正、余弦函数的图像教学设计(一等奖)
1.4.1《正弦函数余弦函数的图像》教案

1.4.1《正弦函数余弦函数的图像》教案篇一:正弦函数余弦函数的图像一、教学目标1. 知识与能力能够正确理解正弦函数和余弦函数的定义,并能够绘制它们的图像。
2. 过程与方法学会利用函数的性质和特点绘制函数的图像。
3. 情感态度价值观通过绘制正弦函数和余弦函数的图像,培养学生对数学的兴趣,提高他们的数学解决问题的能力。
二、教学重难点1. 教学重点正弦函数和余弦函数的定义,以及它们的图像特点。
2. 教学难点学生可能对正弦函数和余弦函数的周期性特点理解困难,需要适当的引导和解释。
三、教学过程1. 导入通过展示一张正弦函数和余弦函数的图像,并向学生提问:“这是什么图像?它们有什么特点?”引导学生思考,激发他们的兴趣。
3. 练习让学生通过例题练习,掌握正弦函数和余弦函数的图像特点。
指导学生如何根据函数的性质绘制出函数的图像。
4. 拓展让学生利用计算机绘制正弦函数和余弦函数的图像,并与手绘的图像进行比较,加深对函数图像的理解。
6. 反思让学生总结本节课的学习收获和问题,激发他们对数学学习的兴趣。
四、教学资源1. PPT课件2. 正弦函数和余弦函数的图像3. 计算机绘图软件五、教学评价1. 提问通过提问考察学生对正弦函数和余弦函数的理解程度。
2. 练习布置练习题,检验学生对函数图像的掌握情况。
3. 课堂表现评价学生在课堂上的表现,包括学习态度和参与程度。
六、教学反思1. 教学方法在本节课的教学过程中,需要充分引导学生自主学习,培养他们的解决问题的能力。
2. 教学内容应该注重对正弦函数和余弦函数图像特点的深入讲解,让学生掌握绘制函数图像的方法。
七、教学改进在后续的教学中,可以增加案例分析和实际应用的讲解,让学生更好地理解正弦函数和余弦函数的图像特点。
注重对学生自主学习和实践能力的培养。
【教案】正弦函数余弦函数的图象优质课比赛教案

【关键字】教案正弦函数、余弦函数的图象一、教材分析《正弦函数的图像》是高中《数学》必修4第四章第三节的内容,其主要内容是正弦函数的图像。
过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学了锐角的正弦函数和任意角的正弦函数,在此基础上来学习正弦函数的图像,为今后正弦函数的性质、余弦函数、正切函数的图像与性质、函数的图像的研究打好基础,起到了承上启下的作用。
因此,本节的学习有着极其重要的地位二、教学目标1.知道借助单位圆画出函数y=sinx在[0,2]的图象的方法。
2.理解余弦函数y=cosx的图象可由正弦函数y=sinx的图象向左平移/2得到。
3.掌握五点法作图。
能运用正弦函数和余弦函数的性质指导作图,培养数形结合的数学思想方法。
三、教学重难点教学重点:用五点法作正弦函数和余弦函数的大致图象。
教学难点:利用单位圆法作正弦函数y=sinx的图象。
四、辅教工具:多媒体课件平台:POWERPOINT、FLASH五、教学过程(一)新课引入多媒体FLASH动画演示:“装满细沙的漏斗在做单摆运动时,沙子落在与单摆运动方向垂直运动的木板上的轨迹”思考:1、该曲线是何曲线?2、生活中你还见过哪些与此相似的线?3、你有办法画出该曲线的图像吗?(二)新课1、根据正弦函数的周期性,讲解正弦线的概念及做法。
2、课件演示:“正弦函数图像的几何作图法”教师引导:在直角坐标系的x轴上任意取一点O1,以O1为圆心作单位圆,从圆O1与x轴的交点A起把圆O1分成12等份(份数宜取6的倍数,份数越多,画出的图像越精确),过圆O1上的各分点作x轴的垂线,可以得到对应于0、、、、……、等角的正弦线,相应地,再把x轴上从0到这一段(≈6.28)分成12等份,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,再用光滑的曲线把这些正弦线的终点连结起来,就得到了函数,的图像,因为终边相同的角有相同的三角函数值,所以函数在的图像与函数,的图像的形状完全一样,只是位置不同,于是只要将它向左、右平行移动(每次个单位长度),就能够得到正弦函数,的图像,即正弦曲线。
正弦、余弦、正切函数省公开课获奖课件说课比赛一等奖课件

5 如图,已知Rt△ABC中,∠C=90°,AC=4,tanA = 旳长是( )
A.2 B.8 C.2 5 D.4 5
1 2,则BC
总结
求锐角旳正弦值旳措施: 1.没有直接给出对边或斜边旳题目,一般先根据勾
股定理求出所需旳边长,再求正弦值. 2.没有给出图形旳题目,一般应根据题目,画出符
下面图1和图2中各有一种比较陡旳梯子,你能把它 们找出来吗?说说你旳理由。
图1
图2
w 一样长旳梯子旳陡、梯子旳放置角度(倾 斜角)、垂直高度和水平宽度它们之间有什么 关系?
梯子越陡——倾斜角__越_大__ 倾斜角越大——垂直高度与梯子长旳比_越_大_ 倾斜角越大——水平宽度与梯子长旳比__越_小__ 倾斜角越大——垂直高度与水平宽度旳比_越_大___
合题意旳图形,搞清所求角旳对边与斜边,再求 对边与斜边旳比. 3.题目中给出旳角不在直角三角形中,应先构造直 角三角形再求解.
延伸:由上面例1旳计算,你能猜测∠A,∠B旳正弦、余弦、正 切值有什么规律吗?
结论:一种锐角旳正弦等于它余角旳余弦,或一种锐角旳余弦 等于它余角旳正弦,两个角∠A,∠B旳正切值旳乘积等于1.
tan
A=
A的对边 A的邻边
回味无穷
• 定义中应该注意旳几种问题:
1.sinA,cosA,tanA, 是在直角三角形中定义旳, ∠A是锐 角(注意数形结合,构造直角三角形).
2.sinA,cosA,tanA, 是一种完整旳符号,表达∠A旳正切, 习惯省去“∠”号;
3.sinA,cosA,tanA, 是一种比值.注意比旳顺序,且 sinA,cosA,tanA, 均﹥0,无单位.
正弦函数、余弦函数的图象和性质的一等奖说课稿3篇

1、正弦函数、余弦函数的图象和性质的一等奖说课稿一、教材分析1. 地位与重要性“正弦函数、余弦函数的图象和性质”一节是高中《数学》第一册(下)的重要内容,这一节共分为四个课时。
本课为第二课时,其主要内容是通过观察正弦线、余弦线及正、余弦曲线研究正、余弦函数性质中最基本的定义域与值域。
通过对这一节课的学习,既可加深学生对单位圆、正弦线、余弦线及正、余弦函数图象的认识,又可加强学生对三角函数概念的理解,还为后面其它性质的学习作好准备,起到承上启下的重要作用。
2. 教学目标:(1)能力目标:①培养学生的观察能力、分析能力、归纳能力、表达能力;②培养学生数形结合、类比等思想方法;③培养学生进行数学交流,获得数学知识的能力。
(2)情感目标:培养学生勇于探索,勤于思考的精神。
(3)知识目标:①使学生正确理解正、余弦函数的定义域、值域的意义;②会求简单函数的定义域、值域。
3. 教学重、难点:重点:正弦、余弦函数的定义域和值域。
理解并掌握正、余弦函数的定义域、值域是高中数学的重要内容,也是大纲的明确要求。
复习好三角函数定义及正弦线、余弦线等有关知识是解决问题的关键。
难点:有关函数定义域、值域的求解。
解三角函数问题时,学生普遍存在会而不对,对而不全,造成失误的很大原因来自定义域和值域问题,往往不注意角的范围,在求最值方面更为突出。
二、教法分析:根据上述教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化教学改革,确定本课主要的教法为:(1)讨论式教学:通过学生对图形的观察,让学生分组讨论、交流、总结,并发表意见,说出正弦、余弦函数的定义域与值域。
(2)讲议结合教学:教师适时指导、分析、讲解和提问,并及时对学生的意见进行肯定与评价。
(3)电脑多媒体辅助教学:借助电脑多媒体引导学生观察图形,使问题变得直观,易于突破;同时其灵活多样的形式可以极大地提高学生的学习兴趣;其软件交互功能可以帮助教师更好地实施教学,加大一堂课的信息量,使教学目标更好的实现。
1.4.1《正弦函数余弦函数的图像》教案

1.4.1《正弦函数余弦函数的图像》教案【摘要】本教案旨在帮助学生深入理解正弦函数和余弦函数的图像特点。
文章首先介绍了正弦函数和余弦函数在数学中的重要性,然后概述了本教案的主要内容和目的。
接着分别讨论了正弦函数和余弦函数的图像特点,包括周期、振幅、相位等。
通过具体的案例分析,帮助学生更好地理解函数图像的绘制方法和规律。
在结尾部分,对本教案进行了总结,并提出了相应的教学建议,同时展望了学生在学习正弦函数和余弦函数图像时可能取得的进展和突破。
通过本教案的学习,学生将能够掌握正弦函数和余弦函数的图像特点,提高数学学习的效率和兴趣。
【关键词】正弦函数、余弦函数、图像、教案、概述、特点、案例分析、总结、教学建议、展望。
1. 引言1.1 1.4.1《正弦函数余弦函数的图像》教案正弦函数和余弦函数是高中数学中重要的函数之一,它们在数学中有着广泛的应用。
本教案将重点讲解正弦函数和余弦函数的图像特点,帮助学生更好地理解和掌握这两个函数的性质。
在学习正弦函数的图像特点时,我们将介绍正弦函数的周期、幅值、对称轴等基本概念,并通过实例演示如何绘制正弦函数的图像。
我们也会讲解正弦函数的性质,如奇偶性、单调性等,以便学生更好地应用正弦函数解决实际问题。
通过本教案的学习,学生将能够准确绘制正弦函数和余弦函数的图像,并理解它们的基本特点。
学生还将学会如何利用正弦函数和余弦函数解决实际问题,提高数学应用能力。
希望本教案能够对学生的数学学习起到一定的帮助,让他们更加喜爱数学这门学科。
2. 正文2.1 引言在本节课程中,我们将学习正弦函数和余弦函数的图像特点。
正弦函数和余弦函数是我们在数学中经常接触到的函数,它们在几何学、物理学等领域也有广泛的应用。
通过学习它们的图像特点,我们可以更好地理解它们的性质和规律。
正弦函数是一种周期函数,它的图像呈现出波浪形状。
正弦函数的周期为2π,在每个周期内有一个最大值和一个最小值,这些点称为正弦函数的极值点。
课件:正弦函数、余弦函数的图像与性质市公开课一等奖省赛课获奖PPT课件

2
2
;
(3)由 π2 2kπ 2x π4 π2 2kπ
得 π8 kπ x 3π8 kπ(k Z). 第20页
由π2 2kπ 2x π4 3π2 2k
得 3π8 kπ x 7π8 kπ (k Z)
函数y
1 2
cos2
x
sin
x
cos
x
3 2
sin2
x
的增区间:[π8 kπ,3π8 kπ] (k Z) ;
回顾:
1. 三角函数是以角(实数)为自变量函数.
y sin x, x R
2. 惯用画图方法: 描点法
y =sinx 过点
( ,sin ),( ,sin ) 6 63 3
而 sin 3 0.866,不便于描点 32
故介绍另一个画法:几何法(即利用三角函 数线画图)
第1页
正弦函数图像
1
cos2
x
sin
x
cos
x
3
sin 2
x,x
R,求
:
2
2
(1)函数的最大值、最小值 ;
(2)函数的最小正周期 ;
(3)函数的单调区间; (4)函数的图象是正弦函数 y sin x 经过怎样的变化得到的?
解:
y
1 2
1
cos 2
2x
1 2
sin
2x
3 2
1
cos 2
2x
1
1 2
sin
2x
1 2
cos 2x
y cos x, x 0,2
图象与x轴交点
(
2
,0)
(
3 2
,0)
图象最低点 ( ,1)
1.4.1《正弦函数余弦函数的图像》教案

1.4.1《正弦函数余弦函数的图像》教案一、教学目标1. 知识与技能:掌握正弦函数和余弦函数的定义和性质,能够准确地绘制正弦函数和余弦函数的图像,并用函数图像表示周期现象。
2. 过程与方法:通过观察和分析,培养学生绘制函数图像的能力,提高数学思维和分析问题的能力。
3. 情感态度和价值观:培养学生对数学知识的兴趣,增强学习数学的自信心。
二、教学重点与难点1. 教学重点:正弦函数和余弦函数的定义和性质,函数图像的绘制方法。
2. 教学难点:函数图像的周期性表现。
四、教学过程1. 引入问题为了引起学生的兴趣,可以通过提出一个问题引入正弦函数和余弦函数的教学内容,比如:在日常生活中我们经常遇到周期性的现象,比如四季更替、日升月落等,你知道如何用数学函数来描述这些现象吗?2. 理论学习教师介绍正弦函数和余弦函数的定义,及其性质,包括周期性、奇偶性、对称性等。
然后,通过示范和解释,教师讲解如何绘制正弦函数和余弦函数的图像,包括如何确定周期、振幅、相位等参数。
3. 练习与训练让学生进行简单的练习,让他们根据已知的函数,绘制相应的函数图像,加强他们的绘图能力和对函数图像的认识。
4. 拓展应用通过讲解正弦函数和余弦函数在日常生活中的具体应用,比如声音的频率、天体运动的规律等,引导学生将知识应用于实际问题中,并启发他们对数学知识的兴趣。
5. 总结反思教师对本节课的重点内容进行总结,并引导学生进行反思,总结学习方法和技巧,以及重点难点的突破方法。
五、教学手段1. 课件2. 黑板3. 教学实例4. 练习题六、教学评价1. 练习题考核通过练习题考核学生对正弦函数和余弦函数的理解和掌握程度。
2. 课堂表现评价通过观察学生的课堂表现,包括思维活跃程度、问题解决能力等来评价学生的学习情况。
七、教学反思本节课教学设计是以学生为中心的,注重培养学生的数学思维能力和实际应用能力,通过引入问题、理论学习、练习训练、拓展应用等环节,使学生能够全面地理解和掌握正弦函数和余弦函数的知识,并能在日常生活中灵活运用。
《正弦函数、余弦函数的图象》教学设计

《正弦函数、余弦函数的图象》教学设计正弦函数、余弦函数的图象一、教学目标 (一)学习目标1.会用单位圆中的三角函数线画出正弦函数图象.2.会用“五点法”作出正弦函数和余弦函数简图.3.掌握作正弦函数和余弦函数图象的特征,能利用其解决三角不等式等问题. (二)学习重点正弦函数和余弦函数图像的作法. (三)学习难点1.用单位圆中的正弦线作正弦函数的图像.2.运用图象变换法作余弦函数图象. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第30页到32页.(2)想一想:用三角函数线如何画正弦函数的图象. (3)画一画:三角函数线. 2.预习自测(1)给定角α,画出它的的正弦线、余弦线.(2)任意给定一个实数x ,有 唯一确定的值 x sin (或x cos )与之对应,由这个对应法则所确定的函数sin y x =(或cos y x =)叫作正弦函数(或余弦函数),其定义域为R .(3)用五点法作图,在正弦函数]2,0[,sin π∈=x x y 的图象上,起关键作用的5个点为:()0,0 、_,12π⎛⎫ ⎪⎝⎭____、___(),0π___、___3,12π⎛⎫- ⎪⎝⎭____、___()2,0π__.(二)课堂设计 1.知识回顾(1)正弦线、余弦线:设任意角α的终边与单位圆相交于点()P x y ,,过P 作x 轴的垂线,垂足为M ,则有向线段 PM 叫做角α的正弦线,有向线段 OM 叫做角α的余弦线.(2)函数图像的画法(描点法):列表、描点、连线. 【设计意图】回顾旧知,让探究始于思维邻近发展区. 2.问题探究探究一 如何得到正弦函数sin y x =的图象?学生方法:列表描点法.(步骤:列表,描点,连线)如果我们仍用描点法来画正弦函数图象,由于对于角的每一个取值,在计算相应的函数值时,都是利用计算机或数学用表得来的,大多是近似值,因此不易描出对应点的准确位置,画出的图象不够准确.为此我们应考虑其他方法来作正弦函数的图象. 【设计意图】利用已有知识经验解决新问题. (一)正弦函数的图象(1)几何法:用单位圆中的正弦线----几何画法;第一步:列表.在平面内建立一平面直角坐标系,然后在直角坐标系的x 轴上任意取一点1O ,以1O 为圆心作单位圆,从⊙1O 与x 轴的交点A 起把⊙1O 分成12等份(份数宜取6的倍数,份数越多,画出的图象越精确).过⊙1O 上的各分点作x 轴的垂线,可以得到对应于0、6π、、、…2π等角的正弦线(例如有向线段1O B 对应于2π角的正弦线).第二步:描点.把x 轴上从0到2π这一段(2π≈6.28)分成12等份(例如,从原点起向右的第四个点,就是对应于2π角的点),把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合(例如,把正弦线1O B 向右平移,使点1O 与x 轴上的点2π重合).第三步:连线.把这些正弦线的终点用平滑曲线连接起来.xy2π3π2ππ2BO 1OA我们看到的这段光滑曲线就是函数sin y x =在[]0,2x π∈上的函数.因为终边相同的角有相同的三角函数值,所以函数sin y x =在221(0)x k k k Z k ππ∈∈≠[,+],且上的图象与函数sin y x =在[]0,2x π∈上的图象的形状完全一样,只是位置不同,于是我们只要将函数sin y x =,[]0,2x π∈的图象向左、右平行移动(每次π2个单位长度),就可以得到正弦函数sin y x =在x R ∈上的图象.xy5π4π3π2ππ-π-3π-2π-4x-5πO这时,我们看到的这支曲线就是正弦函数sin y x =在整个定义域上的图象,我们也可把它称为正弦曲线.【设计意图】让学生体会原有的描点法的优缺点:精确度较高但步骤繁琐.思考:用前面的方法来作图象,虽然比较精确,但不太实用,我们该如何快捷地画出正弦函数的图象呢?(2) 用五点法作正弦函数的简图在函数]2,0[,sin π∈=x x y 的图象上,起着关键作用的点只有以下五个:3()(,)()0()(,01,0212,0)2ππππ, , , -, ,事实上,描出这五个点后,函数]2,0[,sin π∈=x x y 的图象的形状就基本上确定了.因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑曲线将它们连接起来,就可得到函数的简图.今后,我们将经常使用这种近似的“五点(画图)法”.【设计意图】让学生通过前面作的正弦函数的图象,捕捉这种周期函数图象的关键信息,归纳简图作法的关键节点与图象大致走势,培养学生的图形直观,归纳总结的能力. 探究二 如何得到余弦函数cos y x =的图象?(二)余弦函数的图象●活动①:你能根据诱导公式,以正弦函数的图象为基础,通过适当的图形变换得到余弦函数的图象吗?(1)图象变换法:利用图象平移,sin()cos 2x x π+=,将正弦函数sin y x =的图象向左平移2π个单位即可得到余弦函数cos y x =的图象.由诱导公式可知:()sin()2=cossin 2y x x x ππ==++余弦函数cos y x x R =∈,与函数2)sin(y x x R π=∈+,是同一个函数.而2)sin(y x x R π=∈+,的图象可通过将正弦曲线向左平行移动2π个单位长度而得到.现在看到的曲线也就是余弦函数cos y x =在x R ∈上的图象,即余弦曲线. (2)五点法:●活动②:类似于正弦函数图象的5个关键点,请找出余弦函数的5个关键点,并填入下表,然后作出]2,0[,cos π∈=x x y 的简图x x cos同样,可发现在函数]2,0[,cos π∈=x x y 的图象上,起着关键作用的点是以下五个:0,1013()(,)()(,)()02,122ππππ, , ,-, , 与画函数]2,0[,sin π∈=x x y 的简图类似,通过这五个点,可以画出函数]2,0[,cos π∈=x x y 的简图.●活动③ 巩固基础,检查反馈 例1用“五点法”作出下列函数的简图(1) []12sin 0,2y x x π=∈+,; (2) []2cos 0,2.y x x π=+∈, 【知识点】五点法作三角函数的图象 【数学思想】数形结合x yx y o【思路点拨】在[]0,2 π上找出五个关键点,用光滑的曲线连接即可. 【解题过程】(1)列表:x 0 2ππ 32π 2π sin x 0 1 0 -1 0 12sin x +131-11在直角坐标系中描出五点 ()30,1,3,1,1,2,122()()ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭, , , ,,然后用光滑曲线顺次连接起来,就得到[]12sin 0,2y x x π+∈=,的图象.(2)列表:x 0 2ππ32π2π cos x 1 0 -1 0 1 2cos x +32123描点连线,如图【设计意图】(1)巩固新知;(2)从层次上逐层深化、拾级而上,为往后学习三角函数图像的变换打下一定的基础. 同类训练用五点法作函数2cos()3y x π=+的简图.【知识点】五点法作()cos y A x ωϕ=+的函数图像 【数学思想】数形结合,函数复合 【思路点拨】令03x π+=,2π,π,32π,2π可得275-,36363x πππππ=, , , 【解题过程】(1)列表:3x π+2π π32π2π x 3π-6π 23π 76π 53π2cos 3x π⎛⎫+ ⎪⎝⎭2 0-2 0 2(2)描点连线xy5π37π62π3π6-π3O【设计意图】 在例1的基础上做变式拓展,培养整体思想与复合函数的思想. ●活动4 强化提升、灵活应用例3 画出sin y x =的简图,并根据图像写出12y ≥时x 的集合. 【知识点】三角函数线和三角函数图像的应用 【数学思想】数形结合【思路点拨】利用正弦函数与余弦函数图象或单位圆寻求满足条件的取值.【解题过程】利用“五点法”作出sin y x =的简图,过点10,2⎛⎫⎪⎝⎭作x 轴的平行线,在[]0,2π上直线12y =与正弦曲线交于1,62π⎛⎫ ⎪⎝⎭,51,62π⎛⎫ ⎪⎝⎭两点.在[]0,2π内,满足12y ≥时x 的集合为566x x ππ⎧⎫≤≤⎨⎬⎩⎭.因此,当x R ∈时,若12y ≥,则x 的集合为522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【答案】522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【设计意图】让学生经历利用三角函数图像和三角函数线解决实际问题,在这一过程中巩固新知,感受数形结合的魅力.例3 判断方程 04xcos x -=根的个数.【知识点】三角函数图像的应用 【数学思想】函数方程与数形结合【思路点拨】当求解的方程不是普通方程时,经常采用数形结合法求解,即分别画出两个函数图象来求方程解的个数.【解题过程】设()() 4xf xg x cos x =,=,在同一直角坐标系中画出()()f x g x 与的图象,如图:由图可知,()()f x g x 与的图象有三个交点,故方程 04xcos x -=有三个根.【设计意图】让学生经历利用三角函数图像和三角函数线解决实际问题,在这一过程中巩固新知,感受数形结合的魅力. 3. 课堂总结 知识梳理(1) 正弦函数图象的几何作图法.(2) 正弦函数图象的五点作图法(注意五点的选取). (3) 由正弦函数图象平移得到余弦函数的图象. 重难点归纳(1)正、余弦函数图象的简单应用.(难点) (2)正、余弦函数图象的区别与联系.(易混点) (三)课后作业 基础型 自主突破1.下列叙述正确的是( )①,]02[y sinx x π∈=,的图象关于点()0P π,成中心对称; ②,]02[y cosx x π∈=,的图象关于直线x π=成轴对称; ③正、余弦函数的图象不超过直线11y y =和=-所夹的范围. A.0 B.1个 C.2个 D.3个【知识点】正弦函数、余弦函数的图象的认识.【解题过程】分别画出函数,]02[y sinx x π∈=,和,]02[y cosx x π∈=,的图象,由图象观察可知①②③均正确.【思路点拨】分别画出正弦函数、余弦函数的图象即可. 【答案】D.2.用五点法作函数2sin 1y x =-的图象时,首先应指出的五点的横坐标可以是( ) A.322ππππ0,, ,,2; B.3424ππππ0, , , ,; C.ππππ0, , 2, 3,4; D.26323ππππ0, ,,,. 【知识点】五点法作图的应用【解题过程】与作函数sin y x =的图象所取的五点的横坐标一样. 【思路点拨】 结合五点法作函数sin y x =的图象即可解答. 【答案】A.3.将余弦函数cos y x = 的图象向右至少平移m 个单位,可以得到函数sin y x =-的图象,则m =( ) A.2π B. π C. 32π D. 34π 【知识点】图象变换的应用【解题过程】根据诱导公式得,33sin cos cos 22y x x x ππ⎛⎫⎛⎫=-=-=-⎪ ⎪⎝⎭⎝⎭,故欲得到sin y x =-的图象,需将cos y x =的图象向右至少平移.,32π个单位长度.【思路点拨】 利用诱导公式或函数图象左右平移方法即可解答 【答案】C.4.函数sin []0,2y x x π=∈,的图象与直线12y =-的交点有( )A.1个B.2个C.3个D.4个 【知识点】正弦函数图象的应用 【数学思想】数学结合【解题过程】在[]0,2π内使1sin 2x =-的角71166x ππ为和所以sin []0,2y x x π=∈,的图象与直线12y=-有2个交点.【思路点拨】画出sin[]0,2y x xπ=∈,的图象与直线12y=-即可解答【答案】B5. 用“五点法”作出函数(sin02)y x xπ=-≤≤的简图.【知识点】“五点法”作图【数学思想】【解题过程】列表,描点、连线,如图所示.【思路点拨】利用关键的“五点”作图【答案】上图所示能力型师生共研6.函数cos cos0,2[]y x x xπ=∈+,的大致图象为()【知识点】函数图象的应用【数学思想】分类讨论思想【解题过程】由题意得32cos,02,2230,22x x xxyπππππ≤≤≤≤<<⎧⎪=⎨⎪⎩或【思路点拨】函数解析式含绝对值,一般原则去绝对值符号,画出分段函数图象,图象问题的选择题也可利用函数性质,例如单调性,对称性等解答.【答案】D7.求函数2sin1y x=+的定义域.【知识点】函数图象的应用【数学思想】数形结合 【解题过程】要使2sin 1y x =+有意义,则必须满足2sin 10x +≥,结合正弦曲线或三角函数线,如图所示:【思路点拨】利用正弦函数图象或三角函数线法.【答案】722,66x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭8.方程2co 0s x x -=的实数解的个数是__________.【知识点】余弦函数图象应用【数学思想】数形结合思想【解题过程】作函数2cos y x y x ==与的图象,如图所示,由图象,可知原方程有两个实数解.【思路点拨】作函数2cos y x y x ==与的图象.【答案】2自助餐1.以下对于正弦函数sin y x =的图象描述不正确的是( )A.在2,22[]x k k k πππ∈∈Z +,上的图象形状相同,只是位置不同B.关于x 轴对称C.介于直线11y y =和=-之间D.与y 轴仅有一个交点【知识点】正弦函数图象的应用.【解题过程】逐一判断.【思路点拨】利用正弦函数图象【答案】B2.用“五点法”作函数cos 2y x =的图象时,首先应描出的五个点的横坐标是()A.322ππππ0, , , ,2B.3424ππππ0, , , , C.0234ππππ,, , , D.26323ππππ0,, , , 【知识点】“五点法”作余弦函数图象.【数学思想】转化与化归思想 【解题过程】令320222x ππππ=, , , 和,得30,424x ππππ=, , , 【思路点拨】利用作余弦函数图象的关键五点.【答案】B3.点,2M m π⎛⎫- ⎪⎝⎭在函数sin y x =的图象上,则m 等于( )A.0B.1C.-1 D .2【知识点】正弦函数的图象.【数学思想】【解题过程】由题意sin 1 1.2m m m π=∴-∴-,=,=-【思路点拨】点代入函数解析式.【答案】C4.在[]0,2π内,不等式3sin 2x <-的解集是( )A.(0,)πB. 4,33ππ⎛⎫ ⎪⎝⎭C. 45,33πππ⎛⎫⎪⎝⎭ D. 5,23ππ⎛⎫⎪⎝⎭【知识点】正弦函数的图象应用.【数学思想】数形结合思想【解题过程】画出[]sin 0,2y x x π=∈,的草图如下:【思路点拨】画出草图解不等式.【答案】C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.1正弦函数、余弦函数的图象
一教材分析
内容选自《普通高中课程标准实验教科书》人教A版必修4第一章第4节《三角函数的图象与性质》.本节课是在学生已经学习了任意三角函数的定义,三角函数线,三角函数的诱导公式等知识基础上进行学习的,主要是对正弦函数和余弦函数的图象进行系统的研究。
它既是前面所学内容的延续和深化,又为后面学习三角函数的性质奠定了知识与方法的基础,起着承上启下的作用.三角函数是数学中主要的数学模型之一,是研究度量几何的基础,又是研究自然界周期变化规律最强有力的数学工具.
二教学目标
知识与技能:了解如何应用正弦线作出正弦函数的图象;掌握利用图象变换作图的方法;掌握“五点法”做正弦函数、余弦函数的图象.
过程与方法:通过简谐运动实验,感知正弦、余弦曲线的形状;经历正弦线作正弦函数图象的过程,了解用正弦线作正弦函数图象的方法,通过观察图象发现确定函数图象形状的五个关键点,培养学生从一般到特殊、从特殊到一般的数学思维能力.
情态与价值观:激发学生的学习兴趣、增强学生学习数学的信心,让学生快乐地学习.三重点与难点
重点:正弦函数、余弦函数的图象;难点:用正弦线作出正弦函数的图象.
四教学手段与方法
教学手段:多媒体、实物投影仪、几何画板;教学方法:讲授、启发、探究发现教学.五教学基本流程
六教学过程
(一)引入新课
遇到一个新的函数,画出它的图象,通过观察图象获得对它的性质的直观认识,是研究函数的基本方法.为了获得正弦函数、余弦函数的图象,设计“简谐运动”实验,创设情境.
设计意图:明确研究思想;利用简谐振动图象让学生对正弦函数或余弦函数的图象有一个直观的印象.
师生活动:教师说明基本思路,指导学生做单摆简谐振动的实验,并将整个过程用实物投影仪投影到屏幕上,让学生观察漏斗中的细沙落在纸板上所形成曲线的形状.
[问题]如何作出正弦函数的精确图象?我们可以用单位圆中的三角函数线来刻画三角函数,是否可以用它来帮助作三角函数的图象呢?
设计意图:发现描点作图的局限性,出现思维障碍,引出利用正弦线作正弦函数图象的方法.
师生活动:教师引导学生回顾描点作图法,并指出描点法的不足,然后教师讲解并用几何画板演示用单位圆中的正弦线作正弦函数图象的方法.
(二)讲授新课
[问题1]利用正弦线作sin,[0,2]
y x xπ的图象.
=∈
(1)作直角坐标系,并在直角坐标系中y轴左侧画单位圆;
(2)把单位圆分成12等份(越多越准确);
(3)作各分点关于x轴的垂线,得到对应于各角的正弦线;
(4)找横坐标:把x轴上从0到2π这一段分成12等份;
(5)找纵坐标:把各角的正弦线向右平移,使它的起点与x轴上对应的点重合,从而得
到12条正弦线的12个终点;
(6)连线:用光滑的曲线将12个点依次从左至右连接起来,即得sin ,[0,2]=∈y x x π的图象.
设计意图:建立单位圆中的正弦线与正弦函数值之间的联系,了解利用正弦线作正弦函数图象的方法.
师生活动:教师用几何画板演示并提醒学生注意观察.
上面作图的过程采用了课本中介绍的方法,还可以采用事先制作的几何画板课件,采用几何画板的动态演示功能,点击动画点按钮,即可演示正弦函数的图像.
[问题2]如何作正弦函数sin ,=∈y x x R 的图象?
设计意图:理解正弦线“周而复始”的变化规律,从整体上认识正弦曲线.
师生活动:教师提示学生从正弦曲线的“周而复始”的变化规律进行思考、探究,利用其变化规律作图.由sin +2k )sin ,=∈x x k Z π(可知只须先作sin ,[0,2]=∈y x x π的图象,然后将此图象左右平行移动每次2π个单位长度,就可以得到sin ,=∈y x x R 的图象,即正弦曲线.教师用几何画板演示并提醒学生注意观察.
[问题3]如何作余弦函数cos,
y x x R的图象?
=∈
设计意图:知道正弦曲线与余弦曲线的关系,会用图象变换法作出余弦函数图象,从整体上认识余弦曲线.
师生活动:教师引导学生从sin x与cos x的关系思考、探究,结合诱导公式,回答两个函数之间的关系,用图象变换法作出余弦函数图象,教师用几何画板演示并提醒学生注意观察.
[问题4]在作出正弦函数的图象时,应抓住哪些关键点?
设计意图:进一步认识正弦曲线,引出“五点法”作图.
师生活动:让学生观察找出sin,[0,2]
y x xπ图象上的五个关键点后教师说明:事实上,
=∈
只要指出这五个点,sin,[0,2]
y x xπ的图象形状就基本定位了.因此在精确度要求不
=∈
高时,我们就常先找出这五个关键点,然后用光滑的曲线将它们连结起来,就得到函数的简图,这种作图的方法称为“五点法”作图.教师用几何画板演示并提醒学生注意观察.
[问题5]观察余弦函数的图象,类比正弦函数,你能找出确定余弦函数图象的五个关键点吗?然后作出cos,[0,2]
y x xπ的简图.
=∈
设计意图:巩固“五点法”作图.
师生活动:教师指导学生观察、探究,得出五点后由要求学生自己动手作出
y x xπ的简图,然后展示(电子展台)各自结果,互相评价.
cos,[0,2]
=∈
(三)讲解范例
例1:用五点法画出函数1+sin,[0,2]
y x xπ的简图.
=∈
设计意图: 通过对典型例题的板演,让学生明确五点法作图的步骤,突出本节课的重点,培养学生规范的表达能力.
师生活动:“问答式”教师板演师生共同完成后让学生总结用五点法作图的步骤. (四)练习
画出函数-cos,[0,2]
y x xπ的简图.
=∈
设计意图: 巩固“五点法”作图与图象变换作图.
师生活动:让学生通过已有的知识画出-cos,[0,2]
=∈
y x xπ的图象,然后展示(电子展台)互相评价,可能既有“五点法”又有图象变换法.
思考:能否从函数图象变换的角度出发,利用sin,[0,2]
=∈
y x xπ的图象来得到
=∈
y x xπ的图象得到函数y x xπ的图象?同样的,能否从函数cos,[0,2]
=∈
1+sin,[0,2]
y x xπ的图象?
-cos,[0,2]
=∈
设计意图:使学生从图象变换的角度认识函数之间的关系.
师生活动:教师指导学生思考、讨论、探究得出结论后,教师总结最后教师用几何画板演示并提醒学生注意观察.
(五)小结
[问题1]本节课学习了哪些内容?
[问题2]你学会了哪些学习方法?
设计意图:巩固本节内容与方法,同时培养学生的归纳概括能力.
师生活动:教师提问,学生回答补充.
(六)作业:教科书46页习题1.4A组1.
设计意图:借助作业,达到熟练掌握本节内容与方法的目的,同时为教师有针对性的辅导做准备。