自回归移动平均模型
自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析

自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。
(自变量不直接含有时间变量,但隐含时间因素)1.自回归AR(p)模型(R:模型的名称 P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)(1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不受其他因素影响)yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关;εt不同时刻互不相关,εt与yt历史序列不相关。
式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定;yt当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系;yt-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值;φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达yt 依赖于过去的程度,且这种依赖关系恒定不变;εt随机干扰误差项,是0均值、常方差σ2、独立的白噪声序列,通过估计指定的模型获得。
(2)识别条件当k>p时,有φk=0或φk服从渐近正态分布N(0,1/n)且(|φk|>2/n1/2)的个数≤4.5%,即平稳时间序列的偏相关系数φk为p步截尾,自相关系数rk逐步衰减而不截尾,则序列是AR(p)模型。
实际中,一般AR过程的ACF函数呈单边递减或阻尼振荡,所以用PACF函数判别(从p阶开始的所有偏自相关系数均为0)。
(3)平稳条件一阶:|φ1|<1。
二阶:φ1+φ2<1、φ1-φ2<1、|φ2|<1。
φ越大,自回归过程的波动影响越持久。
(4)模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量相互独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性等造成的困难。
ARIMA模型

ARIMA模型1.理论ARIMA(自回归综合移动平均):是时间系列分析中最常见的模型,又称Box-Jenkins模型或带差分的自回归移动平均模型。
时间系列的模型确定:时间系列必做步骤:定义日期:点击数据、定义日期(根据数据的时间记录方式,后进行对应的方式定义并填入初始时间):若存在数据缺失:可以采用,该列数据的平均值进行填补或者采用临近的均值:(点击转换、替换缺失值),且需要时间顺序的按一定的顺序进行排序的数据才能进行时间序列的分析。
A.模型初步分析:首先通过分析看数据的模型图情况:(点击分析、时间序列分析、系列图(时间变量需要放入定义后的时间变量))平稳性:时间系列数据可以看作随机过程的一个样本,且根据1.:均值不随时间的变化;2.方差不随时间变化;3.自相关关系只与时间间隔有关而以所处的具体时刻无关。
通常情况下数据在一定的范围内(M±2*SD)波动的话属于平稳,并且如果数据有特别的向下或向上的趋势表明不属于平稳。
B.模型识别与定阶:自相关(ACF)和偏相关操作:(点击分析、时间序列、自相关):自相关系数(如果系数迅速减少的表明属于平稳,系数慢慢的减少说明属于非平稳的),ACF图也可以看出。
判断是否平稳后需要进行差分(平稳化的手段:一般差分、季节性差分)处理:(点击分析、时间系列、自相关(定义好差分介数)):ARIMA模型(p (ACF图:从第几个后进入(2*SD)里表明为几介后),d(差分:做几介差分平稳就填入几),q(PCF图:从第几个后进入(2*SD)里表明为几介后)),拖尾:按指数衰减(呈现正弦波形式),截尾:某一步后为零(迅速降为零)。
平稳化处理后,若偏自相关函数是截尾的,而自相关函数是拖尾的,则建立AR模型;若自相关函数是拖尾的,而偏自相关函数是截尾的,则建立MA模型;若偏自相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。
C.模型估计参数:对识别阶段所给初步模型的参数进行估计及假设检验,并对模型的残差序列做诊断分析,以判断模型的合理性。
时间序列计量经济学模型概述

时间序列计量经济学模型概述时间序列计量经济学模型是在经济学研究中广泛使用的一种方法,用于分析经济变量随时间的变化。
该模型基于时间序列数据,即经济变量在一段时间内的观测值。
时间序列计量经济学模型的核心是建立经济变量之间的关系,以解释和预测经济现象的变化。
其中最常用的模型是自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)和季节性时间序列模型。
自回归移动平均模型(ARMA)是一个包含自回归项和移动平均项的线性模型。
该模型以过去的观测值和随机项为输入,预测当前观测值。
ARMA模型基于假设,即经济变量的行为受到历史观测值的影响。
自回归条件异方差模型(ARCH)是一种考虑了随时间变化方差的模型。
该模型通过引入一个条件异方差项,模拟经济变量中的波动性。
ARCH模型的应用范围广泛,特别是在金融市场波动性分析中。
季节性时间序列模型用于分析具有明显季节性特征的经济变量,如销售额、就业人数等。
这些模型通常基于季节、趋势和随机成分的组合,以预测未来观测值。
在建立时间序列计量经济学模型时,常常需要进行模型识别、参数估计和模型诊断等步骤。
识别模型的目标是确定适当的模型结构,参数估计则是利用历史数据估计模型的参数值。
模型诊断用于检验模型的拟合程度和误差分布是否符合模型假设。
时间序列计量经济学模型在经济研究中有广泛的应用,例如预测未来经济指标、分析经济周期和波动性、评估政策效果等。
它提供了一种量化的方法,使经济学家可以更好地理解和解释经济变量的演变。
时间序列计量经济学模型是经济学研究中一种重要的统计工具,广泛应用于宏观经济、金融市场和企业经营等领域。
它可以帮助我们理解和解释经济变量随时间的变化规律,进行预测和政策分析。
本文将进一步探讨时间序列计量经济学模型的相关概念和应用。
在构建时间序列计量经济学模型之前,首先需要了解时间序列数据的特点。
时间序列数据是按照时间顺序排列的一系列观测值,通常具有趋势性、季节性、周期性和随机性等特征。
自回归移动平均模型

第二章自回归移动平均模型一些金融时间序列的变动往往呈现出一定的平稳特征,由 模型就是借助时间序列的随机性来描述平稳序列的相关性信息, 行建模和预测。
第一节ARMA 模型的基本原理ARMA 模型由三种基本的模型构成:自回归模型( AR,Auto-regressive Model ),移动平均模型(MA ,Moving Average Model )以及自回归移动平均模型 (ARMA ,Auto-regressive Moving Average Model )。
2.1.1自回归模型的基本原理 1. AR 模型的基本形式AR 模型的一般形式如下:p 模型的系数,t 为白噪声序列。
我们称上述方程为P阶自回归模型,记为 AR(p )。
2. AR 模型的平稳性2,Var(y t ) ,Cov(y t , y s )为了描述的方便,对式(2.1 )的滞后项引入滞后算子。
若 y t X t 1,定义算子“ L ”,使得y tLx t X t 1 L 称为滞后算子。
由此可知, L k X tX t k 。
对于式子(2.1),可利用滞后算子改写为:y t c丄%2L 2y tpL P y tt间序列{%}是平稳的,即E(y t )y t C 1 y t 1 2 y t 2 P y t P t此处的平稳性是指宽平稳,即时间序列的均值, 方差和自协方差均与时刻无关。
即若时Box 和 Jenkins 创立的 ARMA 并由此对时间序列的变化进 其中,C 为常数项,移项整理,可得:(1 1L 2L2p L P)y t c t3. AR 模型的统计性质(1) AR 模型的均值。
因此上式可化简为:所以,(2) AR 模型的方差。
直接计算AR( p )模型的方差较困难,这里引入 Green 函数。
AR(p )模型可以改写成如下形式:y tp 为平稳AR(p )模型的反特征根,则进一步,以Green 函数是呈负指数下降的。
对上式两边取方差,可得:2G j var( t j )j 0AR(p )的平稳性条件为方程11L2L 2pL p 0的解均位于单位圆外。
arima建模的要求

arima建模的要求ARIMA(自回归移动平均模型)是一种常用于时间序列分析和预测的统计模型。
它可以用于预测未来数据点或分析过去的趋势和周期性。
ARIMA模型的要求包括以下几个方面。
时间序列数据应该是稳定的。
稳定性是指数据的均值和方差在时间上保持不变。
如果数据不稳定,我们可以通过差分操作来使其稳定化。
差分操作是指将每个数据点与前一个数据点之间的差值作为新的数据点。
ARIMA模型要求数据是线性的。
这意味着数据的趋势可以用线性函数来描述。
如果数据不是线性的,我们可以对其进行转换,使其符合线性模型的要求。
ARIMA模型要求时间序列数据之间是相互独立的。
这意味着当前的数据点不会受到过去数据点的影响。
如果数据之间存在依赖关系,我们可以通过引入滞后项或其他变量来建立模型。
ARIMA模型还要求时间序列数据是正态分布的。
正态分布是指数据的分布呈现出钟形曲线,均值和标准差可以完全描述数据的特征。
如果数据不符合正态分布,我们可以对其进行变换或使用非参数方法来建模。
ARIMA模型的建立过程包括模型选择、参数估计和模型诊断。
模型选择是指确定模型的阶数,即AR、MA和差分的阶数。
参数估计是指通过最大似然估计或最小二乘法来估计模型的参数。
模型诊断是指对模型进行检验,判断模型是否合适。
在模型选择中,可以通过观察自相关图(ACF)和偏自相关图(PACF)来确定AR和MA的阶数。
ACF是指时间序列数据与其滞后项之间的相关系数,PACF是指时间序列数据与其滞后项之间的偏相关系数。
通过观察ACF和PACF图,可以判断AR和MA的阶数。
在参数估计中,可以使用最大似然估计或最小二乘法来估计ARIMA 模型的参数。
最大似然估计是指通过最大化似然函数来估计模型的参数,最小二乘法是指通过最小化残差平方和来估计模型的参数。
在模型诊断中,可以通过观察残差序列的自相关图和偏自相关图来判断模型是否合适。
如果残差序列呈现出随机性,说明模型是合适的;如果残差序列呈现出有规律的结构,说明模型还需要改进。
arima模型的作用

arima模型的作用ARIMA(自回归移动平均)模型是一种用于时间序列分析和预测的机器学习模型。
它结合了自回归(AR)模型和移动平均(MA)模型的特点,能够处理非平稳时间序列数据。
ARIMA模型通过寻找时间序列的内在规律和趋势,能够进行有效的预测和分析。
ARIMA模型的作用可以简单概括为以下几点:1.时间序列的特征提取:ARIMA模型可以对时间序列数据进行分解,提取出数据的长期趋势、季节性变化和随机波动部分。
这有助于我们更好地理解时间序列数据,并找到可能影响数据变化的因素。
2.时间序列的预测:ARIMA模型可以根据过去的数据,预测未来一段时间内的数据变化趋势。
通过对时间序列的模型建立和参数估计,可以得到未来数据的预测结果,帮助我们做出合理的决策。
3.时间序列的异常检测:ARIMA模型可以帮助我们检测时间序列中的异常点或异常事件,即与预测结果有较大出入的数据点。
通过对异常数据的分析,我们可以找到导致异常的原因,并采取相应的措施进行调整。
4.时间序列的平稳性检验:ARIMA模型在建立之前,需要对时间序列数据进行平稳性检验。
平稳性是指时间序列数据的均值、方差和自协方差不随时间变化而变化。
平稳时间序列数据更容易建立模型和预测,而非平稳时间序列数据则需要进行差分处理或其他方法转化为平稳序列。
5.时间序列的建模和参数选择:ARIMA模型采用了自回归和移动平均的结合形式,通过选择合适的自回归阶数(p)、差分阶数(d)和移动平均阶数(q),可以建立起准确性较高的模型。
这需要结合时间序列数据的特点和问题的实际需求来进行参数选择。
6.时间序列的评估和优化:ARIMA模型可以通过评估模型的预测精度来选择和优化模型。
常用的评估指标包括平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)。
通过对模型的评估和优化,可以提高模型的预测能力和鲁棒性。
ARIMA模型在实际应用中具有广泛的用途。
以下是一些常见的应用场景:1.经济预测:ARIMA模型可以对经济指标(如GDP、通货膨胀率)进行预测,帮助政府和企业做出合理的经济决策。
ARIMA模型

ARIMA模型⼀、ARIMA模型介绍ARIMA模型全称为⾃回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹⾦斯(Jenkins)于70年代初提出⼀著名时间序列预测⽅法[1],所以⼜称为box-jenkins模型、博克思-詹⾦斯法。
其中ARIMA(p,d,q)称为差分⾃回归移动平均模型,AR是⾃回归, p为⾃回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。
所谓ARIMA模型,是指将⾮平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进⾏回归所建⽴的模型。
ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、⾃回归过程(AR)、⾃回归移动平均过程(ARMA)以及ARIMA过程。
ARIMA模型的基本思想是:将预测对象随时间推移⽽形成的数据序列视为⼀个随机序列,⽤⼀定的数学模型来近似描述这个序列。
这个模型⼀旦被识别后就可以从时间序列的过去值及现在值来预测未来值。
⼆、ARIMA模型建模过程1. 检查平稳性平稳性就是围绕着⼀个常数上下波动且波动范围有限,即有常数均值和常数⽅差。
如果有明显的趋势或周期性,那它通常不是平稳序列。
不平稳序列可以通过差分转换为平稳序列。
d阶差分就是相距d期的两个序列值之间相减。
如果⼀个时间序列经过差分运算后具有平稳性,则该序列为差分平稳序列,可以使⽤ARIMA模型进⾏分析。
2、确定模型阶数AIC准则:即最⼩信息准则,同时给出ARMA模型阶数和参数的最佳估计,适⽤于样本数据较少的问题。
⽬的是判断⽬标的发展过程与哪⼀个随机过程最为接近。
因为只有样本量⾜够⼤时,样本的⾃相关函数才⾮常接近原时间序列的⾃相关函数。
具体运⽤时,在规定范围内使模型阶数由低到⾼,分别计算AIC值,最后确定使其值最⼩的阶数,就是模型的合适阶数。
自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析

自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。
(自变量不直接含有时间变量,但隐含时间因素)1.自回归AR(p)模型(R:模型的名称 P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)(1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不受其他因素影响)yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关;εt不同时刻互不相关,εt与yt历史序列不相关。
式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定;yt当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系;yt-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值;φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达yt 依赖于过去的程度,且这种依赖关系恒定不变;εt随机干扰误差项,是0均值、常方差σ2、独立的白噪声序列,通过估计指定的模型获得。
(2)识别条件当k>p时,有φk=0或φk服从渐近正态分布N(0,1/n)且(|φk|>2/n1/2)的个数≤4.5%,即平稳时间序列的偏相关系数φk为p步截尾,自相关系数rk逐步衰减而不截尾,则序列是AR(p)模型。
实际中,一般AR过程的ACF函数呈单边递减或阻尼振荡,所以用PACF函数判别(从p阶开始的所有偏自相关系数均为0)。
(3)平稳条件一阶:|φ1|<1。
二阶:φ1+φ2<1、φ1-φ2<1、|φ2|<1。
φ越大,自回归过程的波动影响越持久。
(4)模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量相互独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性等造成的困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 自回归移动平均模型一些金融时间序列的变动往往呈现出一定的平稳特征,由Box 和Jenkins 创立的ARMA 模型就是借助时间序列的随机性来描述平稳序列的相关性信息,并由此对时间序列的变化进行建模和预测。
第一节 ARMA 模型的基本原理ARMA 模型由三种基本的模型构成:自回归模型(AR ,Auto-regressive Model ),移动平均模型(MA ,Moving Average Model )以及自回归移动平均模型(ARMA ,Auto-regressive Moving Average Model )。
2.1.1 自回归模型的基本原理 1.AR 模型的基本形式AR 模型的一般形式如下:t p t p t t t y y y y εφφφ+++++=---Λ2211c其中,c 为常数项, p φφφΛ21, 模型的系数,t ε为白噪声序列。
我们称上述方程为p 阶自回归模型,记为AR(p )。
2.AR 模型的平稳性此处的平稳性是指宽平稳,即时间序列的均值,方差和自协方差均与时刻无关。
即若时间序列}{t y 是平稳的,即μ=)(t y E ,2)(σ=t y Var ,2),(s s t t y y Cov σ=-。
为了描述的方便,对式(2.1)的滞后项引入滞后算子。
若1-=t t x y ,定义算子“L ”,使得1-==t t t x Lx y ,L 称为滞后算子。
由此可知,k t t kx x L -=。
对于式子(2.1),可利用滞后算子改写为:t t p p t t t y L y L Ly y εφφφ+++++=Λ221c移项整理,可得:t t p p y L L L εφφφ+=----c )1(221ΛAR(p )的平稳性条件为方程01221=----pp L L L φφφΛ的解均位于单位圆外。
3.AR 模型的统计性质(1)AR 模型的均值。
假设AR(p )模型是平稳的,对AR(p )模型两边取期望可得:)c (E )(Ε2211t p t p t t t y y y y εφφφ+++++=---Λ根据平稳序列的定义知,μ=)(E t y ,由于随即干扰项为白噪声序列,所以0)(E =t ε,因此上式可化简为:021)1(φμφφφ=----p Λ所以,pφφφφμ----=Λ2101(2)AR 模型的方差。
直接计算AR(p )模型的方差较困难,这里引入Green 函数。
AR(p )模型可以改写成如下形式:)(L y tt Φ=ε设p λλΛ1为平稳AR(p )模型的反特征根,则2121()1(1)pp p i i L L L L L φφφλ=Φ=----=-∏L 。
进一步,∑∑∑∑∑∑∞=∞=-=-=∞=====-=001i 10i 1i k )(k 1k j j j t j p i j t ji p i j t j i pi t i t G L L y εελελελ其中,i k 为常数,j i pi j G λi 1k ∑==,称为Green 函数,因为p λλΛ1均在单位圆内,所以Green 函数是呈负指数下降的。
对上式两边取方差,可得:∑∞=-=02)var()var(j j t j t G y ε由于随机干扰项为白噪声序列,所以2)var(σε=-j t 。
因为Green 函数是呈负指数下降,所以∞<∑∞=02j j G ,这说明平稳时间序列方差有界,且等于常数220j j G σ∞=∑。
(3)自协方差函数。
假设将原序列已经中心化,则0)(E =t y ,则对AR(p )模型等号两边同时乘以)1(≥∀-k y k t ,两边取期望得:)(E )(E ...)(E )(E )(E 2211k t t k t p t p k t t k t t k t t y y y y y y y y y --------++++=εφφφ因为当期的随机干扰项与过去的时间序列值无关,所以:0)(E =-k t t y ε。
因此,上式可以化为:1122......k k k p k p r r r r φφφ---=+++其中k r ,表示k 阶自协方差。
2.1.2 移动平均模型的基本原理1.MA 模型的基本形式 MA 模型的一般形式如下:q t q t t t t y ---+++++=εθεθεθεΛ2211u其中,u 为常数项,p θθθΛ21,为模型的系数,t ε为白噪声序列。
我们称上述方程为q 阶移动平均模型,记为MA(q )。
2、MA 模型的可逆性 对于一个MA(q )模型:q t q t t t t y ---+++++=εθεθεθεΛ2211u将其写成滞后算子的形式:tq q t L L L y εθθθ)1(u 221++++=-Λ若方程01221=++++qq L L L θθθΛ的根全部落在单位圆外,则称MA 模型是可逆的。
可逆性可以保证MA 模型可以改写成:()()t t L y u ψε-=即MA 模型可以转化为AR 模型,同时可以保证参数估计的唯一性。
3、MA 模型的数字特征(1)均值当∞<q 时,对于一般的MA (q )模型:qt q t t t t u y ---+++++=εθεθεθεL 2211两边取期望,可得:u u E y E q t q t t t t =+++++=---)()(2211εθεθεθεL即一般的MA (q )模型的期望值即为模型中的常数项。
(2)方差对MA (q )模型,两边取方差:2222112212()(...)(1...)t t t t q t q q Var y Var u εθεθεθεθθθσ---=+++++=++++(3)协方差函数11221122()[(...)(...)]k t t k t t t q t q t k t k t k q t k q r E y y E u u εθεθεθεεθεθεθε-----------==++++++++++化简可得:222212211(1),0(),00,p k k k q k q k k qk q σθθθγσθθθθθ+-⎧++++=⎪⎪=+++<≤⎨⎪>⎪⎩L L2.1.3 自回归移动平均模型的基本原理1、ARMA 模型的基本形式 ARMA 模型的一般形式如下:q t p t t t p t p t t t y y y c y ------+++++++++=εθεθεθεφφφΛΛ22112211显然ARMA(p,q)模型可看成是AR(p)模型和MA(q)模型相结合的混合形式。
2、ARMA 模型的平稳性和可逆性 对于一个ARMA (p ,q )模型,qt p t t t p t p t t t y y y c y ------+++++++++=εθεθεθεφφφΛΛ22112211将其写为滞后算子的形式:tq q t p p L L L c y L L L εθθθφφφ)1()1(221221+++++=----L L两边同时除以)1(221pp L L L φφφ----Ltt L y εψμ)(+=其中:121pcμφφφ=----L212121()1qq pL L L L θθθψφφφ++++=----L L由此可以看出,ARMA 模型的平稳性完全取决于AR (p )模型的参数,与MA (q )模型的参数无关。
类似地,ARMA 模型的可逆性完全取决于MA (q )模型的参数,与AR (p )模型的参数无关。
3、ARMA 模型的数字特征 (1)期望对于一个一般的ARMA(p,q)模型两边同时取期望,化简得: 12()1.......t pcE y φφφ=----(2)自协方差函数()[()()]k t t k i t i j t k j i j r E y y E G G εε∞∞+-+-====∑∑][0∑∑∞=-+-∞==j j k t it ji iG G E εε∑∞=+=02i ki iGG σ第二节 时间序列的相关性分析与平稳性2.2.1 时间序列的自相关系数 2.2.1.1 自相关函数(ACF )1、AR (p )的自相关函数在上一节中已经介绍了AR (p )模型的协方差函数满足下式:1122.......k k k p k pr r r r φφφ---=+++由于自相关系数0r r kk =ρ,因此: 1122......k k k p k pρφρφρφρ---=+++该式表示自相关系数满足p 阶差分方程。
根据差分方程解的性质,上差分方程的通解可以写为:∑==pi k i i c k 1)(λρ其中,i c 为任意不全为0的常数,是滞后多项式的反特征根。
根据平稳性的性质,。
从自相关系数的一般形式可看出,始终不为0,但是随着滞后阶数的增加,自相关系数慢慢逼近0,在图形上表现出一定的拖尾性。
2、MA 模型的自相关函数根据上一节推导的MA 模型的自协方差函数的表达式,MA 模型的自相关函数表示为:112220121,0,010,k k q k qk k pk k q k q θθθθθγργθθθ+-⎧=⎪+++⎪==<≤⎨++++⎪⎪>⎩L L因此,当k>q 时,自相关函数为0,也就是说MA (q )模型的自相关函数在q 步以后是截尾的。
3、ARMA 模型的自相关函数根据ARMA 模型的自协方差函数,不难得到ARMA 模型的自相关函数:∑∑∞=∞=+==020i ii ki ik k GGG γγρ由此可以看出,ARMA 模型的自相关函数不具有截尾性。
事实上,ARMA 模型若满足可逆性,其形式相当于一个无穷阶的AR 模型,因此自相关函数与AR 模型一样具有拖尾性。
2.2.1.2 偏自相关函数(PACF )1、偏自相关函数的定义自相关函数不能纯粹地表示与之间的相关性,两者的相关性还会受到、……的间接影响,为了单纯地表示与之间的相关性,这里引入偏自相关函数。
偏自相关函数表示在固定、……的情况下与之间的相关性。
下面介绍偏自相关函数的计算方法。
设序列y t 可由下回归方程估计:112211t k t k t kk t k kk t k t y y y y y ϕϕϕϕε----+-=+++++L根据回归方程的性质,式中估计系数即为偏自相关函数。
为了估计回归系数,采用OLS 方法,即2112211(...)t k t k t kk t k kk t k L E y y y y y ϕϕϕϕ----+-=-----达到最小。
对L 关于各回归系数求偏导,可得到以下方程组:110211k k kk k ρϕρϕρϕρ-=+++L 211202k k kk k ρϕρϕρϕρ-=+++L.......11220k k k k k kk ρϕρϕρϕρ--=+++L该方程组称为Yule- Wolker 方程。