(φ<0)|φ|ω个单位.特别要注意不能搞错平移的方向和平移的单位数量.求一个函数的图象关于一条直线对称图象的函数解析式时,要注意解几知识的运用.例1 求函数f(x)=sin 2x+2sinxcosx+3cos 2x 的最大值,并求出此时x 的值. 分析 由于f (x )的表达式较复杂,需进行化简.解 y=sin 2x+cos 2x+sin2x+1+cos2x=sin2x+cos2x+2= 2 sin(2x+π4)+2当2x+π4=2k π+π2, 即x=k π+π8 (k ∈Z)时,y max =2 +2 . 点评 要熟练掌握y=asinx+bcosx 类型的三角函数最值的求法,asinx+bcosx= a 2+b 2 sin (x+φ).例2 若θ∈[-π12, π12],求函数y=cos(π4+θ)+sin2θ的最小值.分析 在函数表达式中,含有两个角和两个三角函数名称,若能化成含有一个角和一个三角函数名称的式子,则问题可得到简化.解 y=cos(π4+θ)-cos [2(θ+π4)]=cos(π4+θ)-[2cos 2(θ+π4)-1]=-2cos 2(θ+π4)+cos(π4+θ)+1 =-2[cos 2(θ+π4)-12cos(θ+π4)]+1=-2[cos(θ+π4)-14]2+98 .∵θ∈[-π12, π12], ∴θ+π4∈[π6,π3].∴12≤cos(θ+π4)≤ 3 2, ∴y 最小值 = 3 -12 .点评 (1)三角函数表达式转化成一个角的一个三角函数的形式(即f(sinx)或g(cosx)),是常见的转化目标;(2)形如y=f(sinx)或y=g(cosx)的最值,常运用sinx ,cosx 的有界性,通过换元转化成y=at 2+bt+c 在某区间上的最值问题;(3)对于y= Asin(ωx+φ)或y=Acos(ωx+φ)的最值的求法,应先求出t=ωx+φ的值域,然后再由y=Asint 和y=Acost 的单调性求出最值.例3 试求函数y=sinx+cosx+2sinxcosx+2的最大值和最小值.分析 由于sinx+cosx 与sinxcosx 可以相互表示,所以令sinx+cosx=t ,则原三角函数的最值问题转化成y=at 2+bt+c 在某区间上的最值问题.解 令t=sinx+cosx ,则y=t+t 2+1=(t+12)2+34,且t ∈[- 2 , 2 ],∴y min =34 ,y max =3+ 2 .点评 注意sinx+cosx 与sinxcosx 的关系,运用换元法将原三角函数的最值问题转化成y=at 2+bt+c 在某个区间上的最值问题.【知能集成】较复杂的三角函数的最值问题,往往通过需要恒等变形,转化成形如y=f(sinx)或y=g(cosx)型或y= Asin(ωx+φ)+k 型的三角函数的最值问题,运用三角函数的有界性、单调性求三角函数的最值.用换元法解题,特别要注意sinx+tcosx 与sinxcosx 的关系,令sinx+cosx=t ,则sinxcosx=t 2-12 .y=sinxcosx+sinx+cosx ,求x ∈[0, π3]时函数y 的最大值。

三角函数解析式的求法教师版

三角函数解析式的求法教师版

第5页(共17页)
令 f (0) = 50sin + 60 = 10 ,得 sin = −1 ;
又 [− , ] , 所以 = − ;
2 所以函数 y = 50sin( 2 t − ) + 60 .
32 故选: C .
变式 1. 如图, 一个大风车的半径长为 8m , 每12 min 旋转一周, 最低点离地面为 2m . 若风 车翼片从如图所示的点 P0 处按逆时针方向开始旋转,已知点 P0 离地面 6m ,则该翼片的端点 离地面的距离 y(m) 与时间 x(min) 之间的函数关系是
故所得图象对应的函数为 g(x) = sin(2x + ) + 1, 3
则 g(0) = sin(0 + ) +1 = 1 + 3 ,
3
2
故选: A .
变 式 1 . 函 数 f (x) = cos(x + )( 0,| | ) 的 部 分 图 象 如 图 所 示 , 则 函 数 2
A. y = 2sin(1 x + ) 66
B. y = 2sin(1 x − ) 36
第4页(共17页)
C. y = 2cos(1 x + ) 33
【答案】B
D. y = 2cos(1 x − ) 63
【解答】解:由图象可知,得函数的周期T = 4 (3.5 − 2 ) = 6 ,
3
3
故选: D .
变式 3.已知函数 f (x) = Asin(x + )(A 0 , 0 ,| | ) 在一个周期内的简图如图所示, 2
则方程 f (x) = m(m 为常数且1 m 2) 在[0 , ] 内所有解的和为 ( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知三角函数图象求解析式方法例析
-CAL-FENGHAI.-(YICAI)-Company One1
已知三角函数图象求解析式方法例析
已知函数y =Asin(ωx+φ)+k(A >0,ω>0)的部分图象,求其解析式,与用“五点法”作函数y =Asin(ωx+φ)+k的图象有着密切联系,最主要的是看图象上的“关键点”与“特殊点”.本文就一般情况例析如下.
一、A 值的确定方法:A 等于图象中最高点的纵坐标减去最低点的纵坐标所得差的一半.
二、 ω值的确定方法:
方法1.在一个周期内的五个“关键点”中,若任知其中两点的横坐标,则可先求出周期T,然后据ω=T
π2求得
ω的值.
方法2:“特殊点坐标法”。

特殊点包括曲线与坐标轴的交点、最高点和最低点等。

在求出了A 与φ的值之后,可由特殊点的坐标来确定ω的值.
三、 φ值的确定方法:
方法1:“关键点对等法”.确定了ω的值之后,把已知图象上五个关键点之一的横坐标代人ωx+φ,它应与曲线y=sinx 上对应五点之一的横坐标相等,由此可求得φ的值.此法最主要的是找准“对等的关键点”,我们知道曲线y =sinx 在区间[0,2π]上的第一至第五个关键点的横坐标依次为0、2
π、π、2
3π、2π,若设所给图象与曲线y=sinx
上对应五点的横坐标为x J (J =1,2,3,4,5), 则顺次有ωx 1+φ=
0、 ωx 2+φ=2
π、ωx 3+φ=π、ωx 4+φ=2
3π、ωx 5+φ=
2π,由此可求出φ的值。

方法2:“筛选选项法”,对于选择题,可根据图象的平移方向经过筛选选项来确定φ的值.
方法3:“特殊点坐标法”.(与2中的方法2类同).
四、 k 值的确定方法: K 等于图象向上或向下平移的长度,图象上移时k 为正值,下移时k 为负值.
另外A 、ω、φ的值还可以通过“解方程(组)法”来求得.
例1.图1是函数y=2sin (ωx+φ)(ω>0,φ≤2
π)的
图象,那么正确的是( )
A.ω=11
10, φ=6
π B.ω=11
10, φ=-6
π
C.ω=2,φ=6
π D.ω=2,φ=-6
π
, 解:可用“筛选选项法”.
题设图象可看作由y =2sin ωx
的图象向左平移而得到,所以φ>0 排除B 和D ,由A,C
知φ=6
π;
ω值的确定可用“关键点对等法”, 图1 因点(12
11π,0)是“五点法”中的第五个点,
∴ω·12
11π
+6
π=2π 解得ω=2, 故选C .
例2.图2是函数y =Asin(ωx+φ)图象上的一段,
12
11π1211πx
y
2 -
(A >0,ω>0,φ∈(0,2
π)),求该函数的解析式.
解法一:观察图象易得A =∴T =2×(87π-83π
)=π,
∴ω=ππ
2=2.
∴y =2sin(2x+φ).
下面用“关键点对等法”来求出 图2 φ的值,由
2×83π
+φ=π(用“第三点”) 得φ=4π
∴所求函数解析式为
y =2sin(2x+4π
).
说明:若用“第二点”,可由2×8π +φ=2
π
求得φ的值;
若用“第五点”,可由2×87π
+φ=2π求得φ的值.
解法二:由解法一得到T= π,ω=2后,可用“解方程组法”求得φ与A 的值,∵点(0,2)及点(
8

,0)在图象上, ∴ Asin φ=
2
(1)
Asin(2×83π
+φ)=0 (2) 由(2)得 φ=k π-4
3π(k ∈Z), 又φ∈(0,2
π),
∴只有K =1,得φ=4π
, 代人(1)得A =2.
∴所求函数解析式为 y =2sin(2x+4π
).
0 1
4
2
x
y
例3.已知函数y =Asin(ωx+φ) (A >0,ω>0, φ<2
π)图象上的一部分如图3所示,则必定有( )
(A) A=-2 (B )ω=1 (C )φ=3
π
(D )K =-2
解:观察图象可知 A =2,k =2. ∴y =2sin(ωx+φ)+2 下面用“解方程组法”求φ与ω的值.
∵ 图象过点(0,2+3)、(-6
π
,2)
∴ 2+3=2sin φ+2 图3
2=2sin(-6
π
ω+φ)+2 解得ω=2,φ=3
π
故选C.
例4.如图4给出了函数y =Asin(ωx+φ)(A >0,ω>0, φ <2
π)图象的一段,求这个函数的解析式.
解:由图象可知 T=2×(4-1)=6,
∴ω=
6
2π=3π
,∴y =2sin (3πx +φ) 下面用“特殊点坐标法”求φ,
∵ 图象过点(1,2)
∴2=2sin(3π
×1+φ), 又 φ <2
π 图4
∴只有φ=6π
∴所求函数解析式为y =2sin(3πx +6π
).

2+3


4 6
π-

说明:本题φ的值也可由“关键点对等法”来求得,
如令3π×1+φ=2π 或3π×4+φ=23π
等均可求得φ的值.。

相关文档
最新文档