函数的三种表示方法的优点、缺点对比
关于函数数学知识点归纳

关于函数数学知识点归纳1、变量与常量在其中一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在其中一变化过程中有两个变量某与y,如果对于某的每一个值,y都有唯一确定的值与它对应,那么就说某是自变量,y是某的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量某的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)某某某像法用某某某像表示函数关系的方法叫做某某某像法。
4、由函数解析式画其某某某像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
(一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。
2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。
(2)掌握三种表示法,列表法、解析法、某某某象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。
(3)如果y=f(u),u=g(某),那么y=f[g(某)]叫做f和g的复合函数,其中g(某)为内函数,f(u)为外函数3、求函数y=f(某)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(某)的解析式求出某=f—1(y);(3)将某,y对换,得反函数的习惯表达式y=f—1(某),并注明定义域注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起②熟悉的应用,求f—1(某0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算(二)、函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。
八年级数学-函数的表示法及其优点和不足

八年级数学-函数的表示法及其优点和不足答:表示函数有三种方法:解析法,列表法,图象法.结合其意义、优点与不足,分别说明如下.(1)利用解析式(如学过的代数式)表示函数的方法叫做解析法.用解析式表示函数的优点是简明扼要、规范准确.已学利用函数的解析式,求自变量x=a时对应的函数值,还可利用函数的解析式,列表、描点、画函数的图象,进而研究函数的性质,又可利用函数解析式的结构特点,分析和发现自变量与函数间的依存关系,猜想或推导函数的性质(如对称性、增减性等),探求函数的应用等.不足之处是有些变量与函数关系很难或不能用解析式表示,求x与y的对应值需要逐个计算、有时比较繁杂.(2)通过列表给出y与x的对应数值、表示y是x的函数的方法叫做列表法.列表法的优点是能鲜明地显现出自变量与函数值之间的数量关系,于是一些数学用表应运而生.(3)利用图象表示y是x的函数的方法叫做图象法.用图象表示函数的优点是形象直观,清晰呈现函数的增减变化、点的对称、最大(或小)值等性质.图象法的不足之处是所画出的图象是近似的、局部的,观察或由图象确定的函数值往往不够准确.由于函数关系的三种表示方法各具特色,优点突出,但大都存在着缺点,不尽人意,所以在应用中本着物尽其用、扬长避短、优势互补的精神,通常表示函数关系是把这三种方法结合起来运用,先确定函数的解析式,即用解析法表示函数;再根据函数解析式,计算自变量与函数的各组对应值,列表;最后是画出函数的图象.注意问题设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y 都有唯一的值与它对应.那么就说x是自变量,y是x的函数.这段话给出了函数的概念,要全面理解它的含义,应从字词语句入手思考.(1)函数的概念的基础是一个变化过程中有两个变量x与y,要研究它们之间的关系.(2)对于x的每一个值,就是变量x允许取的任意一个值,这些值组成了自变量x的取值范围.(3)对于x的每一个值,y都有唯一的值与它对应,说明变量x 与y有确定的对应关系,即y是x的函数.其中“唯一”的意义是“有一个且只有一个”.综上所述,不难发现,(1)是基础,(2)是自变量x的取值范围,(3)是x与y的对应规律.因为函数的本质是对应,函数关系是变量x与y的一种特殊关系.所以自变量的取值范围和两个变量的对应规律缺一不可.在初中阶段,理解函数概念必须抓住这两个要素.要判断两个(或几个)函数是不是同一个函数,也必须根据函数的这两个要素思考、鉴别、确定,即不仅要求它们的对应规律相同,还需要它们的自变量的取值范围相同.。
函数的表示方法》教案

函数的表示方法》教案缺点:对于非常复杂的函数,解析式可能很难得到或者很难处理.2)用列表法表示函数关系优点:适用于简单的函数,易于列出表格,易于找出自变量和函数值之间的对应关系.缺点:难以处理连续变化的函数,也难以处理非常复杂的函数.3)用图象法表示函数关系优点:通过图像可以直观地看出函数的性质,能够帮助我们更好地理解函数的变化规律.缺点:图象法只适用于可视化的函数,不适用于非常复杂的函数或者无法可视化的函数.个人看法:三种表示函数的方法各有其优缺点,需要根据具体情况选择合适的方法来表示函数关系.在实际应用中,可以根据问题的性质和需要,选择最适合的方法来解决问题.四.拓展应用1、分段函数的概念;2、设计掷骰子游戏的分段函数;3、小结.函数的表示方法》教案教学目标:1.知识目标:1) 掌握函数的三种常见表示方法;2) 了解函数表示形式的多样性,以及如何进行转化;3) 能够根据要求求出函数的解析式,了解分段函数及其简单应用。
2.能力目标:1) 使学生掌握函数的三种常用表示方法的选用;2) 使学生初步认识如何用函数的知识解决具体问题;3) 使学生初步了解数形结合的思想方法。
3.情感目标:通过本节课的教学,使学生认识到数学源于生活,数学也可应用于生活,能够解决生活中的实际问题。
教学重难点:重点:对函数图象的分析。
难点:通过函数的解析式分析函数的图象。
教学过程:一.复引入1.复函数的概念和定义域对应法则;2.回顾初中时如何作函数y=2x+1的图象。
二.概念形成1.引入人口普查实例,讨论列表法表示函数关系的优缺点;2.探讨图象法表示函数关系的优缺点;3.解析法表示函数关系的定义和优缺点。
三.概念深化1.讨论三种表示函数的方法各自的优缺点;2.总结如何根据问题的性质和需要选择最适合的方法来表示函数关系。
四.拓展应用1.引入分段函数的概念;2.设计掷骰子游戏的分段函数;3.小结。
改写后的教案通过删除明显有问题的段落,剔除了格式错误,同时对每段话进行了小幅度的改写,使其更加简洁明了,易于理解。
细说函数的三种表示方法

1、细说函数的三种表示方法2、一次函数漏(错)解例析3、求函数最值问题请注意取值范围4、画好实际问题中的一次函数图象5、运用一次函数图象解题6、一次函数与不等式(组)结合来解题1、细说函数的三种表示方法本章的学习,我们将遇到函数的三种表示方法,即解析式法、列表法、图象法。
下面与大家细说这三种方法的优缺点:一、解析式法用数学式子表示函数关系的方法叫解析式法.如:y=2x+4,s=-5t+600等.例1、有一个水箱,它的容积为500L,水箱内原有水200L,现要将水箱注满,已知每分钟注入水10L.请你写出水箱内水量Q(L)与时间t(分)的函数关系式,并注明取值范围.【分析】本题是求实际问题的函数解析式,要求我们会用函数解析式表示变量之间的关系.解:所列函数关系式为:Q=200+10t(0≤t≤30).解析式法的优点:简单明了,能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。
缺点:在求对应值时,有时要做较复杂的计算;但有些函数,不一定能用解析式法表示或表示出来非常繁琐。
二、列表法列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值,这种表示函数关系的方法称为列表法。
优点:直观,即对于表中自变量的每一个值,不通过计算,就可从表中找到与它对应的函数值。
缺点:有局限性,即在表中不能把所有的自变量与函数对应值全部列出,而且从表中也不易看不出变量间的对应规律。
如下表,就是邮局信件的一种邮资表:信件的质量m(克) 0<m≤20 20<m≤40 40<m≤60 60<m≤80 邮费y(元)0.8 1.2 1.6 2.4从表中可以直观地看出y与m的对应关系。
三、图象法在平面直角坐标系中,以自变量的每一个值为横坐标,相应的函数值为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象,这种表示函数的方法称为图象法。
优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念图形化。
函数的表示方法

x … 10 20 30 40 50 60 …
y … 45 40 35 30 25 20 … 000000
x … 10 20 30 40 50 60 …
y … 45 40 35 30 25 20 … 000000
描点、连线.
10
描点、连线:
8
6
4
2
O 12 345x
3.甲车速度为20米/秒,乙车速度为25米/秒.现 甲车在乙车前面500米,设x秒后两车之间的距离为y 米.求y随x(0≤x≤100)变化的函数解析式,并画出函 数图象.
解:由题意可知:x秒后两车行驶路程分别是:甲车为20x
米,乙车为25x米,两车行驶路程差为:25x-20x=5x(米), 两车之间距离为(500-5x)米.所以y随x变化的函数关系式为: y=500-5x (0≤x≤100).
t/h 0 1 2 3 4 5 y/m 3 3.3 3.6 3.9 4.2 4.5
(1)在平面直角坐标系中描出表中数据对应的点,这些点
是否在一条直线上?由此你发现水位变化有什么规律吗? (2)水位高度y是否为时间t的函数? 如果是,试写出一个
符合表中数据的函数解析式,并画出这个函数的图象.这个函
数能表示水位变化的规律吗?
老张讲数学
函数的表示
函数的表示
表示函数有哪三种方法?
列表法、解析式法和图象法.
这三种表示的方法各有什么优点?
列表法比较直观、准确地表示出函数中两个变量之间的 关系;
解析式法比较准确、全面地表示出函数中两个变量之间的 关系;
图象法比较形象、直观地表示出函数中两个变量之间的关 系.
从全面性、直观性、准确性及形象性四个方面来总 结归纳函数三种表示方法的优缺点,填写下表:
第3课时 函数的三种表示方法

名校讲 坛
跟踪训练
(《名校课堂》19.1.2第3课时习题)一根蜡烛பைடு நூலகம்20 cm,蜡烛的燃烧速度是 5 cm/h. (1)写出蜡烛的剩余长度h与燃烧时间t之间的函数关系式; (2)画出这个函数的图象. 解:(1)h=20-5t(0≤t≤4). (2)列表:
下列说法错误的是( C ) A.当h=50 cm时,t=1.89 s C.h每增加10 cm,t减小1.23 s
B.随着h逐渐升高,t逐渐变小 D.随着h逐渐升高,小车的速度逐渐加快
《名校课堂》 名 校 名 师 打 造 更 多 名 校 选 择
巩固训 练
3.某型号汽油的金额y(单位:元)关于数量x(单位:L)的函数 图象如图所示,那么这种汽油的单价是每升 5.09 元. 4.某水库的水位在5小时内持续上涨,初始的水位高度为6米, 水位以每小时0.3米的速度匀速上升,则水库的水位高度y(米) 关于时间x(小时)(0≤x≤5)的函数解析式为 y=6+0.3x . 5.声音在空气中传播的速度y(m/s)(简称音速)与气温x(℃)之间的关系如下表 所示,从表中可知,音速y随气温x的升高而加快,在气温为20℃的一天召开运 动会,某人看到发令枪冒出的烟0.2 s后听到了枪声,则由此可知,这个人距 发令地点 68.6 m.
《名校课堂》 名 校 名 师 打 造 更 多 名 校 选 择
巩固训 练
6.(《名校课堂》19.1.2第3课时习题)某校办工厂年产值是15万元,计划以后 每年增加2万元. (1)写出年产值y(万元)与年数x之间的函数解析式,并画出函数图象; (2)估计5年后该工厂的产值. 解:(1)y=15+2x(x≥0),图象如下: (2)当x=5时,y=15+2×5=25. 答:估计5年后该工厂的产值为25万元.
函数的表示方法

(1)理解函数的三种表示方法, 在具体的实际问题中能够选用恰 当的表示法来表示函数;
(2)注意分段函数的表示方法 及其图像的画法.
日常生活中存在着丰富的对应关系.
(1)对于高一八班的每一位同学,都有一个学号 与之对应. (2)我国各省会,都有一个区号与之对应.
再如,某天一昼夜温度变化情况如下表
1993 34560.5
时刻 0:00 4:00 8:00 12:00 16:00 20:00 24:00
温度/(OC) -2 -5 4
9
8.5 3.5 -1
数学用表中的三角函数表,银行里的利息表,列车时刻表等
系的.公共汽车上的票价表
列表法的优点:
不必通过计算就知道当自变量取某些值时函数的
对应值。
3.图像法:用函数图像表示两个变量之间的对应 关系。
如:心电图,气象台应用自动记录器描绘温度随时间变 化的曲线,股市走向图等都是用图象法表示函数关系的.
例如: 我国人口出生率变化曲线:
图像法的优点: 能直观形象的表示出函数的变化情况。
• 函数的图像从“形”的方面揭示了函数的 变化规律,是数学的图形语言,图像法是 解决函数问题的常用方法,利用函数的图 像既有利于掌握各类函数的性质,又能运 用“数形结合”的方法去解决某些问题。
函数值;
(3)便于研究函数的性质。
注意:解析法表示函数是中学研究函数的主要 表示方法;用解析法表示函数时,必须注明函数 的定义域.
2.列表法:列出表格来表示两个变量的
的对应关系。
例如:
国内生产总值 :
单位:亿元
年份 1990
1991
函数的表示法

类比二次函数y= 类比二次函数 =x2 及二次函数y=( - 及二次函数 =(x-2 )2+1你 =( 你 有何感想? 有何感想?
问题探究
2x+3, x<- <-1, <- x2, -1≤x<1, < 4. 已知函数 (x)= 已知函数f x-1, - x≥1 .
(1)求f{f[f(-2)]} ;(复合函数) 求 - (复合函数) (2) 当f (x)=-7时,求x ; - 时求
欲改造营口开发区世纪广场中 心的圆形喷水池, 心的圆形喷水池,已知原喷水池直径为 20m, 20m,喷水池的周边靠近水面的位置安装 一圈喷水头,喷出的水柱在离池中心4m 一圈喷水头,喷出的水柱在离池中心4m 处达到最高,高度为6m 6m, 处达到最高,高度为6m,现设想在喷水 池的中心设计一个装饰物, 池的中心设计一个装饰物,使各方面喷 来的水柱在此处汇合, 来的水柱在此处汇合,这个装饰物的高 度应当如何设计? 度应当如何设计?
函数的表示法
函数表示法有几种?
函数表示法 解析法 图像法 列表法
一、函数的三种表示方法: 函数的三种表示方法:
定义:是把两个变量的函数关系,用一个等式来表示, 定义:是把两个变量的函数关系,用一个等式来表示, 1、解析法 简称解析式。 简称解析式。 优点:函数关系清楚, 优点:函数关系清楚,容易从自变量的值求出其对应 的函数值,便于用解析式来研究函数的性质。 的函数值,便于用解析式来研究函数的性质。 2、列表法 定义:是列出表格来表示两个变量的函数关系。 定义:是列出表格来表示两个变量的函数关系。 优点: 优点:不必通过计算就知道当自变量取某些值时函 数的对应值。 数的对应值。 3、图象法 定义:是用函数图象来表示两个变量的函数关系。 定义:是用函数图象来表示两个变量的函数关系。 优点:能直观形象地表示出函数的变化情况。 优点:能直观形象地表示出函数的变化情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优缺点
表示方法
优点
ቤተ መጻሕፍቲ ባይዱ缺点
1.图像法
表示函数形象、直观;
能清晰呈现函数的增减变化、点的对称,最大(或最小值)等问题。
所画出的图像是近似的、局部的;
由图像确定的函数值往往不够准确;
2.列表法
能鲜明地呈现出自变量和函数值之间的数量关系
只能列出部分自变量与函数的对应值,难易反映函数变化的全貌;
3.解析法
表示函数简明扼要、规范准确;
有些变量与函数关系很难或不能用解析式表示,求x与y的对应值需要逐个计算,有时比较复杂。
在定义域内不同部分上,有不同的解析表达式,这种函数称为分段函数。分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数值域的并集。分段函数虽然由几个部分组成,但它表示的是一个函数。