北师大版八年级下第三次月考数学试题
北师大版八年级上册数学第三次月考试题含答案解析

北师大版八年级上册数学第三次月考试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列数是无理数的是( )A .πB .﹣227C .|﹣2|D .0.23 2.下列说法正确的是( )A .负数没有立方根B ±4C .无理数包括正无理数、负无理数和零D .实数和数轴上的点是一一对应的3x 的取值范围是( )A .x >15B .x≥15C .x≤15D .x≤54.下列二次根式中是最简二次根式的是( )A B C D 5.以下列长度的线段为边,不能组成直角三角形的是( )A .1,1BC .2,3,4D .8,15,17 6.如果用(2,15)表示会议室里的第2排15号座位,那么第5排9号座位可以表示为( ) A .(2,15) B .(2,5) C .(5,9) D .(9,5) 7.点M (﹣4,3)关于x 轴对称的点的坐标为( )A .(3,﹣4)B .(4,﹣3)C .(﹣4,﹣3)D .(4,3) 8.如图所示的图象分别给出了x 与y 的对应关系,其中表示y 是x 的函数的是( ) A . B . C . D . 9.已知正比例函数y kx =,且y 随x 的增大而减少,则直线2y x k =+的图像是( ) A . B . C . D . 10.把21y x =+的图像沿y 轴向下平移5个单位后所得图象的关系式是( ) A .25y x =+ B .26y x =+ C .24y x =- D .24y x =+11.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm ,则该圆柱底面周长为( )A .12cmB .14cmC .20cmD .24cm12.在平面直角坐标系中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”.S ah =例如:三点坐标分别为()1,2A ,()3,1B -,()2,2C -,则“水平底”5a =,“铅垂高”4h =,“矩面积”20.S ah ==若()1,2D 、()2,1E -,()0,F t 三点的“矩面积”为15,则t 的值为( ) A .3-或7B .4-或6C .4-或7D .3-或6二、填空题13.实数94的平方根是____________. 14.点P (2,4)与点Q (-3,4)之间的距离是____.15.直角三角形的两边长分别为5和3,该三角形的第三边的长为________.16.如图,在正方形ABCD 中,点E 是BC 边上的一点,BE =4,EC =8,将正方形边AB沿AE 折叠到AF ,延长EF 交DC 于点G ,连接AG ,现在有如下四个结论:①∠EAG =45°;②FG =FC ;③//FC AG ;④S △GFC =14.4.其中结论正确的序号是________.三、解答题17.计算或解方程组:(1) (202(3(3)627x y x y +=⎧⎨+=⎩ (4)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩18.先化简,再求值:()()23231a a -+-,其中a19.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.20.如图,一次函数y=2x+b 的图像与x 轴交于点A (2,0),与y 轴交于点B(1)求b 的值(2)若直线AB 上的点C 在第一象限,且S △AOC =4,求点C 坐标21.为了防范新型冠状病毒的传播,小唐的爸爸用1200元资金为全家在大型药店购进普通医用口罩、95N 口罩两种口罩共300个,该大型药店的普通医用口罩、95N 口罩成本价和销售价如下表所示:(1)小唐的爸爸在大型药店购进普通医用口罩、95N 口罩各多少个?(2)销售完这300个普通医用口罩、95N 口罩,该大型药店共获得多少利润?22.某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地.两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为1y 千米、2y 千米,1y 、2y 与x 的函数关系图象如图所示,根据图象解答下列问题:(1)直接写出1y 、2y 与x 的函数关系式;(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米?(3)甲、乙两班相距4千米时所用时间是多少小时?23.在平面直角坐标系中,将一块等腰直角三角板ABC 放在第一象限,斜靠在两条坐标轴上,∠ACB=90°,且A (0,4),点C (2,0),BE ⊥x 轴于点E ,一次函数y =x+b 经过点B ,交y 轴于点D .(1)求证;△AOC ≌△CEB ;(2)求△ABD 的面积.24.如图,ABC 在正方形网格中,每个小正方形的边长均为1,若点A 的坐标为()0,3,按要求回答下列问题:(1)在图中建立适当的平面直角坐标系,并写出点B 和点C 的坐标;(2)作出ABC 关于x 轴对称的图形'''A B C .(不用写作法)25.已知一次函数的图象过(3,5)A --,()1,3B 两点.(1)求这个一次函数的关系式;(2)试判断点(2,1)P -是否在这个一次函数的图象上.参考答案1.A【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选项.【详解】解:A ,π是无限不循环小数,属于无理数;B,227-是分数,属于有理数;C,22-=,是整数,属于有理数;D,0.23是循环小数,属于有理数.故选:A.【点睛】本题主要考查了无理数的定义,即无限不循环小数,明确无理数的定义是解题的关键,属于基础题.2.D【分析】根据算术平方根的定义、立方根的定义、无理数的定义及实数与数轴的关系判断即可.【详解】解:A、负数有立方根,故选项A不符合题意;B4,故选项B不符合题意;C、无理数不包括零,故选项C不符合题意;D、数轴上的点与实数一一对应,说法正确;故选:D.【点睛】本题考查了算术平方根的定义、立方根的定义、无理数的定义及实数与数轴的关系,熟练掌握定义是解题的关键3.B【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,5x﹣1≥0,解得,x≥15,故选B.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.4.B【分析】根据最简二次根式的定义即可求解.【详解】D.故选B.【点睛】此题主要考查最简二次根式的判断,解题的关键是熟知最简二次根式的定义.5.C【分析】根据直角三角形三边的数量关系,运用勾股定理逆定理,依次对四个选项进行计算、判断.【详解】A. 22211+=,能组成直角三角形,故A不符合题意;B. 222+=,能组成直角三角形,故B不符合题意;C. 222+=≠,故C符合题意;23134D. 222+==,故D不符合题意,81528917故选:C.【点睛】本题考查勾股定理及其逆定理,是重要考点,难度较易,掌握相关知识是解题关键.6.C【分析】根据题中的规定解答即可.【详解】∵(2,15)表示会议室里的第2排15号座位,∴第5排9号座位可以表示为(5,9),【点睛】此题考查了有序数对,两个有一定先后顺序的两个数可以表示某一具体的位置.7.C【分析】直接利用关于x 轴对称,横坐标相同,纵坐标互为相反数进而得出答案.【详解】解:点M (﹣4,3)关于x 轴对称的点的坐标为:(﹣4,﹣3).故选:C .8.D【分析】利用函数的定义,对于给定的x 的值,y 都有唯一的值与其对应,进而判断得出结论.【详解】解:在选项A ,B ,C 中,每给x 一个值,y 都有2个值与它对应,所以A ,B ,C 选项中y 不是x 的函数,在选项D 中,给x 一个值,y 有唯一一个值与之对应,所以y 是x 的函数.故选:D .【点睛】本题考查了函数的定义:在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,那么就说y 是x 的函数,x 是自变量.9.D【分析】根据正比例函数的性质可得k ﹤0,再根据一次函数的图象与性质即可做出选择.【详解】解:∵正比例函数y kx =,且y 随x 的增大而减少,∴k ﹤0,在2y x k =+中,∵2﹥0,k ﹤0,∴直线2y x k =+经过第一、三、四象限,故选:D .本题考查了正比例函数的性质、一次函数的图象与性质,熟知一次函数的图象与性质是解答的关键.10.C【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【详解】将一次函数y=2x+1的图象沿y轴向下平移5个单位,那么平移后所得图象的函数解析式为:y=2x+1-5,化简得,y=2x-4.故选:C.【点睛】此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.11.D【分析】将容器侧面展开,建立A关于EG的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm,延长BG,过A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt △A'DB 中,由勾股定理得:12cm∴则该圆柱底面周长为24cm .故选:D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.12.D【分析】根据题意可以求得a 的值,然后再对t 进行讨论,即可求得t 的值.【详解】解:由题意得:“水平底”为:()123a =--=,当2t >时,1h t =-,则()3115t -=,解得:6t =;当12t ≤≤时,2116h =-=≠,故此种情况不符合题意;当1t <时,2h t =-,则()3215t -=,解得:3t =-.故选:D .【点睛】本题考查坐标与图形的性质,解答本题的关键是明确题目中的新定义,利用新定义解答问题.13.32± 【分析】直接利用平方根的定义计算即可.【详解】∵±32的平方是94,∴94的平方根是±32.故答案为±32.【点睛】本题考查了平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a 的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.14.5【分析】P、Q两点纵坐标相等,在平行于x轴是直线上,其距离为两点横坐标差的绝对值.【详解】∵P(2,4)、Q(-3,4)两点纵坐标相等,∴PQ∥x轴,∴点P(2,4)与点Q(-3,4)之间的距离PQ=|-3-2|=5,故答案为5.【点睛】本题主要考查了平行于x轴(y轴)的直线上两点之间的距离等于两点横坐标(纵坐标)差的绝对值.15.4【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边5既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为x,①若5是直角边,则第三边x是斜边,由勾股定理得:②若5是斜边,则第三边x为直角边,由勾股定理得:所以第三边的长为4故答案为:4【点睛】本题考查勾股定理,熟练掌握勾股定理,并且分情况讨论是解题关键.16.①③④【分析】①正确.证明∠GAF=∠GAD,∠EAB=∠EAF即可.②错误.可以证明DG=GC=FG,显然△GFC不是等边三角形,可得结论.③正确.证明CF⊥DF,AG⊥DF即可.④错误.证明FG:EG=3:5,求出△ECG的面积即可.【详解】解:如图,连接DF.∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠ABE=∠BAD=∠ADG=∠ECG=90°,由翻折可知:AB=AF,∠ABE=∠AFE=∠AFG=90°,BE=EF=4,∠BAE=∠EAF,∵∠AFG=∠ADG=90°,AG=AG,AD=AF,∴Rt△AGD≌Rt△AGF(HL),∴DG=FG,∠GAF=∠GAD,∴∠EAG=∠EAF+∠GAF=1(∠BAF+∠DAF)=45°,故①2正确,设GD=GF=x,在Rt△ECG中,∵EG2=EC2+CG2,∴(4+x)2=82+(12-x)2,∴x=6,∵CD=BC=BE+EC=12,∴DG=CG=6,∴FG=GC,∵FG>EF,∴F不是EG的中点,∴FG≠FC,故②错误,∵GF=GD=GC,∴∠DFC=90°,∴CF⊥DF,∵AD=AF,GD=GF,∴AG⊥DF,∴CF∥AG,故③正确,∵S△ECG=12×6×8=24,FG:FE=6:4=3:2,∴FG:EG=3:5,∴S△GFC=35×24=14.4,故④正确,故答案为:①③④.【点睛】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.17.(1)21-;(2;(3)15xy=⎧⎨=⎩;(4)25xy=⎧⎪⎨=⎪⎩【分析】(1)利用平方差公式计算;(2)先把各二次根式化简为最简二次根式,然后合并即可;(3)利用加减消元法解方程组;(4)先化简方程组,再利用加减消元法解方程组.【详解】解:(1)=2(-2(=24-45=-21;(202(3; (3)627x y x y +=⎧⎨+=⎩①② -②① ,得x=1,把x=1代入①得1+y=6,解得y=5,所以方程组的解为15x y =⎧⎨=⎩ .(4)33255x y +⎧=⎪⎨⎪⎩①(x-2y )=-4② 化简方程组得51565104x y x y +=⎧⎨-=-⎩③④③-④ 得,25y=10解得:y=25 ,将y=25代入④得x=0, 所以方程的解为025x y =⎧⎪⎨=⎪⎩【点睛】本题考查了二次根式的运算,先把先把各二次根式化简为最简二次根式,然后合并即可,也考查了解二元一次方程组。
八年级上学期第三次月考 北师大版数学试题

2019--2020学年上学期第三次月考试题北师大版八年级上数学试题(满分120分,时间80分钟)2019.12.13一、选择题(每题3分,共24分)1.下列各组线段中,能构成直角三角形的是( )A.2,3,4 B.3,4,6 C.5,12,13 D.4,6,7 2. 下面四个实数,你认为是无理数的是()A.13BC.3 D.0.33. 在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为: 24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是() A.22个、20个 B.22个、21个 C.20个、21个 D.20个、22个4. 甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分输入汉字的个数经统计计算后结果如下表:参加人数55(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是()A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)5.在等式y=kx+b中,当x=0时,y=-1;当x=-1时,y=0,则这个等式是()A.y=-x-1 B.y=-x C.y=-x+1 D.y=x+16.下列各方程组中,属于二元一次方程组的是()A.3275x yxy+=⎧⎨=⎩B.212x yx z+=⎧⎨+=⎩C.2322y xx y=⎧⎨+=⎩D.513223yxx y⎧+=⎪⎨⎪+=⎩7.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.1818x yy x y=-⎧⎨-=-⎩B.1818y xx y y-=⎧⎨-=+⎩C.1818x yy x y+=⎧⎨-=+⎩D.1818y xy y x=-⎧⎨-=-⎩8.如图,直线AB:y=12x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是()A.(3,52)B.(8,5)C.(4,3)D.(12,54)二、填空题(每题3分,共21分)9.如图,△ABC 中,∠C=90°,AB 垂直平分线交BC 于D .若BC=8,AD=5,则AC 等于__________.10、把直线y=﹣x+2向上平移3个单位,得到的直线表达式是_____________.11、在二元一次方程3x ﹣2y=6中,把它写成y 是x 的函数:y=______________.12.如图,若直线l 1与l 2相交于点P ,则根据图象可得,二元一次方程组233x y x y -=⎧⎨+=⎩的解是____________.13.某大学生招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算,已知小明数学得分为95分,物理得分为90分,那么小明的综合得分是________分.14.若1,2,3,x 的平均数是6.且1,2,3,x ,y 的平均数是7,则y 的值为_______.15.已知一个样本1,3,2,2,a ,b ,c 的众数为3,平均数为2,则该样本的方差为______. 三、计算题16.(每题5分共10分)解下列方程组:(1)⎩⎨⎧=+=-5y x 24y x (2)⎩⎨⎧-=--=-23y 5x 44y x 2三、综合题17.(10分)如图,有一个直角三角形纸片,两直角边 AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上且与AE 重合,求CD 的长18.(10分)已知直线AB 的函数解析式为y=2x+6,直线CD 的函数解析式为y=-0.5x+1求直线AB 与直线CD 交点的坐标(10分)19.(10分)为了净化空气,美化环境,某小区计划投资18000元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?20.(10分)某厂的甲、乙两个小组共同生产某种产品。
专题01 因式分解 易错题之选择题(30题)-2020-2021学年八年级数学下册(北师大版)解析版

专题01 因式分解 易错题之选择题(30题)Part1 与 因式分解 有关的易错题1.(2020·雅安市八年级月考)下列各式变形中,是因式分解的是( )A .12a 2b = 3a ⋅ 4abB .2x 2+2x =2x 2(1+1x )C .(x+2)(x ﹣2)=x 2﹣4D .4x 2 + 4x +1 =(2x +1)2【答案】D【提示】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A 、是一个单项式转化为乘积的形式,不是因式分解,故A 不符合;B 、没把一个多项式转化成几个整式乘积的形式,故B 不符合;C 、是整式的乘法,故C 不符合;D 、把一个多项式转化成几个整式乘积的形式,故D 符合;故选:D .【名师点拨】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式.2.(2020·四川省自贡市八年级月考)下列四个等式从左到右的变形是因式分解的是( )A .()am bm c m a b c ++=++B .()211(1)x x x -=+-C .221(1)x x x x +=+ D .()2221441x x x +=++【答案】B【提示】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【详解】解:A 、()am bm c m a b c ++=++,没把一个多项式化为几个整式的积的形式,故此选项不符合题意;B 、()211(1)x x x -=+-,把一个多项式化为几个整式的积的形式,故此选项符合题意;C 、()21x x x x +=+,故错误,此选项不符合题意;D 、()2221441x x x +=++,没把一个多项式化为几个整式的积的形式,故此选项不符合题意;故选:B .【名师点拨】本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别.3.(2020·河南周口市·八年级期末)把多项式2x ax b ++分解因式,得(1)(3)x x +-,则+a b 的值是( ) A .1B .-1C .5D .-5【答案】D【提示】利用多项式乘以多项式法则计算,再利用多项式相等的条件求出a 与b 的值,即可求出a +b 的值.【详解】根据题意得:x 2+ax+b=(x+1)(x−3)=x 2−2x−3,可得a=−2,b=−3,则a+b=−5,故选D.【名师点拨】本题考查因式分解,解决本题的关键是要理解两个多项式相等的条件,两个多项式分别经过合并同类项后,如果他们的对应项系数都相等,那么称这两个多项式相等.4.(2020·安徽淮南市·八年级期末)若2(32)()2x x p mx nx ++=+-,则下列结论正确的是( ) A .6m =B .1n =C .2p =-D .3mnp =【答案】B【提示】 直接利用多项式乘法运算法则得出p 的值,进而得出n 的值.【详解】解:∵2(32)()2x x p mx nx ++=+-,∵(3x+2)(x+p )=3x 2+(3p+2)x+2p=mx 2-nx -2,∵m=3,p=-1,3p+2=-n ,∵n=1,故选B.【名师点拨】此题考查了因式分解的意义;关键是根据因式分解的意义求出p 的值,是一道基础题.5.(2020·湖北黄石市·八年级期末)下列各多项式从左到右变形是因式分解,并分解正确的是( )A .(a ﹣b )3﹣b (b ﹣a )2=(b ﹣a )2(a ﹣2b )B .(x+2)(x+3)=x 2+5x+6C .4a 2﹣9b 2=(4a ﹣9b )(4a+9b )D .m 2﹣n 2+2=(m+n )(m ﹣n )+2【答案】A【提示】 直接利用因式分解的定义进而提示得出答案.【详解】A 、(a ﹣b )3﹣b (b ﹣a )2=﹣(b ﹣a )3﹣b (b ﹣a )2=(b ﹣a )2(a ﹣2b ),是因式分解,故此选项正确;B 、(x+2)(x+3)=x 2+5x+6,是整式的乘法运算,故此选项错误;C 、4a 2﹣9b 2=(2a ﹣3b )(2a+3b ),故此选项错误;D 、m 2﹣n 2+2=(m+n )(m ﹣n )+2,不符合因式分解的定义,故此选项错误.故选A .【名师点拨】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.6.(2020·四川省射洪县八年级月考)下列因式分解中,正确的个数为( )①x 3+2xy+x=x (x 2+2y );②x 2+4x+4=(x+2)2;③﹣x 2+y 2=(x+y )(x ﹣y )A .3个B .2个C .1个D .0个 【答案】C【详解】试题提示:接根据提取公因式法以及公式法分别分解因式作出判断:∵x 3+2xy+x=x (x 2+2y+1),故原题错误;②x 2+4x+4=(x+2)2,故原题正确;③﹣x 2+y 2=(x+y )(y ﹣x ),故原题错误.故正确的有1个.故选C .7.(2020·河北唐山市·八年级期末)下列因式分解中:①()3222x xy x x x y ++=+;②22()()x y x y x y -+=+-;③2244(2)x x x ++=+;④221(1)x x x ++=+;正确的个数为( )A .3个B .2个C .1个D .0个【答案】C【提示】根据因式分解的方法逐个判断即可.【详解】解:①()32221x xy x x x y ++=++,故①错误;②22()()x y x y x y -+=-+-,故②错误;③2244(2)x x x ++=+,正确,④221(1)x x x ++≠+,故④错误,所以正确的只有③,故答案为:C .【名师点拨】本题考查了判断因式分解是否正确,掌握因式分解的方法是解题的关键.8.(2020·河北唐山市·八年级月考)一次课堂练习,一位同学做了4道因式分解题,你认为这位同学做得不够完整的题是( )A .2222()x xy y x y -+=-B .22()x y xy xy x y -=-C .22()()x y x y x y -=+-D .32(1)x x x x -=- 【答案】D【提示】利用完全平方公式和平方差公式可对A 、C 两项进行判断;利用提公因式法可对B 进行判断,利用提公因式法和平方差公式可对D 项进行判断.【详解】因为x 2-2xy+y 2=(x -y)2,所以选项A 分解正确;因为x 2y -xy 2=xy(x -y),所以选项B 分解正确;因为x 2-y 2=(x -y)(x+y),所以选项C 分解正确;因为x 3-x=x(x 2-1)=x(x+1)(x -1),所以选项D 分解不彻底.故选:D.【名师点拨】本题是一道关于因式分解的题目,关键是掌握因式分解的常用方法;9.(2020·山东泰安市·东平县八年级月考)如果多项式x 2﹣mx +6分解因式的结果是(x ﹣3)(x +n ),那么m ,n 的值分别是( )A .m =﹣2,n =5B .m =2,n =5C .m =5,n =﹣2D .m =﹣5,n =2【答案】C【提示】因式分解的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m 与n 的值即可.【详解】x 2-mx +6=(x -3)(x +n )=x 2+(n -3)x -3n ,可得-m =n -3,-3n =6,解得:m =5,n =-2.故选:C .【名师点拨】此题考查了因式分解与多项式乘法的关系,熟练掌握多项式乘多项式的法则是解本题的关键.10.(2020·重庆市八年级月考)已知25x x m -+有一个因式为2x -,则另一个因式为( )A .3x +B . 6 x ﹣C . 3 x ﹣D .6x +【答案】C【提示】所求的式子25x x m -+的二次项系数是1,因式(x−2)的一次项系数是1,则另一个因式的一次项系数一定是1,然后根据25x x m -+中一次项系数为-5,列方程求出另一个因式.【详解】解:设另一个因式为(x +a ),则x 2−5x +m =(x−2)(x +a ),即x 2−5x +m =x 2+(a−2)x−2a ,∵a−2=−5,解得:a =−3,∵另一个因式为(x−3).故选:C .【名师点拨】本题主要考查因式分解的实际运用,根据二次项系数假设出另一个因式是解本题的关键. Part2 与 提公因式法 有关的易错题11.(2020·四川泸州市·八年级月考)多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 【答案】A【详解】试题提示:把多项式分别进行因式分解,多项式2mx m -=m (x+1)(x -1),多项式221x x -+=()21x -,因此可以求得它们的公因式为(x -1).故选A考点:因式分解12.(2020·山东临沂市·八年级期末)将3-a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【提示】多项式3-a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】 ()()()32111a b ab ab a ab a a -=-=+-,故选C .【名师点拨】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;13.(2020·广西防城港市·八年级月考)下列分解因式正确的是( )A .-ma -m=-m(a -1)B .a 2-1=(a -1)2C .a 2-6a+9=(a -3)2D .a 2+3a+9=(a+3)2【答案】C【提示】利用提取公因式或者公式法即可求出答案.【详解】A.原式=−m (a +1),故A 错误;B.原式=(a +1)(a −1),故B 错误;C.原式=(a −3)2,故C 正确;D.该多项式不能因式分解,故D 错误,故选:C【名师点拨】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.14.(2020·毕节市八年级月考)多项式8x m y n -1-12x 3m y n 的公因式是( )A .x m y nB .x m y n -1C .4x m y nD .4x m y n -1【答案】D【详解】由题意可得,这个多项式的公因式为4x m y n -1,注意数字的最大公约数也是公因式,容易出错,故选D15.(2020·辽宁大连市·八年级期末)如图,边长为a ,b 的矩形的周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .16C .30D .11【答案】C【提示】 先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【详解】∵矩形的周长为10,∵a+b=5,∵矩形的面积为6,∵ab=6,∵a 2b+ab 2=ab (a+b )=30.故选:C .【名师点拨】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.16.(2020·渝中区八年级期末)若mn 2=-,3m n +=,则代数式22m n mn +的值是( ).A .-6B .-5C .1D .6【答案】A【提示】由提公因式进行化简,然后把mn 2=-,3m n +=代入计算,即可得到答案.解:∵mn 2=-,3m n +=,∵22()236m n mn mn m n +=+=-⨯=-;故选:A .【名师点拨】本题考查了提公因式法,以及求代数式的值,解题的关键是正确的把代数式进行化简.17.(2020·河北邢台市·八年级期末)将多项式222a a --因式分解提取公因式后,另一个因式是( ) A .a B .1a + C .1a - D .1a -+【答案】B【提示】直径提取公因式即可.【详解】()22221a a a a --=-+故选:B【名师点拨】此题主要考查了提公因式法分解因式,关键是正确找出公因式.18.(2020·河南南阳市期末)如果多项式221155abc ab a bc -+-的一个因式是15ab -,那么另一个因式是() A .5c b ac -+ B .5c b ab +- C .15c b ab -+ D .15c b ab +-【答案】A【提示】 多项式先提取公因式15ab -,提取公因式后剩下的因式即为所求.【详解】 解:22111(5)555abc ab a bc ab c b ac -+-=--+,故另一个因式为(5)c b ac -+,故选:A .【名师点拨】此题考查了因式分解-提取因式法,找出多项式的公因式是解本题的关键.也是解本题的难点,要注意符号.19.(2020·大冶市八年级月考)(﹣2)2019+(﹣2)2020等于( )A .﹣22019B .﹣22020C .22019D .﹣2【提示】直接提取公因式(−2)2019,进而计算得出答案.【详解】(−2)2019+(−2)2020=(−2)2019×(1−2)=22019.故选:C .【名师点拨】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.20.(2020·平山县八年级期末)若2220x y -=,且5x y +=-,则x y -的值是 ( )A .﹣4B .4C .5D .以上都不对【答案】A【提示】 对原式进行因式分解,代入值即可.【详解】x 2-y 2=(x+y )(x -y )=-5(x -y )=20,解得,x -y=-4.故选A .【名师点拨】考查了应用平方差公式因式分解,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.Part3 与 公式法 有关的易错题21.(2020·德州市八年级月考)已知a ,b ,c 是三角形的三边,那么代数式a 2-2ab +b 2-c 2的值( ) A .大于零B .等于零C .小于零D .不能确定【答案】C【详解】a 2-2ab+b 2-c 2=(a -b )2-c 2=(a+c -b )[a -(b+c )].∵a ,b ,c 是三角形的三边.∵a+c -b >0,a -(b+c )<0.∵a 2-2ab+b 2-c 2<0.故选C .22.(2020·北京海淀区八年级月考)若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .12【答案】C【详解】∵a+b=3, ∵a 2-b 2+6b=(a+b)(a -b)+6b=3(a -b)+6b=3a -3b+6b=3a+3b=3(a+b)=9,故选C.23.(2020·陕西西安市八年级月考)多项式x 2﹣4xy ﹣2y +x +4y 2分解因式后有一个因式是x ﹣2y ,另一个因式是( ) A .x +2y +1B .x +2y ﹣1C .x ﹣2y +1D .x ﹣2y ﹣1 【答案】C【提示】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x 2﹣4xy ﹣2y +x +4y 2=(x 2﹣4xy +4y 2)+(x ﹣2y )=(x ﹣2y )2+(x ﹣2y )=(x ﹣2y )(x ﹣2y +1).故选:C .【名师点拨】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x -2y ),将其当成整体提出,进而得到答案.24.(2020·山东济宁市·八年级期末)下列各式中,计算结果是2718x x +-的是( )A .(1)(18)x x -+B .(2)(9)x x ++C .(3)(6)x x -+D .(2)(9)x x -+ 【答案】D【解析】试题提示:利用十字相乘法进行计算即可.原式=(x -2)(x +9)故选D.考点:十字相乘法因式分解.25.(2020·辽宁沈阳市·八年级期末)下列各选项中因式分解正确的是( )A .()2211x x -=-B .()32222a a a a a -+=-C .()22422y y y y -+=-+D .()2221m n mn n n m -+=-【答案】D【提示】直接利用公式法以及提取公因式法分解因式进而判断即可.【详解】解:A.()()2111x x x -=+-,故此选项错误;B.()23221a a a a a -+=-,故此选项错误;C.()22422y y y y -+=--,故此选项错误;D.()2221m n mn n n m -+=-,正确.故选D .【名师点拨】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.26.(2020·枣庄市八年级月考)把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】试题提示:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.27.(2020·广东揭阳市·八年级期末)若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .50【答案】A【解析】试题提示:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.28.(2020·张掖市八年级月考)下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x ﹣1C .x 2﹣1D .x 2﹣6x+9【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A 、x 2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B 、x 2+2x ﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C 、x 2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D 、x 2﹣6x+9=(x ﹣3)2,故选项正确.故选D .29.(2020·雅安市八年级月考)若k 为任意整数,且993﹣99能被k 整除,则k 不可能是( )A .50B .100C .98D .97【答案】D【提示】对题目中的式子分解因式即可解答本题.【详解】∵993-99=99×(992-1)=99×(99+1)×(99-1)=99×100×98,∵k 可能是99、100、98或50,故选D .【名师点拨】本题考查因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答.30.(2020·南通市八年级月考)如图,大正方形的边长为m ,小正方形的边长为n ,x ,y 表示四个相同长方形的两边长(x y >).则①x y n -=;②224m n xy -=;③22x y mn -=;④22222m n x y -+=,中正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】A【提示】 根据长方形的长和宽,结合图形进行判断,即可得出选项.①x−y 等于小正方形的边长,即x−y=n ,正确;②∵xy 为小长方形的面积, ∵224m n xy -=, 故本项正确;③()()22x y x y x y mn -=+-=,故本项正确;④()222222222242m n m nx y x y xy m -++=+-=-⨯=故本项错误.则正确的有3个①②③.故选A.【名师点拨】此题考查因式分解的应用,整式的混合运算,解题关键在于掌握运算法则.。
北师大版2022-2023学年八年级数学第三次月考测试题(附答案)

2022-2023学年八年级数学第三次月考测试题(附答案)一、单项选择题(共18分)1.(﹣2)0的值为()A.﹣2B.0C.1D.22.下面四幅作品分别代表二十四节气中的“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A.B.C.D.3.下列计算结果正确的是()A.a12÷a3=a4B.(﹣a3)2=a6C.a2•a5=a10D.(﹣3a)2=6a2 4.现需要在某条街道l上修建一个核酸检测点P,向居住在A,B小区的居民提供核酸检测服务,要使P到A,B的距离之和最短,则核酸检测点P符合题意的是()A.B.C.D.5.下列对△ABC的判断,错误的是()A.若AB=AC,∠B=60°,则△ABC是等边三角形B.若∠A:∠B:∠C=3:4:7,则△ABC是直角三角形C.若∠A=20°,∠B=80°,则△ABC是等腰三角形D.若AB=BC,∠C=40°,则∠B=40°6.如图,将图1中的一个小长方形变换位置得到如图2所示的图形,根据两个图形中阴影部分的面积关系得到的等式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b2二、填空题。
(共18分)7.分解因式:x2﹣25=.8.若点A位于第三象限,则点A关于y轴的对称点落在第象限.9.已知4m=5,4n=9,则4m+n的值为.10.如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于点D,交边AC于点E,若△ABC与△EBC的周长分别是15,9,则BC=.11.如图,某山的山顶E处有一个观光塔EF,已知该山的山坡面与水平面的夹角∠EAB为30°,山高EB为120米,点C距山脚A处180米,CD∥AB,交EB于点D,在点C处测得观光塔顶端F的仰角∠FCD为60°,则观光塔EF的高度是米.12.有一三角形纸片ABC,∠A=70°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C的度数可以是.三、解答题(共30分)13.计算:(1)﹣a2•3a+(2a)3.(2)(a+b)(a﹣b)﹣b(2a﹣b).14.如图,在△ABC中,点E,F在边AC上,∠DAF=∠BCA,BE∥DF,AD=BC.(1)求证:△BCE≌△DAF.(2)当AE=EB,∠CFD=130°,∠C=35°时,求∠ABC的度数.15.先化简,再求值:(x2+xy+y2)(x﹣y),其中x=1,y=﹣2.16.在棋盘中建立如图所示的平面直角坐标系,其中A(﹣1,1),B(4,3),C(4,﹣1)处各有一颗棋子.(1)如图1,依次连接A,B,C,A,得到一个等腰三角形(BC为底边),请在图中画出该图形的对称轴.(2)如图2,现x轴上有两颗棋子P,Q,且PQ=1(P在Q的左边),依次连接A,P,Q,B,使得AP+PQ+QB的长度最短,请在图2中标出棋子P,Q的位置,并写出P,Q 的坐标.17.为了推进节能减排,助力实现碳达峰、碳中和,某市新换了一批新能源公交车(如图1).图2、图3分别是该公交车双开门关闭、打开中某一时刻的俯视(从上面往下看)示意图.ME,EF,FN是门轴的滑动轨道,∠E=∠F=90°,两门AB,CD的门轴A,B,C,D都在滑动轨道上,两门关闭时(如图2),点A,D分别在点E,F处,门缝忽略不计(B,C重合),两门同时开启时,点A,D分别沿E→M,F→N的方向同时以相同的速度滑动,如图3,当点B到达点E处时,点C恰好到达点F处,此时两门完全开启,若EF=1米,AB=CD,在两门开启的过程中,当∠ABE=60°时,求BC的长度.四、解答题(共24分)18.课本再现:(1)如图1,△ABC是等边三角形,DE∥BC,分别交AB,AC于点D,E.求证:△ADE是等边三角形.课本中给出一种证明方法如下:证明:∵△ABC是等边三角形,∴∠A=∠B=∠C.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠A=∠ADE=∠AED,∴△ADE是等边三角形.“想一想,本题还有其他证法吗?”给出的另外一种证明方法,请补全:证明:∵△ABC是等边三角形,∴∠B=∠C,∠A=60°.∵DE∥BC,∴∠B=∠ADE,∠C=①,∴②=③,∴AD=AE.(④)∴△ADE是等腰三角形.又∵∠A=60°,∴△ADE是等边三角形.(2)如图2,等边三角形ABC的两条角平分线相交于点D,延长BD至点E,使得AE =AD,求证:△ADE是等边三角形.19.下列方框中的内容是小宇分解因式的解题步骤.分解因式:(x2+4x+3)(x2+4x+5)+1.解:设y=x2+4x.原式=(y+3)(y+5)+1(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2+4x+4)2.(第四步)请回答下列问题:(1)小宇分解因式中第二步到第三步运用了.A.提公因式法B.平方差公式法C.两数和的完全平方公式法D.两数差的完全平方公式法(2)小宇得到的结果能否继续因式分解?若能,直接写出分解因式的结果;若不能,请说明理由.(3)请对多项式(x2+2x+6)(x2+2x﹣4)+25进行因式分解.20.如图,在△ABC中,∠B=∠C,D,E分别是线段BC、AC上的一点,且AD=AE.(1)如图1,若∠BAC=90°,D为BC中点,则∠2的度数为;(2)如图2,用等式表示∠1与∠2之间的数量关系,并给予证明.五、解答题(共18分)21.如图,在Rt△ABC中,ACB=90°,∠A=30°,BC=2.三角尺中30°角的顶点D 在边AB上,两边分别与△ABC的边AC,BC相交于点E,F,且DE始终与AB垂直.(1)△BDF是三角形.(填特殊三角形的名称)(2)在平移三角尺的过程中,AD﹣CF的值是否变化?如果不变,求出AD﹣CF的值;如果变化,请说明理由.(3)当平移三角尺使EF∥AB时,求AD的长.22.综合与探究.【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如,由图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题.【直接应用】(1)若x+y=3,x2+y2=5,求xy的值.【类比应用】(2)若x(3﹣x)=2,则x2+(3﹣x)2=.【知识迁移】(3)将两块全等的特制直角三角板(∠AOB=∠COD=90°)按如图2所示的方式放置,其中点A,O,D在同一直线上,点B,O,C也在同一直线上,连接AC,BD.若AD=14,S△AOC+S△BOD=50,求一块直角三角板的面积.六、解答题(本大题共12分)23.综合与实践.课间,小鑫在草稿纸上画了一个直角三角形.如图1,在Rt△ABC中,∠ACB=90°,他想到了作AC的垂直平分线ED,交AC于点E,交AB于点D.他和同桌开始探讨线段AD与BD的大小关系.(1)尝试探究:当∠A=30°时,直接写出线段AD与BD的大小关系:AD BD.(填“>”、“<”或“=”)(2)得出结论:若∠A为任意锐角,则线段AD与BD的大小关系是AD BD,请说明理由.(填“>”、“<”或“=”)(3)应用结论:利用上面的结论继续研究,如图2,P是△FHG的边HG上的一个动点,PM⊥FH于点M,PN⊥FG于点N,FP与MN交于点K.当点P运动到某处时,MN与FP正好互相垂直,此时FP平分∠HFG吗?请说明理由.参考答案一、单项选择题(共18分)1.解:(﹣2)0=1.故选:C.2.解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选:D.3.解:A.a12÷a3=a9,选项A不符合题意;B.(﹣a3)2=a6,选项B符合题意;C.a2•a5=a7,选项C不符合题意;D.(﹣3a)2=9a2,选项D不符合题意;故选:B.4.解:作A点关于直线l的对称点,连接对称点和点B交l于点P,P即为所求.故选:A.5.解:A.若AB=AC,∠B=60°,则∠A=60°,∠C=60°,所以△ABC是等边三角形,故此选项判断正确,不符合题意;B.若∠A:∠B:∠C=3:4:7,则∠C=90°,所以△ABC是直角三角形,故此选项判断正确,不符合题意;C.若∠A=20°,∠B=80°,则∠C=80°,所以△ABC是等腰三角形,故此选项判断正确,不符合题意;D.若AB=BC,∠C=40°,则∠B=100°,故此选项判断错误,符合题意.故选:D.6.解:图①中阴影部分的面积可以看作两个正方形的面积差,即a2﹣b2,图②是长为a+b,宽为a﹣b的长方形,因此面积为(a+b)(a﹣b),由于图①、图②阴影部分的面积相等可得,a2﹣b2=(a+b)(a﹣b),故选:C.二、填空题。
北师大版数学八年级下册第三次月考试题含答案

(1)求直线 的解析式.
(2)求 的面积.
(3)直接写出 的解集.
25.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元
即2b+3<x< ,
∵﹣1<x<1,
∴2b+3=﹣1, =1,
解得a=1,b=﹣2;
∴(a+b)(b﹣1)=﹣1×(﹣3)=3.
故答案为:3.
【点睛】
本题考查了一元一次不等式组的解法,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
15.3.
【解析】
【分析】
2.B
【解析】
【分析】
直接利用因式分解的定义分别分析得出答案.
【详解】
、 ,是单项式乘以多项式,故此选项错误;
、 ,是因式分解,符合题意;
、 ,是整式乘法运算,故此选项错误;
、 ,不符合因式分解的定义,故此选项错误.
故选B.
【点睛】
此题主要考查了因式分解的定义,正确把握定义是解题关键.
3.D
【解析】
故选C.
“点睛”本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.
7.C
【解析】
【分析】
若干个苹果分给x个小孩,根据如果每人分3个,那么余7个,共(3x+7)个苹果;如果每人分5个,那么最后一人分到的苹果是(3x+7)-5(x-1),可列出不等式组.
【详解】
北师大版八年级上学期数学第三次月考试卷 附答案

北师大版八年级上学期广东省揭西县八年级数学第三次月考试卷(考试时间:60分钟,满分:100分)一、选择题(每小题3分,共30分) 1、91的平方根是( )A .31B .31-C . 31±D . 811±2、下列四组数据中,不能..作为直角三角形的三边长是( )A .3,4,6B .7,24,25C .6,8,10D .9,12,153、下列各组数中互为相反数的是( )A. 2与2-B. 2-与2)2(-C. 2-与21- D. 2-与38-4、点P (-1,2)关于x 轴对称点的坐标为( )A .(1,-2)B .(-1,2)C .(1,2)D .(-1,-2)5、长方形的一条对角线的长为10cm ,一边长为6cm ,它的面积是( ).A .60cm 2B .64 cm 2C .48cm 2D .24 cm 26、一次函数b kx y +=的图象如图(1)所示,则b k ,的值为(A .0,0<<b kB .0,0><b kC .0,0<>b kD .0,0>>b k 7、32-的绝对值是 ( )A .23+B .23-C .D .32-8、点P )1,3(++m m 在直角坐标系的x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,-2)9、下列函数中,图象过点(1,4)的是( )A .62+-=x yB .42+=x yC .x y -=D .421+-=x y 10、直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121 B .120 C .90D .不能确定 二、填空题(每空3分,共30分)11、已知a 的平方根是8±,则它的立方根是 ;36的算术平方根是____________。
12、函数y =kx 的图象经过点P (3,-1),则k 的值为 。
新北师大版八年级下册第三次月考

博恒实验学校2018—2019学年度第二学期二次月考模拟考试卷八年级数学一、选择题(本题共12小题,每小题3分,共36分,答案写在答题卡上)1.下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.下面四个多项式中,能进行因式分解的是()A.x 2+y 2B.x 2﹣y C.x 2﹣1D.x 2+x+13.不等式组的解集在数轴上表示正确的是()4.已知等腰△ABC 的两边长分别为2和3,则等腰△ABC 的周长为()A.7B.8C.6或8D.7或85.如果分式有意义,那么x 的取值范围是()A.x≠0B.x≤﹣3C.x≥﹣3D.x≠﹣36.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x 2﹣1B.x(x﹣2)+(2﹣x)C.x 2﹣2x+1D.x 2+2x+17.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3B.>C.x+3>y+3D.﹣3x>﹣3y8.如图在直角△ABC 中,∠BAC=90°,AB=8,AC=6,DE 是AB 边的垂直平分线,垂足为D,交边BC 于点E,连接AE,则△ACE 的周长为()A.16B.15C.14D.139、某农场开挖一条480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是()A、B、C、D、10.如图,将一个含30°角的直角三角板ABC 绕点A 顺时针旋转得到''C AB △,点B、A、'C 在同一条直线上,则旋转角'∠BAB的度数是A.60°B.90°C.120°D.150°11、正方形ACD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转90°后,点B 的坐标为()A.(2,2)B.(4,1)C.(3,1)D.(4,0)(11题)(12题)12.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x+b>k 2x 的解为()A.x>﹣1B.x<﹣1C.x<﹣2D.无法确定二、填空题(本题共4小题,毎小题3分,共12分)13.分解因式:=-222x14.若关于x 的分式方程=1的解为正数,那么字母a15.点P(﹣4,5)关于x 轴对称的点16.在△ABC 中,∠C=90°,AB=10,AD 是△ABC 的一条角平分线.若CD=3,则△ABD班级:姓名:学号:………………………………………………………………密…………………………….封………………………….线…………………………………………………………………………三、解答题(共18分)17.(本题5分)分解因式:1.122--xxx x18.(本题5分)解不等式组:,并将解集在数轴上表示出来.19.(本题5分)先化简,再求值:(﹣x﹣1)÷,其中x=,y=.20.(本题6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC 向上平移3个单位后得到的△A 1B 1C 1;(2)画出将△A 1B 1C 1绕点C 1按顺时针方向旋转90°后所得到的△A 2B 2C 1.21.(本题8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵5元,用360元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)若商店计划购买这两种商品共40件,且投入的经费不超过1150元,那么,最多可购买多少件甲种商品?22.(本题8分)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN⊥AN 于点N,延长BN 交AC 于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC 的周长.23.(本题9分)阅读下列解题过程:已知a,b,c 为△ABC 的三边长,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判断△ABC 的形状.解:∵a 2c 2﹣b 2c 2=a 4﹣b 4,①∴c 2(a 2﹣b 2)=(a 2+b 2)(a 2﹣b 2),②∴c 2=a 2+b 2,③∴△ABC 为直角三角形.④回答下列问题:(1)在上述解题过程中,从哪一步开始出现错误?该步的序号为:;(2)错误的原因为:;(3)请你将正确的解答过程写下来.。
北师大版数学八年级下册第三次月考试卷含答案

北师大版数学八年级下册第三次月考试题一、单选题1.不等式21x >的解集是( ) A .12x >B .2x <C .12x <D .2x >2.若a b <,则下列各式中不成立的是( ) A .11a b +<+ B .33a b <C .22a b ->-D .如果c<0,那么ac bc <3.如图,线段AB 是线段CD 经过平移得到的,那么线段AB 和线段CD 的关系是( )A .平行且相等B .平行C .相交D .相等4.下列图形中既是轴对称图形又是中心对称图形的是( ) A .正三角形B .平行四边形C .正五边形D .正六边形5.下列各式从左到右是因式分解的是( ) A .()()2111x x x +-=-B .211()x x x x+=+ C .()25757x x x x -+=-+D .()22442x x x -+=-6.用反证法证明a b >时,应假设( ) A .a b <B .a b ≤C .a b ≥D .ab7.等腰三角形的两条边长分别是3和5,则这个等腰三角形的周长是( ) A .11B .12C .11或13D .12或138.如图,BE=CF ,AE ⊥BC ,DF ⊥BC ,要根据“HL”证明Rt △ABE ≌Rt △DCF ,则还要添加一个条件是( )A .AB=DCB .∠A=∠DC .∠B=∠CD .AE=BF9.下列各组数中,以它们为边长的线段不能构成直角三角形的是( )A .6、8、10B .1 2C .9、12、13D .8、15、1710.下列说法错误的是( )A .角平分线上的点到角两边的距离相等B .直角三角形的两个锐角互余C .等腰三角形的角平分线、中线、高线互相重合D .一个角等于60°的等腰三角形是等边三角形11.已知一次函数y kx b =+(0k ≠,k ,b 为常数),x 与y 的部分对应值如下表所示,则不等式0kx b +<的解集是( ) A .1x <B .1x >C .0x >D .0x <12.如图,在△ABC 中,高AD 和BE 交于点H ,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH=AB ;③2AH=BH ;④若则BH=3;⑤若DF ⊥BE 于点F ,则AE-FH=DF ;正确的有( )个.A .5B .4C .3D .2二、填空题13.用不等式表示:x 与3的和是非负数________ 14.若a+b=6,ab=7,则22a b ab +=_________.15.如图所示,在△ABC 中,DM 、EN 分别垂直平分AB 和AC ,交BC 于点D 、E ,若∠DAE=50°,则∠BAC=____.16.在坐标平面内,从点(x,y)移动到点(x+1,y+2)的运动称为一次A 类跳马,从点(x,y)移动到点(x+2,y+1)的运动称为一次B 类跳马.现在从原点开始出发,连续10次跳马,每次跳马采取A 类或B 类跳马,最后恰好落在直线6y x =+上,则最后落马的坐标是_______.三、解答题17.因式分解: (1)224a b - (2)2484x x -+18.如图所示的正方形网格,△ABC 的顶点在网格上,在建立平面直角坐标系后,点B 的坐标是(-1,-1)(1)把△ABC 向左平移10格得到111A B C ∆,画出111A B C ∆; (2)画出111A B C ∆关于x 轴对称的图形222A B C ∆;(3)把△ABC 绕点C 顺时针旋转90°后得到33A B C ∆,画出33A B C ∆,并写出点3B 的坐标.19.已知直线y kx b =+经过点A(5,0)B(1,4),并与直线24y x =-相交于点C ,求关于x 的不等式24x kx b -<+的正整数解.20.解不等式组523(1)13222x x x x +>-⎧⎪⎨≤-⎪⎩,并将解集表示在数轴上.21.如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB ,于点E(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.22.某地台风带来严重灾害,该市组织20辆汽车装食品、药品、生活用品三种救灾物质共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同种物质且必须装满.根据表格提供的信息,解答下列问题:(1)若装食品的车辆是5辆,装药品的车辆为__________辆;(2)设装食品的车辆为x辆,装药品的车辆为y辆,求y与x的函数关系式;(3)如果装食品的车辆不少于7辆,装药品的车辆不少于4辆,那么车辆的安排有几种方案?请写出每种方案并求出最少费用.23.如图,在平面直角坐标系中,有一条直线l:y x4=-+与x轴、y轴分别交于点3M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标;(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.参考答案1.A【解析】【分析】解这个不等式,不等式两边同时除以2,即可求得不等式的解集.【详解】解:系数化1,得x>12.故选:A.【点睛】本题考查解一元一次不等式,解不等式依据不等式的基本性质,在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.即在系数化为1这一个过程中要注意不等号的方向的变化.2.D【解析】【分析】根据不等式的基本性质进行判断.【详解】解:A、不等式两边同时加上1,不等号方向不变,故本选项正确,不符合题意;B、不等式两边同时乘以3,不等号方向不变,故本选项正确,不符合题意;C、不等式两边同时乘以-2,不等号方向改变,故本选项正确,不符合题意;D、不等式两边同时乘以负数c,不等号方向改变,故本选项错误,符合题意.故选:D.【点睛】本题考查了不等式的性质,解题的关键是牢记不等式的性质,特别是在不等式的两边同时乘以或除以一个负数时,不等号方向改变.3.A【解析】【分析】根据平移的性质直接求解即可.【详解】图形平移前后的形状和大小没有变化,只是位置发生变化,线段AB是由线段CD平移得到的,故线段AB与CD的关系是平行且相等.故选A.【点睛】本题利用了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.4.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形,轴对称图形,解题的关键是熟练的掌握中心对称图形,轴对称图形.5.D【解析】【分析】根据因式分解的意义逐个判断即可.【详解】解:A、等式右边不是整式积的形式,故不是分解因式,故本选项错误;B、等式右边是分式积的形式,故不是分解因式,故本选项错误;C、等式右边不是整式积的形式,故不是分解因式,故本选项错误;D、等式右边是整式积的形式,故是分解因式,故本选项正确.故选:D.【点睛】本题考查因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.6.B【解析】【分析】熟记反证法的步骤,直接填空即可.要注意的是a>b的反面有多种情况,需一一否定.【详解】用反证法证明“a>b”时,应先假设a≤b.故选B.【点睛】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.C【解析】【分析】因为腰长没有明确,所以分①3是腰长,②5是腰长两种情况求解.【详解】解:①3是腰长时,能组成三角形,周长=3+3+5=11,②5是腰长时,能组成三角形,周长=5+5+3=13,所以,它的周长是11或13.故选:C.【点睛】本题考查等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形.8.A【解析】【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【详解】解:条件是AB=DC,理由是:∵AE ⊥BC ,DF ⊥BC , ∴∠CFD=∠AEB=90°, 在Rt △ABE 和Rt △DCF 中,AB=CDBE=CF ⎧⎨⎩, ∴Rt △ABE ≌Rt △DCF (HL ), 故选:A . 【点睛】本题考查全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解题的关键. 9.C 【解析】 【分析】根据勾股定理的逆定理对各选项进行逐一判断即可. 【详解】解:A 、∵62+82=100=102,∴能够成直角三角形,故本选项不符合题意;B 、∵12+2=4=22,∴能够成直角三角形,故本选项不符合题意;C 、∵2229+12=81+144=22513≠ ,∴不能够成直角三角形,故本选项符合题意;D 、∵82+152=289=172,∴能够成直角三角形,故本选项不符合题意. 故选:C . 【点睛】本题考查勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形. 10.C 【解析】 【分析】根据角平分线的判定定理、直角三角形的性质、等腰三角形的性质、等边三角形的判定定理判断即可. 【详解】A、角平分线上的点到角的两边距离相等,故本选项正确;B. 直角三角形的两个锐角互余,故本选项正确;C、应该是:等腰三角形底边上的角平分线、中线、高线互相重合,故此选项错误;D、根据等边三角形的判定定理“有一内角为60°的等腰三角形是等边三角形”知本选项正确.故选:C.【点睛】本题考查角平分线的性质,直角三角形的性质,等腰三角形的性质,等边三角形的判定,注意,有一个角是60°的“等腰三角形”是等边三角形,而不是有一个角是60°的“三角形”是等边三角形.11.B【解析】【分析】由表格得到函数的增减性后,再得出y=0时,对应的x的值即可.【详解】解:当x=1时,y=0,根据表可以知道函数值y随x的增大而减小,∴不等式kx+b<0的解集是x>1.故选:B.【点睛】本题考查一次函数与一元一次方程及一元一次不等式之间的内在联系.理解一次函数的增减性是解题的关键.12.C【解析】【分析】根据角平分线、高、等腰直角三角形的性质,全等三角形的性质和判定,矩形的判定和性质依次判断即可得出答案.【详解】解:①∵∠1=∠2=22.5°,又∵AD是高,∴∠2+∠C=∠3+∠C,∴∠2=∠3,∴∠1=∠3,故①正确;②∵∠1=∠2=22.5°,∴∠ABD=∠BAD=45°,∴AD=BD,又∵∠2=∠3,∠ADB=∠ADC,∴△BDH≌△ADC,∴DH=CD,∵∠1=∠2,BE⊥AC,∴AB=BC,∴BD+DH=AB,故②正确;③无法证明;④无法证明;⑤作DG⊥AC于G,∵BE⊥AC,DF⊥BE,DG⊥AC,∴四边形EFDG是矩形,∴DF=EG,∵BE⊥AC,DF⊥BE,DG⊥AC,∴∠3+∠AHE=∠3+∠C=∠FDH+∠FHD,∠DFH=∠DGC=90°,∵∠AHE=∠FHD,∴∠C=∠FHD,由②得,DH=CD,∴△DFH≌△DGC,∴FH=CG,∴EC-CG=EG,即EC-FH=DF,∵AB=BC,BE⊥AC,∴AE=EC,∴AE-FH=DF,故⑤正确.故选:C.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,矩形的判定和性质,仔细分析图形并熟练掌握各性质是解题的关键.13.x+3≥0.【解析】【分析】首先表示“x与3的和”为x+3,再表示“非负数”为≥0,进而得到不等式.【详解】解:由题意得:x+3≥0.故答案为:x+3≥0.【点睛】本题考查由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.14.42【解析】【分析】直接提取公因式ab,进而分解因式得出答案.【详解】∵a+b=6,ab=7,∴ab2+a2b=ab(a+b)=6×7=42.故答案为42.【点睛】本题考查的知识点是因式分解-提公因式法,解题的关键是熟练的掌握因式分解-提公因式法.15.115°.【解析】【分析】根据线段的垂直平分线的性质得到DA=DB,EA=EC,根据等腰三角形的性质得到∠DAB=∠B,∠EAC=∠C,根据三角形内角和定理计算即可.【详解】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,∵∠DAE=50°,∴2(∠B+∠C)=130°,解得,∠B+∠C=65°,∴∠BAC=115°.故答案为:115°.【点睛】本题考查线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.(12,18).【解析】【分析】根据一次A类跳马横坐标加1,纵坐标加2,一次B类跳马横坐标加,2,纵坐标加1,设连续10次跳马中A类跳马a次,B类跳马b次,可得从原点开始出发,连续10次跳马后的坐标是(a+2b,2a+b), 根据题意可列方程组10262a ba b a b+=⎧⎨++=+⎩,解方程求出a、b的值即可得最后落马的坐标.【详解】解:由题意得,次A类跳马横坐标加1,纵坐标加2,一次B类跳马横坐标加,2,纵坐标加1,设连续10次跳马中A类跳马a次,B类跳马b次,则从原点开始出发,连续10次跳马后的坐标是(a+2b,2a+b), 根据题意得10262a b a b a b +=⎧⎨++=+⎩解得82a b =⎧⎨=⎩ a+2b=12,2a+b=18,∴10次跳马后最后落马的坐标是(12,18).故答案为:(12,18).【点睛】本题考查坐标变换,二元一次方程组的应用,解题的关键是找出变换的规律.17.(1)(a+2b )(a-2b );(2)4(x-1)2.【解析】【分析】(1)原式利用平方差公式分解因式即可;(2)原式提取4,再利用完全平方公式分解即可.【详解】解:(1)原式=(a+2b )(a-2b );(2)原式=4(x 2-2x+1)=4(x-1)2.故答案为:(1)(a+2b )(a-2b );(2)4(x-1)2.【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键. 18.(1)见解析;(2)见解析;(3)△A 3B 3C 见解析,点B 3的坐标为(5, 5).【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称图形的性质得出对应点位置进而得出答案;(3)△ABC 的另两点绕点C 按顺时针方向旋转90°后得到新的两点,顺次连接得△A 3B 3C .【详解】解:(1)画出的△A 1B 1C 1如图所示,(2)111A B C ∆关于x 轴对称的图形222A B C ∆如图所示,(3)画出的△A3B3C的图形如图所示,点B3的坐标为(5, 5).故答案为:(1)见解析;(2)见解析;(3)△A3B3C见解析,点B3的坐标为(5, 5).【点睛】本题考查平移变换、轴对称变换以及旋转变换作图,根据网格结构正确得出对应点位置是解题的关键.19.1, 2, 3.【解析】【分析】利用待定系数法即可求得直线AB的函数解析式,两个函数解析式组成方程组即可求得点C 的坐标,关于x的不等式2x-4<kx+b的解集就是函数y=kx+b的图象在上边的部分自变量的取值范围,即可得不等式的正整数解.【详解】解:(1)根据题意得50{4k bk b+=+=,解得51bk=⎧⎨=-⎩,则直线AB的解析式是y=-x+5;根据题意得524y xy x=-+⎧⎨=-⎩,解得:3{2xy==,则C的坐标是(3,2);根据图象可得不等式的解集是x≤3,∴不等式2x-4<kx+b的正整数解为:1, 2, 3.故答案为:1, 2, 3.【点睛】本题考查一次函数与一元一次不等式的关系,掌握待定系数法求一次函数解析式的一般步骤、灵活运用数形结合思想是解题的关键.20.52-<x≤1,在数轴上表示见解析.【解析】【分析】先求出两个不等式的解集,再求其公共解.【详解】解:() 5231 13222x xx x+-⎧⎪⎨≤-⎪⎩>①②解不等式①得,x>52-,解不等式②得,x≤1,在数轴上表示如下:所以,不等式组的解集是52-<x≤1.故答案为:52-<x≤1,在数轴上表示见解析.【点睛】本题考查一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.(1)见解析(2)BD=2【解析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,AD AD {CD DE==,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.22.(1)10;(2)y= -2x+20;(3)安排方案有2种:方案一:装运食品7辆、药品6辆,生活用品7辆;方案二:装运食品8辆、药品4辆,生活用品8辆.最少费用为12160元.【解析】【分析】(1)设装药品的车辆数为x辆,则装运生活用品的车辆数为(20-5 -x),根据三种救灾物资共100吨列出方程即可求解;(2)装运生活用品的车辆数为(20-x-y),根据三种救灾物资共100吨列出关系式;(3)根据题意求出x的取值范围并取整数值从而确定方案;分别表示装运三种物质的费用,求出表示总运费的表达式,运用函数性质解答.【详解】解:(1)设装药品的车辆数为x辆,则装运生活用品的车辆数为(20-5 -x),由题意,得5×6+5x+4(20-5-x)=100解得:x=10,答:装药品的车辆为10辆;(2)根据题意,装运食品的车辆数为x,装运药品的车辆数为y,那么装运生活用品的车辆数为(20-x-y),则有6x+5y+4(20-x-y)=100,整理得,y= -2x+20;(3)由(2)知,装运食品,药品,生活用品三种物资的车辆数分别为x,20-2x,x,由题意,得72204xx≥⎧⎨-+≥⎩,解这个不等式组,得7≤x≤8,因为x为整数,所以x的值为7,8.所以安排方案有2种:方案一:装运食品7辆、药品6辆,生活用品7辆;方案二:装运食品8辆、药品4辆,生活用品8辆.设总运费为W(元),则W=6x×120+5(20-2x)×160+4x×100=16000-480x,因为k=-480<0,所以W的值随x的增大而减小.要使总运费最少,需x最大,则x=8.故选方案二.W最小=16000-480×8=12160元.最少总运费为12160元.故答案为(1)10;(2)y= -2x+20;(3)安排方案有2种:方案一:装运食品7辆、药品6辆,生活用品7辆;方案二:装运食品8辆、药品4辆,生活用品8辆.最少费用为12160元.【点睛】本题考查一次函数的应用,(1)根据车的辆数设未知数,根据运货的吨数列方程是解题关键,(2)列不等式组是解题关键;(3)先求出函数的解析式,再利用一次函数的增减性得出答案.23.解:(1),3).(2)P(1).(3)存在四个点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形,分别是P(,1),Q3),S(﹣3,R(.【解析】试题分析:(1)∵等边三角形ABC的高为3,∴A1点的纵坐标为3.∵顶点A1恰落在直线l上,∴34=+,解得;.∴A1,3).(2)设P(x,y),连接A2P并延长交x轴于点H,连接B2P,先求出A2B2HB2=+,即可得出根据点P是等边三角形A2B2C2的外心,得出PH=1,将y=1代入y4点P的坐标.设P(x,y),连接A2P并延长交x轴于点H,连接B2P,在等边三角△A2B2C2中,高A2H=3,∴A2B2HB2∵点P是等边三角形A2B2C2的外心,∴∠PB2H=30°.∴PH=1,即y=1.=-+,解得:.将y=1代入y x43∴P(1).(3)分四种情况分别讨论.∵点P是等边三角形A2B2C2的外心,∴△PA2B2,△PB2C2,△PA2C2是等腰三角形,∴点P满足的条件,由(2)得P(1).=+的关系式,∴点C2与点M重合.由(2)得,C2(0),点C2满足直线y4∴∠PMB2=30°.设点Q满足的条件,△QA2B2,△B2QC2,△A2QC2能构成等腰三角形,此时QA2=QB2,B2Q=B2C2,A2Q=A2C2.作QD⊥x轴与点D,连接QB2,∵QB2∠QB2D=2∠PMB2=60°,∴QD=3,∴Q,3).设点S满足的条件,△SA2B2,△C2B2S,△C2PA2是等腰三角形,此时SA2=SB2,C2B2=C2S,C2A2=C2S.作SF⊥x轴于点F,∵SC2∠SB2C2=∠PMB2=30°,∴∴S(3).设点R满足的条件,△RA2B2,△C2B2R,△C2A2R能构成等腰三角形,此时RA2=RB2,C2B2=C2R,C2A2=C2R.作RE⊥x轴于点E,∵RC2∠RC2E=∠PMB2=30°,∴∴R(.综上所述,存在四个点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形,分别是P(1),Q,3),S(3),R().第21 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年下册第三次月考考试试题 数学
注意事项:
1:全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2:答题应答在答题卡内;在草稿纸,试卷上答题无效。
A 卷(共100分) 第Ⅰ卷(选择题,共30分)
一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求。
1. 下列不等式一定成立的是
A.a a 34>
B.b b 2->-
C.x x -<-43
D.c c 2
3>
2. 下列由左到右变形,属于因式分解的是
A.94)32)(32(2-=-+x x x
B.1)2(411842-+=-+x x x x
C. )3)(3(9)(2--+-=--b a b a b a
D. 22244)2(y xy x y x +-=- 3. 下列四个分式的运算中,其中运算结果正确的有
①b a b a +=+211; ②()3
23
2a a a =;③b a b a b a +=++22;④3
1932
-=--a a a ; A.0个 B. 1个 C. 2个 D. 3个 4.化简:3
2
9122
++-m m 的结果是 A.962-+m m B.32-m C.32+m D.9
9
22
-+m m
5.如图,点C 是线段AB 的黄金分割点)(BC AC >,下列结论错误的是
A.
AC
BC
AB AC =
B.BC AB BC ⋅=2
C.215-=AB
AC D.618.0≈AC
BC
6.已知230.5x y z
==
,则322x y z x y +--+的值是
A .
17 B.7 C.1 D.13
7.已知
1,2,3xy yz zx x y y z z x
===+++,则x 的值是 A .1 B.
125 C.5
12
D.-1 8. 在△ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为 A.9.5 B.10.5 C.11 D.15.5
9. 在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 A.小明的影子比小强的影子长 B.小明的影子比小强的影子短 C.小明的影子和小强的影子一样长 D.无法判断谁的影子长 10. 如图所示,给出下列条件: ①B ACD ∠=∠;②ADC ACB ∠=∠;
③
AC AB
CD BC
=
;④2AC AD AB =. 其中单独能够判定ABC ACD △∽△的个数为
A
B
C
D E A.1 B.2 C.3 D.4
第Ⅱ卷(共70分)
二、填空题:(每小题4分,共l6分) 11.若2y -7x =0,则x ∶y 等于
12. 分解因式:.221x x ++=________________。
13.如图,在△ABC 中,D,E 分别是边AC 、BC 的中点,若DE=4, 则AB=________________。
14.如图,在△ABC 中,点D 是射线BC 上任意一点,DH 交AB 于点H ,交AC 于点E ,则∠HEC 与∠AHE 的大小关系是
H
E
D
C B
A
13题图 14题图
三、解答题:(本大题共6个小题,共54分) 1 5. (本小题满分12分,每题6分) (1)分解因式:22(1)24x xy y ++-
(2)解不等式组:2031212
3x x x +≥⎧⎪
-+⎨<⎪⎩,并写出该不等式组的最小整数解。
16.先将231
()11x x x x x x
---+化简,然后不等式组. 的自然数解中,自选一个你喜欢的x 的值代入化简后的式子求值(6分)
17. 若方程组⎩⎨⎧+=++=+3654,
2m y x m y x 的解x ,y 均为正数,求m 的取值范围。
(6分)
18.花石镇组织10辆汽车装运完A 、B 、C 三种不同品质的湘莲共100吨到外地销售,
按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,
解答以下问题:(10分)
(1)设装运A 种湘莲的车辆数为x ,装运B 种湘莲的车辆数为y ,求y 与x 之间的函数关系式;
(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
19.如图,已知:DE∥BC,DF∥AC,AD=6,BD=4,DE=7(10)
(1)试说明:△ADE∽△DBF;
(2)求线段BF的长。
20.如图,在△ABC中,∠A与∠B互余,CD⊥AB,垂足为点D,DE∥BC,交AC与点E,求证:AD:AC=CE:BD(10)
C
E
A
D B
B卷(共50分)
一、填空题:(每小题4分,共20分)
21.若关于x的不等式2x<3(
x-3)+1和(3x+2)×
4
1
>x+a的解相同,且有四个整数解,a的取值范围________________.
22..巳知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8.点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,矩形DECF,且DE:CE=2:3,矩形的面积是________________。
23.如图,△ABC中,∠ABC+∠CBA=∠ACB,CD是斜边AB上的高,AD=9,BD=4,那么CD=________________,AC=________________.
C
A
D B
24.雨后初晴,一学生在运动场上玩耍,从他前面2米远一小积水处,他看到了旗杆顶端的倒影。
如果旗杆低端到积水的距离为40m,该生的眼部高度是1.5m,那么旗杆的高度是_______________m。
25.矩形ABCD中,由8个面积均为1的小正方形组成的L型模版如图12所示放置,
F E
D
C B
A
则矩形ABCD 的周长_______________。
A D F B
E C
二、解答题:(本大题3个小题,共30分)
26.如图D 为△ABC 的边BC 上一点,且∠BAD=∠C (8分) (1) 找出图中的相似三角形,并说明理由 (2) (2)求证AD ²×BC=AC ²×BD
A
C D B
27.如图所示,在平行四边形ABCD 中,过点A 作AE ⊥BC,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B (10分) (1)求证:△ADF~ △DEC
(2)若AB=4,AD=33,AE=3,求AF 的长
A D
FFFFFFFFFFFFFF
B E C
28..已知:在菱形ABCD 中,O 是对角线BD 上的一动点.(12分)
(1)如图甲,P 为线段BC 上一点,连接PO 并延长交AD 于点Q ,当O 是BD 的
点时,求证:OP OQ =;
(2)如图乙,连结AO 并延长,与DC 交于点R ,与BC 的延长线交于点S .若
460,10AD DCB BS ===,∠,求AS 和OR 的长.。