矩阵可对角化的充分必要条件开题报告

合集下载

浅谈矩阵的对角化问题(浓缩稿)

浅谈矩阵的对角化问题(浓缩稿)

浅谈矩阵的对角化问题(浓缩版)学号:0807402069 学生姓名:马莉莹 指导老师:朱广俊数学科学学院,2008级,数学与应用数学(师范)摘要:矩阵的对角化是矩阵理论中的一个重要问题,本文利用高等代数的有关理论给出了矩阵可对角化的若干条件;从初等变换、线性方程组、特征子空间等不同角度探究了将一般矩阵和实对称矩阵对角化的若干方法;最后,分析了一些特殊矩阵的对角化问题,如幂等矩阵、幂零矩阵、实对称矩阵和Hermite 矩阵等. 关键词:对角化,特征值,特征向量,相似变换,线性变换.Abstract: Diagonalization of Matrix is an important problem in the matrix theory. We give several conditions of matrix diagonalization by the use of higher algebra related theory. We give some methods of diagonalization of general matrix and real symmetric matrix from different aspects, such as elementary transformation, system of linear equations and characteristic subspace. In the end, we analysis the diagonalization of some special matrix, such as idempotent matrix, nilpotent matrix ,real symmetric matrix and hermite matrix. Keywords : diagonalization ,eigenvalue ,eigenvectors ,similarity transformation ,linear transformation.一.矩阵相似对角化的条件由于矩阵的类型和所在数域的不同,其对角化的条件也不同. 1.任意数域上矩阵相似对角化的条件 充要条件设1,,m λλ 为n 阶方阵A 的m 个互异的特征值,且它们的重数分别为1,,m s s ,1,2,,i m = .A 可对角化⇔A 有n 个线性无关的特征向量⇔对于A 的每个特征值i λ,其代数重数等于其几何重数 ⇔()i i r n s λ-=-I A ⇔A的最小多项式无重根⇔1()mii λ=-=∏I A 0⇔对于A 的每个特征值i λ,都有2()()r r λλ-=-I A I A⇔A 的初等因子都是1次的 ⇔A与某个循环矩阵相似充分条件A 有n 个不同特征值⇒A可对角化A的零化多项式无重根⇒A可对角化2.复数域上Hermite 矩阵必可酉相似于对角矩阵.3.实数域上对称矩阵必可正交相似于对角矩阵.二.矩阵对角化的若干方法(一)一般矩阵对角化的方法特征向量法是将矩阵对角化的常规方法,用该方法解决问题时需要求解齐次线性方程组,过程繁琐.下面介绍其它四种将矩阵对角化的方法. 1.矩阵乘积运算法设12,,,s λλλ 是A在数域F 上全部互异的特征值.其重数分别为12,,,s n n n ,且1sii nn ==∑,记i V λ为A 的属于i λ()1,2,,i s = 的特征子空间. 对()i λ-=I A X 0,有:(1)若A 可对角化,则对A 的每一特征值i λ,都有i n 个与之对应的线性无关的特征向量. (2)A 可对角化的充要条件是对于A 的每个特征值i λ,()ii dim V n λ=.采用类比推测,可得定理1.定理1:设12,,,s λλλ 是A 在数域F 上全部互异的特征值,其重数分别为12,,,s n n n ,且1sii nn ==∑,记i W =()1sj j j iλ=≠-∏I A ()1,2,,i s = . 对()()()12s λλλ---= I A I A I A 0,有:(1)若A 可对角化,则矩阵i W 的列向量组中有对应于i λ的i n 个线性无关的特征向量. (2)A 可对角化的充要条件是()i i rank n =W ()1,2,,i s = .定理1表明,要构造可对角化矩阵A 的相似变换矩阵P ,只需对每一特征值i λ,从矩阵乘积()1sj j j i λ=≠-∏I A 中找出i n 个与之对应的线性无关的特征向量,以这样所得的in n=∑个特征向量为列作一个n 阶矩阵即可.例1:设12202120221001⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭A ,求可逆矩阵P ,使得1-P A P 为对角矩阵. 解:由2(1)(5)(1)0λλλλ=-+--=I A ,得 11λ=-(二重),25λ=,31λ= ()()()()()123()50λλλ---=----=因为 I A I A I A I A I AI A ,所以A 可对角化.当11λ=-(二重)时:()()()()123584404840448000λλ--⎛⎫ ⎪-=--=-⎪= ⎪-- ⎪⎝⎭--W I A I A I A I A 取1W 中两个线性无关的特征向量()()12844,04,8,4,0TT=--=--,,,αα. 当25λ=时:()()()()21388808880888000λλ=--⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭=---W I A I A I A I A 取2W 中的特征向量()38,8,8,0T=α当31λ=时:()()()()312000000000050008λλ=--=--⎛⎫ ⎪⎪= ⎪ ⎪--⎝⎭W I A I A I A I A 取3W 中的特征向量()40,0,0,8T=-α.令()1234=,,,P αααα,则1(1,1,5,1)diag -=--P A P2.Jordan 标准形法由于复数域C 上任意n 阶矩阵A 都相似于一个Jordan 矩阵J ,所以存在可逆矩阵P ,使得1-=P A P J .如果J 为对角矩阵,则A 可对角化,否则,A 不可对角化.由于矩阵P 可逆,所以存在一系列的初等矩阵12,,,t P P P ,使得12t = P P P P .于是有:1112112t t ---= P P P A P P P J .可对A 先施行一次初等行变换后,接着施行一次相应的初等列变换,我们称此种初等变换为对A 施行了一次相似变换.显然,可对A 施行一系列的相似变换,将A 化为Jordan 形矩阵J .例2:设460350361⎛⎫⎪-- ⎪ ⎪--⎝⎭=A ,求可逆矩阵P ,使得1-P A P 为对角矩阵. 解:将A 化为Jordan 标准形3121121346026026011350010010(1)(1)361361001r r r r c c c c --⎛⎫⎛⎫⎛⎫+⨯+⨯⎪⎪⎪--−−−−−−→−−−−−−→ ⎪⎪⎪+⨯-+⨯- ⎪ ⎪ ⎪---⎝⎭⎝=⎝⎭⎭A1221200(2)0102001r r c c -⎛⎫+⨯- ⎪−−−−−−→ ⎪+⨯ ⎪⎝⎭由A 的Jordan 标准形知,矩阵A 可对角化且它的特征值为-2,1,1.上述过程对A 共施行了三次相似变换,且三次初等列变换对应的矩阵分别为:123100100120110,010,010001101001⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭P P P所以123120110121⎛⎫⎪==-- ⎪ ⎪--⎝⎭P P P P ,且1211--⎛⎫⎪= ⎪ ⎪⎝⎭P A P .3.λ矩阵标准形法引理1:设A 是n 阶方阵,则必能用初等变换将λ-I A 变为对角矩阵:12()()()()n t t t λλλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭T 并且多项式 ()(1,2,,)i t i n λ= 的所有根恰好是A 的所有特征值.定理2:设A 是n 阶方阵,{}12()(),(),()n diag t t t λλλλ= T 是对角形λ矩阵,()λP ,()λQ 是可逆的λ矩阵,且满足()()()()λλλλ-=P I A Q T .如果()()()((),)((),())()TTTTTTλλλλλλλ--−−−−−−−−−−→Q I A P I A I T Q Q I.即对()T λ-I A 作初等行变换和初等列变换,使其变为对角矩阵()λT .I 随着()T λ-I A 行的变化而变为()T λQ .则(1) 若12(),(),()n t t t λλλ 的所有根12,,s λλλ 都在F 内,则12,,s λλλ 就是A 的所有特征值.(2) 对于A 的特征值12,,s λλλ ,设第12,,,m ik k k 行是()i λT 的全部为零的行,则()T i λQ 的第12,,,m ik k k 行即构成iV λ的基.其中iV λ为特征值i λ的特征子空间.(3)A 可对角化⇔,(1,2,)i i i r m i s λ∀== ,此处i r 是i λ的重数.根据定理2即可得到λ矩阵标准形法: (1) 作初等变换:()()()((),)((),())()TTTTTTλλλλλλλ--−−−−−−−−−−→Q I A P I A I T Q Q I设{}12()(),(),,()n diag t t t λλλλ= T ,求出12(),(),,()0n t t t λλλ= 的所有解. (2) 若12(),(),,()0n t t t λλλ= 的解都在F 内,并且对每个解i λ都有()i λT 中零行的数目 等于i λ的重数,则A 可对角化,转(3);否则A 不可对角化,结束.(3) 对于A 的任一特征值i λ,若()i λT 的第12,,,m i k k k 行都为零,则取出()T i λQ 的第 1k ,2k , ,m ik 行构作:1111((),,(),,(),,())m s m sT TTTk kk s k s λλλλ= T Q Q Q Q则12112(,,,)sm m s m diag λλλ-= T AT I I I .例3:设132132264⎛⎫⎪=--- ⎪ ⎪⎝⎭A ,求可逆矩阵T ,使得1-T A T 为对角矩阵. 解:作初等变换:()2112100100100,33601002011222410021T λλλλλλλλ--⎛⎫⎛⎫⎪ ⎪-=-+-→-+-+- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭I A I 按上述方法:(1)记2100002()00λλλλ⎛⎫⎪= ⎪ +⎪⎝⎭-T ,100()112201T λλ⎛⎫⎪=-+- ⎪ ⎪-⎝⎭Q 则1230,2λλλ===(2)当120λλ==时,(0)T 中零行的数目0=的重数2=-当32λ=时,(2)T 中零行的数目2=的重数1=-.所以A 可对角化.(3)当120λλ==时,()()()1001000,00001120021T ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭T Q 取(0)T Q 中与(0)T 中零行所对应的特征向量()11,1,2T=-α,()22,0,1T=-α 当32λ=时,()()()1001002,200011200221T ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭T Q 取(2)T Q 中与(2)T 中零行所对应的特征向量()31,1,2T=--α.令()123121,,101212--⎛⎫ ⎪== ⎪ ⎪--⎝⎭T ααα,则1002-⎛⎫⎪⎪ ⎪⎝⎭T A T =4. 数字矩阵对角形法若矩阵A 在数域F 上可对角化,则存在F 上的可逆矩阵T ,使得1-=T AT B 为对角矩阵,且B 的主对角线上的元素为A 的全体特征值.由于矩阵T 可逆,所以存在一系列的初等矩阵12,,,s T T T ,使得12s = T T T T .于是:11111112s s s ----- B =TA T =T T T A T T T ,做初等变换:⎛⎫⎛⎫→⎪ ⎪⎝⎭⎝⎭A B I T . 即对A 施行一系列的初等行变换和初等列变换,使其变为对角矩阵B ,对I 只施行相应的初等列变换变为T .在施行初等变换时,可施行若干次行(或列)变换后再施行若干次相应的列(或行)变换,只要保持变换后所得矩阵与A 相似即可.例4:若1111111111111111⎛⎫ ⎪-- ⎪= ⎪-- ⎪--⎝⎭A ,求可逆矩阵T ,使得1-T A T 为对角矩阵.解:作初等变换:200002001111002011110002111111111111444100031110100444001013114440011131444-⎛⎫ ⎪ ⎪⎛⎫⎪ ⎪-- ⎪ ⎪⎪ ⎪-- ⎪⎪⎪--⎛⎫ ⎪=→ ⎪ ⎪ ⎪⎝⎭⎪ ⎪--- ⎪ ⎪⎪ ⎪ ⎪ ⎪--- ⎪ ⎪⎝⎭⎪ ⎪--- ⎪⎝⎭A I 所以A 可对角化.令1111444311144413114441131444⎛⎫ ⎪ ⎪ ⎪---⎪=⎪ ⎪--- ⎪ ⎪ ---⎪⎝⎭T ,则有120000200002002--⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭T A T .利用初等变换将矩阵对角化时,我们可以从变换后的最终矩阵中直接读出相似变换矩阵和对角矩阵,大大简化了求解过程.(二)实对称矩阵对角化的方法Schmidt 正交法是将实对称矩阵对角化的基本方法,使用该方法时需要牢记公式且计算量较大.下面我们介绍另外两种方法. 1.直接正交法该方法从向量正交的基本定义出发,直接从特征子空间中求出正交向量,易于理解和掌握,且在特征值出现重根的情况下,计算量也大为减少.例5:设 1333313333133331---⎛⎫ ⎪--- ⎪= ⎪--- ⎪---⎝⎭A ,求正交矩阵P , 使得1-P A P 为对角矩阵. 解:由3(4)(8)0λλλ-=+-=I A ,得14λ=-(三重),28λ=. 设41234(,,,)T x x x x R =∈X当14λ=-时,解齐次线性方程组(4)--=I A X 0,得1243x x x x =+-.先取一个特征向量1(1,1,0,0)T =α. 设特征向量22222(,,,)T a b c d =α.因2α与1α正交,从而有220a b +=.又因为2222a b d c =+-,所以可得2222a d c =-. 取211(,,0,1)22T =-α.再设特征向量33333(,,,)T a b c d =α.因3α与1α和2α都正交,从而有330a b +=,33311022a b d -+=.又因为3333a b d c =+-,所以可得333a c =-.取3(2,2,6,2)T =---α. 现将1α,2α,3α都单位化:122,,0,022T⎛⎫= ⎪⎪⎝⎭β,2666,,0,663T ⎛⎫=- ⎪ ⎪⎝⎭β,33333,,,6626T⎛⎫=--- ⎪ ⎪⎝⎭β. 当28λ=时,可求得单位特征向量:41111,,,2222T⎛⎫=-- ⎪⎝⎭β.令1234(,,,)=P ββββ,则()14,4,4,8T diag ----P AP =P AP =.2.度量矩阵法对于n 维欧氏空间V ,令1,,n αα是它的一个基,它的度量矩阵()()()()1111,,,,n n n n ⎛⎫⎪= ⎪⎪⎝⎭A αααααααα是正定矩阵,于是A 合同于单位矩阵I ,即可求得n 阶可逆矩阵U ,使得T =U AU I .利用U 和V 的基1,,n αα作一个新基:121(,,,)(,,)n n = βββααU .那么,新基的度量矩阵即为:()()()()1111,,,,n Tn n n ⎛⎫⎪= ⎪ ⎪⎝⎭=U A U Iββββββββ.所以12,,,n βββ是欧式空间V 的标准正交基.例6:设0111101111011110-⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭A ,求正交矩阵P , 使得1-P A P 为对角矩阵. 解:由3(1)(3)0λλλ-=-+=I A ,得11λ=(三重),23λ=-. 当11λ=时,解齐次线性方程组()-=I A X 0,得基础解系 1(1,1,0,0)T =α,2(1,0,1,0)T =α,3(1,0,0,1)T =-α当23λ=-时,解齐次线性方程组(3)--=I A X 0,得基础解系4(1,1,1,1)T =--α 则 1234,,,αααα是4R 一组基.记其度量矩阵为B ,那么21101210112004-⎛⎫ ⎪-⎪= ⎪-- ⎪⎝⎭B 对矩阵⎛⎫ ⎪⎝⎭B I 作合同变换:⎛⎫ ⎪⎝⎭B I =2110121011200004100001000010001-⎛⎫ ⎪- ⎪ ⎪--⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭→1000010000100001263026663003630002102⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭.取263026663003630002102⎛⎫-⎪ ⎪ ⎪⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭U ,则有1111T ⎛⎫⎪⎪= ⎪ ⎪⎝⎭U B U . 利用U 和基1234,,,αααα作新基:12341234(,,,)(,,,)=ββββααααU .则: 122,,0,022T⎛⎫= ⎪⎪⎝⎭β, 2666,,,0663T⎛⎫=- ⎪ ⎪⎝⎭β. 33333,,,6662T⎛⎫=- ⎪ ⎪⎝⎭β, 41111,,,2222T⎛⎫=-- ⎪⎝⎭β.由于1234,,,ββββ的度量矩阵T =U B U I ,故1234,,,ββββ是4R 的标准正交基.令1234(,,,)=P ββββ,则P 是正交矩阵且1T -P AP =P AP .三.特殊矩阵的对角化 1.幂等矩阵定理3:n 阶幂等矩阵A一定可以对角化,并且A的相似标准形是 0r⎛⎫⎪⎝⎭I ,其中()r rank =A ,r I 是r阶单位矩阵.证明: 因为2=A A ,所以A 有零化多项式2()(1)g λλλλλ=-=-,因为()g λ无重根,所以A可对角化.而A 的特征值只有0和1,所以A 的相似标准形是0r⎛⎫⎪⎝⎭I ,其中()r rank =A .由该定理可以推出幂等矩阵的若干性质: 性质1:幂等矩阵A 的迹等于A 的秩.证明:设A 是数域F 上的一个n 阶幂等矩阵,()r rank =A .如果0r =,则()0()rank tr ==A A .如果r n =,则=A I .从而()()rank n tr ==A A .下面设0r n <<.由A 的相似标准形0r⎛⎫⎪⎝⎭I 得: ()((,0))()r rank r tr diag tr ===A I A .性质2:任意n 阶矩阵A 都可以表示成为一个可逆矩阵与一个幂等矩阵的乘积. 证明:设n 阶方阵A 的秩为r ,则存在n 阶可逆矩阵,P Q 使得: 000r ⎛⎫=⎪⎝⎭I PA Q 所以1111100()()0000r r -----⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭I I A PQ P Q Q Q . 令11--=B P Q ,1000r -⎛⎫=⎪⎝⎭I C Q Q .易知B 为可逆矩阵.因为2=C C ,所以C 为幂等矩阵.即任意n 阶矩阵A 都可以表示成为一个可逆矩阵与一个幂等矩阵的乘积.2.幂零矩阵引理2:若()f λ 为A 的特征多项式,()m λ为A 的最小多项式,则()()f m ==A A 0. 引理3:设12,,,n λλλ 为n 阶矩阵A 的特征值,则对任意的多项式()f x 有()f A 的特征值为12(),(),,()n f f f λλλ .幂零矩阵具有下列性质:性质3:A 为幂零矩阵的充分必要条件是A 的特征值全为0.证明:(必要性) 若A 为幂零矩阵,则存在正整数k ,使得k =A 0.令0λ为A 的任意一个特征值,则存在≠α0,使得0λ=A αα.由引理3知0k λ为k A 的特征值. 所以存在 ≠β0,使得 0k k λ=A ββ,从而有00k λ=即有00λ=.又由k =A 0,知00kk ==⇒=A A A ,所以 0(1)(1)00k k ⨯-=-=-=-⋅=I A A A . 所以00λ=为A 的特征值.由0λ的任意性知A 的特征值全为0.(充分性)因为A 的特征值全为0, 所以A 的特征多项式为()n f λλλ=-=I A ,由引理2知()n f ==A A 0,所以A 为幂零矩阵.性质4:若A 为幂零矩阵且≠A 0,则A 不可对角化.证明:若A 可对角化,则存在可逆矩阵P ,使得1-=A P DP ,此处D 是n 阶对角形.若A 为 幂零矩阵,则存在正整数k ,使得k =A 0,即: 11()k k k --===A P DP P D P 0,因为1110kk k k k ---=====P D P P D P P P D D D ,所以有: 10,,-====D D 0A P DP 0, 与题设矛盾.3.幂幺矩阵性质5:幂幺矩阵在复数域上可对角化.证明:若A 为幂幺矩阵,则存在正整数k ,使得k =A I ,所以A 有零化多项式()1k g λλ=-. 因为在复数域上,()g λ的根都是k 次单位根,故()g λ无重根,所以A 可对角化.注意:A 在实数域上不一定可对角化! 例如0110-⎛⎫=⎪⎝⎭A ,满足4=A I ,即A 为幂幺矩阵,但是2()1f λλλ=-=+I A 在实数域上无根,所以A 在实数域上不可对角化.4.实对称矩阵性质6:实对称矩阵的不同特征值的特征向量相互正交.性质7:设λ是实对称矩阵的k 重特征值,则对应于特征值λ,矩阵有k 个线性无关的特征向量. 定理4:设A是一个n n ⨯实对称矩阵.则存在一个正交矩阵P,使得()112,,,Tn diag λλλ-== P AP PAP ,并且i λ是实数,1,2,,i n = .证明:设A的互不相等的特征值为12,,,()s s n λλλ≤ ,并且它们的重数依次为1212,,,()s s r r r r r r n +++= .则对于特征值(1,2,,)i i s λ= ,恰有i r 个线性无关的实特征向量.把它们正交化并单位化,即得i r 个单位正交的特征向量.由12s r r r n +++= 知,这样的特征向量共可得n 个.由于不同特征值的特征向量正交,故这n 个单位特征向量两两正交,以它们为列向量作成正交矩阵P ,则:1T -=P AP P AP 为一个实对称矩阵111,,,,,,s s sdiag r r λλλλ⎛⎫⎪ ⎪⎝⎭.5.Hermite 矩阵欧氏空间实质上是实数域上的一个内积空间.类似地考虑复数域上的内积空间—酉空间和酉空间上的线性变换.与正交变换和实对称矩阵类似,酉空间中有酉变换与Hermite 矩阵.性质8:设n n C ⨯∈A 是Hermite 矩阵,则A 的特征值均为实数.证明:设λ为A 的特征值,α为其对应的特征向量,即λ=A αα,那么: (,)(,)(,)(,)(,)(,)λλλλ=====ααααααααααααA A 但(,)0>αα,所以λλ=,即λ为实数.性质9:设n n C ⨯∈A 是Hermite 矩阵,则对应于A 的不同特征值的特征向量必正交. 证明:设,λμ是A的两个不同的特征值,,αβ分别是它们所对应的特征向量,则有λ=A αα,μ=A ββ.(,)(,)(,)(,)(,)(,)λλμμ=====αβαβαβαβαβαβA A ,即()(,)0λμ-=αβ.由于A 的特征值为实数,也即()(,)0λμ-=αβ.又因为λμ≠,所以(,)0=αβ,即,αβ正交.引理4:设n n C ⨯∈A ,则存在一个酉矩阵P ,使得1-P A P 是一个上三角形矩阵.定理5:设n n C ⨯∈A ,并且A是Hermite 矩阵,则存在一个酉矩阵P , 使得()112,,,Hn diag λλλ-== P AP PAP ,并且i λ是实数,1,2,,i n = .证明:由引理4知存在一个酉矩阵P ,使得 ()1H ij n n g -⨯===G P AP P AP 是一个上三角形矩阵.又P 是一个酉矩阵,故G 也是Hermite 矩阵.于是,对任意,,1i j i j n ≤<≤,都有ij ji g g =,这迫使当1,2,,,1,2,,,i n j n i j ==≠ 时,有0ij g =;并且i ii g λ=是实数,1,2,,i n = .因此,Hermite 矩阵必定可以对角化,且它的特征多项式的复数根都是实数.。

矩阵对角化研究开题报告

矩阵对角化研究开题报告

矩阵对角化研究开题报告一、选题背景及意义对于一个给定的矩阵,我们可以通过对其进行对角化来得到其特征值和特征向量。

矩阵对角化是线性代数中的重要内容之一,在现代数学及其应用领域中具有广泛的应用。

例如,对角化矩阵在矩阵的指数函数、线性常微分方程组的求解以及优化问题等方面都有着重要的应用。

因此,对角化的研究不仅对于解决数学问题具有必要性,而且也对于实际问题的解决有着重要的意义。

本研究旨在探讨矩阵对角化的一些基本概念和方法,深入研究矩阵对角化的性质,并且应用到一些实际问题的解决中。

二、研究内容和方法1.线性代数基础理论线性代数是研究向量空间及其线性变换的一门基础科学。

本项目将首先复习线性代数的一些基本概念和相关理论,例如行列式、矩阵求逆、特征值与特征向量等内容,并分析这些基本概念与矩阵对角化之间的联系。

2.矩阵对角化的方法对于某个给定的矩阵,我们需要找出它所包含的特征值和对应的特征向量,从而实现矩阵对角化。

本项目将介绍求解矩阵特征值和其所对应的特征向量的方法。

其中,我们会重点讨论幂法、反幂法、QR分解以及雅可比方法等求解特征值和特征向量的常用算法,并在 MATLAB 软件环境下进行数值模拟。

3.矩阵对角化的性质和应用对于对角化后得到的矩阵,我们将会分析它的性质,并探讨矩阵对角化在解决实际问题中的应用。

例如,对角化矩阵在矩阵的指数函数、线性常微分方程组的求解以及优化问题等方面都有着重要的应用。

三、预期目标和成果通过本项目的研究,我们将达到以下目标:1.理解矩阵对角化的基本概念和相关理论。

2.掌握求解矩阵特征值和特征向量的方法,能够利用MATLAB 软件进行数值模拟。

3.深入研究矩阵对角化的性质,探讨其在实际问题中的应用。

4.完成研究报告并撰写相关论文。

5.具备一定的科研能力和团队协作能力。

四、研究计划和进度安排本项目的研究时间为一个学期,具体计划如下:第一周:确定研究课题,分析研究内容和目标,撰写开题报告。

关于矩阵可对角化的研究

关于矩阵可对角化的研究

( 尸 2
两 边左乘 P , 得P -  ̄ AP = A, 即矩阵 A与对角 阵 A相似 , 故可 对角 矩阵对 角化方法有很多 . 如对于对称矩阵可以将其看成二次型所对应 化 . 即充分性得证 。 的矩阵 . 通过配方法将其 化为标准形从 而实现矩阵 的对角化 . 再如通 必 要性 设 A~ A, 其 中 A= d i a g ( ,  ̄ , ^ : , . . . , ^ , 存在 可逆矩 阵 P使 得 过求解 特征根 和特征向量方法 ,首先求解 l A E - A l _ 0 得特 征根 A 然 P -  ̄ A P = A, 则 有 AP = P A, 把矩 阵 P按列分块 , 记P = , P 2 , . . . , ^ D= , , d 后对每一个 A 。 , 解方程组 = 0得 特征向量 , 即寻 找一个可逆矩 d T 则 AP = ) 可 以写成:
n 2+… 十n£ =n 。
定 理 2 设 A= P . 则 A可以对角化 的充分必要条件是 : f 1 M 的特征根都在数域 P内 A ( 2 ) 对 A的每个特征根 A , 有n — r a n k ( A E - A 声 , 其中 k l 是A 的重数 。
/f ● ● ● ,
1 . 引 言 对角化后 的矩阵在计算和应用等方面 比一般矩阵更具优越性 . 而
r ( , , … ) = ( A , , … , )
阵P . 使得 P A P = A , 其 中 A为对角阵 . 于是可得 = P A Pt , 在这个对角 化过程 中, A 中的元 素即为矩阵 A的特 征根 . P中每个 列 向量 即为矩 阵 A的属于每个 特征根的特征 向量
证 明 :设 A , , A 。 , . . . , A , 是 A的所有不同的特征根, …Байду номын сангаас O t . 是齐次线 性方程 E - A) X= O ( ] = I … 2. . , r J 的一个基础解系 , 则 A 的特征 向量 “ …,

矩阵对角化开题报告

矩阵对角化开题报告
因此,在已有的矩阵对角化的理论基础之上,进一步对其应用加以归纳总结及创新是可行的。
五、课题研究的方法、步骤和内容
课题研究的方法:
观察法,经验总结法,比较研究法,文献资料法
课题研究的步骤:
一,在本科教材《高等代数》有关矩阵对角化内容的学习中,加深对矩阵对角化的理解和认识。
二,搜集有关矩阵对角化理论的资料,深入对矩阵对角化的研究。
学院学位分委员会主任签字:
年 月 日
作为一种基本工具,有关对角矩阵的信息大多以公理的形式出现,这也是近代数学公理化的标志之一。但是,对于矩阵可对角的条件,以及矩阵对角化方法的研究还是吸引了国内外一部分学者的目光。矩阵可对角化的条件所创新的方面:
归纳总结概括,矩阵对角化在矩阵计算,利用特征值求行列式,解微分方程方程,向量空间,线性变换,计算n阶行列式,求实递推式的通项等等方面的应用,尤其是在列斯里群体模型中的应用。
4,矩阵对角化在向量空间的应用
5,矩阵对角化在线性变换的应用
6,计算n阶行列式
7,利用矩阵对角化求实递推式的通项
8,矩阵对角化在列斯里群体模型的应用
六、预期成果形式描述
一篇在已有的矩阵对角化理论基础之上的,对其在学科方方面面与涉及其他领域的应用的文章。
七、指导教师意见
指导教师签字:
年 月 日
八、学院学位分委员会意见
山东师范大学
本科毕业论文(设计)开题报告
论文题目:矩阵可对角化的条件及应用
学院名称:数学科学学院
专 业:信息与计算科学
学生姓名:马玉霞
学 号:200900820134
指导教师:周兆杰
2013年1月11日
一、选题的性质应用理论研究
二、选题的目的和意义

矩阵可对角化的判定条件开题报告

矩阵可对角化的判定条件开题报告

矩阵可对角化的判定条件开题报告开题报告矩阵可对角化的判定条件选题的背景、意义矩阵最初是作为研究代数学的一种工具提出的,但是经过两个多世纪的发展,现在已成为独立的一门数学分支?矩阵论。

矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。

矩阵及其理论现已应用于自然科学、工程技术、社会科学等许多领域。

如在观测、导航、机器人的位移、化学分子结构的稳定性分析、密码通讯、模糊识别、计算机层析及 X 射线照相术等方面都有广泛的应用。

随着现代数字计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。

于是作为处理离散问题的线性代数和矩阵计算,成为从事科学研究和工程设计的科技人员必备的数学基础。

矩阵是一个重要的数学工具,不仅在数学中有广泛的应用,在其他学科中也经常遇到。

它在二十世纪得到飞速发展,成为在物理学、生物学、地理学、经济学等中有大量应用的数学分支,现在矩阵比行列式在数学中占有更重要的位置。

矩阵对角化是矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,关于矩阵对角化问题的研究,这方面的资料和理论已经很多。

但是他们研究的角度和方法只是某个方面的研究,没有进行系统的分类归纳和总结。

因此,我就针对这方面进行系统的分类归纳和总结,对一些理论进行应用和举例,给出算法。

特别给出了解题时方法的选择。

矩阵的应用在现代社会中是十分广泛的,本文围绕有限维线性空间上的线性变换对角化问题与矩阵可对角化相互转换进行研究.根据矩阵的多项式对矩阵对角化问题进行判断,这种方法不仅为探讨矩阵对角化提供了一个简便的工具,也把矩阵和有限维空间相结合.在现代科技中,很多问题都是运用此类方式。

矩阵对角化问题只是矩阵理论中的一个小问题,但是一个基础问题,这样矩阵可对角化作为矩阵理论里的最基础的知识,就显得格外的重要.通过对《高等代数》,《科学计算方法》等有关资料的查阅和分析研究,为我们对判定矩阵的可对角化的条件提供了相关依据和理论.文献[1]和[2]介绍了广义逆矩阵和一类特殊矩阵可对角化的判定条件,利用子空间关于矩阵的最小多项式研究了矩阵可广义对角化的充要条件,给出了一种更简单的判别仅有两个互异特征根的矩阵与对角阵相似以及求特征向量的方法。

对角矩阵的充分条件

对角矩阵的充分条件

对角矩阵的充分条件《对角矩阵的充分条件》我给大家讲个趣事啊。

有一天,我和我那学数学的朋友阿强一块研究矩阵。

阿强这人,在数学上可有两把刷子呢。

我就拿着一个矩阵发呆,问他:“强哥,你说这矩阵怎么看它啥时候能变成对角矩阵啊?就看着这么一坨数字,眼都花了。

”阿强哈哈一笑,开始跟我大谈对角矩阵的充分条件。

这一下就把我引进了对角矩阵充分条件这个神秘的数学世界。

那咱们就开始聊聊对角矩阵的充分条件。

首先呢,如果一个矩阵是实对称矩阵,那它就能相似对角化,这可是对角矩阵的一个相当重要的充分条件。

怎么理解呢?就好比切蛋糕,实对称矩阵这个蛋糕有着特殊的对称性,我们可以根据这个对称性找到合适的方法,把它切成对角线上有数字,其他地方基本是零的那种形式,也就是对角矩阵啦。

这时候矩阵的特征值都是实数,特征向量可以正交化。

还有啊,如果一个矩阵的特征值互不相同,这矩阵也可以对角化成为对角矩阵。

这就像每个人都有自己独特的身份证号(在矩阵里就是特征值啦),那这个矩阵就能够被整理成对角线形式。

比如说有个3×3的矩阵,三个特征值5、7、-3,各不相同,那它就满足这个充分条件,可以转化为对角矩阵。

不过呢,在这里要小心点。

如果不小心算错了特征值,那就像把路走错了一样,再怎么也得不到正确结果啦。

阿强就老是敲我脑瓜说:“你可别把数算错咯。

”再说说一种特殊的情况,如果矩阵的n阶数等于它的线性无关的特征向量个数,那这个矩阵也是可以对角化的。

这个理解起来有点绕,但是你可以想象成一桌麻将得四个人(这里就是线性无关的特征向量啦)才打得起来。

如果这个矩阵的阶数就等于这四个特征向量,那这个矩阵就能够转化成对角矩阵。

从我的角度看呢,学这些对角矩阵的充分条件,得多多从具体的例子入手。

像阿强那样整天就对着那些理论性的东西,容易迷糊。

咱们毕竟不是天才,得靠实际的例子才能更好地理解嘛。

总结一下就是啊,对于对角矩阵有实对称、特征值互不相同以及n阶数等于线性无关特征向量个数等充分条件。

论矩阵的对角化问题论文开题报告

论矩阵的对角化问题论文开题报告
[3]丘维声.高等代数(上册).北京:清华大学出版社,
[4]张禾瑞.高等代数.北京:高等教育出版社,
[5]吉林大学数学系.数学分析(中册).
[6]郭亚梅.最小多项式与矩阵的对角化.河南机电高等专科学校学报.
[7]金佑来.矩阵对角化的一个新方法.合肥学院学报.
[8]周立仁.矩阵同时对角化的条件讨论.湖南理工学院学报.
二,几种常用矩阵对角化的讨论
三,可对角化矩阵的应用
重点:几种常见矩阵对角化的讨论
难点:可对角化矩阵的应用
预期目标:通过对易理解的矩阵的对角化问题的具体分析以及相对复杂先行变换的对角化问题的探讨,使我们更轻松的理解并掌握线性变化的对角化问题
三、拟采用的研究方法、步骤
研究方法:文献参考法,研究法,计算法,定性分析法
[9]岳嵘.利用矩阵对角化求数列通项.高等数学研究.
[10]杨胜良.三对角行列式与Chebyshev多项式.大学数学..
六、指导教师意见
签字:



八、分管院长意见及签字
(办公室盖章)



研究步骤:第一步从特征值,特征向量入手讨论n级方阵可对角化的相关条件
第二步几种常用矩阵对角化的讨论
第三步可对角化矩阵的应用
四、研究的总体安排与进度
五、参考文献(不少于10篇)
[1]李世余.代数学的发展和展望.广西大学学报.
[2]北京大学数学系与代数教研室前代数小组编.王萼芳,石生明修订.高等代数(第三版).北京:高等教育出版社,
数学与统计学院

数学与应用数学
专业
学生姓名
XXXX
学号
XXXXX
一、选题的背景、研究现状与意义

矩阵可对角化的充要条件

矩阵可对角化的充要条件

矩阵可对角化的充要条件引言矩阵对角化是矩阵理论中的一个重要概念,它能够让我们更好地理解矩阵的性质和运算。

在实际应用中,对角化可以简化计算和分析过程,因此对于一个矩阵是否可对角化的问题,是值得我们深入研究和探讨的。

本文将探讨矩阵可对角化的充要条件,通过理论推导和实例分析,将会全面、详细、完整地讲解矩阵可对角化的各种情况及其判定条件。

I. 列举与分析矩阵的特殊情况为了更好地理解什么样的情况下一个矩阵可对角化,我们先来列举一些特殊的矩阵情况,并分析它们是否可对角化。

1. 对角矩阵对角矩阵是指主对角线以外的元素都为零的矩阵。

例如:[ A =]对于任意的对角矩阵,由于它的非零元素只存在于主对角线上,所以它必然是一个可对角化的矩阵。

2. 对称矩阵对称矩阵是指矩阵的转置等于其本身的矩阵。

例如:[ B =]对于任意的对称矩阵,它必然是一个可对角化的矩阵。

这是因为对于对称矩阵,其特征值都是实数,且对应不同特征值的特征向量是相互正交的,因此可以通过特征向量的线性组合来表示整个矩阵。

3. 可逆矩阵可逆矩阵是指存在逆矩阵的矩阵。

例如:[ C =]对于任意的可逆矩阵,它必然是一个可对角化的矩阵。

这是因为可逆矩阵的特征值都是非零的,且可逆矩阵可以表示为一个对角矩阵和一个正交矩阵的乘积,而正交矩阵的转置等于其逆矩阵,因此可逆矩阵可以通过正交矩阵的逆变换为对角矩阵。

II. 可对角化的充分条件在上一节中,我们列举了一些特殊的矩阵情况,并发现它们对应的矩阵都是可对角化的。

接下来,我们将推导出可对角化的充分条件,并用定理的形式表述出来。

定理1对于一个n阶矩阵A,如果它有n个线性无关的特征向量,那么A是可对角化的。

证明:假设A有n个线性无关的特征向量,分别为v1, v2, …, vn,相应的特征值分别为λ1, λ2, …, λn。

根据特征值与特征向量的定义,我们可以得到以下等式:Av1 = λ1v1Av2 = λ2v2…Avn = λnv现在,我们将这n个特征向量构成一个矩阵V,即:V = [v1, v2, …, vn]同时,将这n个特征值构成一个对角矩阵Λ,即:Λ = []根据上述等式,我们可以得到:AV = [Av1, Av2, …, Avn] = [λ1v1, λ2v2, …, λnvn] = VΛ由于V是一个可逆矩阵(因为v1, v2, …, vn是线性无关的),所以可以将上述等式两边都左乘V的逆矩阵V^-1,得到:AVV^-1 = VΛV^-1即:A = VΛV^-1因此,我们证明了如果一个n阶矩阵A有n个线性无关的特征向量,那么A是可对角化的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业论文开题报告
题目:矩阵可对角化的充分必要条件院系:数学学院
专业:数学与应用数学
班级: 081(本)
姓名:练利锋
指导教师:***
申报日期: 2011年12月30日
开题报告填写要求
1.开题报告作为毕业论文(设计)答辩委员会对学生答辩资格审查的依据材料之一。

此报告应在指导教师指导下,由学生在毕业论文(设计)工作前期内完成,经指导教师签署意见审查后生效。

2.开题报告内容必须用黑墨水笔工整书写,按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见。

3.学生查阅资料的参考文献应在3篇及以上(不包括辞典、手册),开题报告的字数要在1000字以上。

4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。

如“2004年9月26日”或“2004-09-26”。

毕业论文开题报告
1.本课题的研究意义
矩阵是高等代数中的重要组成部分,是许多数学分支研究的重要工具。

而对角矩阵作为矩阵中比较特殊的一类,形式简单,研究起来非常方便。

而研究矩阵的对角化及其理论意义也很明显,相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的。

相似的矩阵拥有很多相同的性质,比如特征多项式,特征根,行列式…….如果只关心这类性质,那么相似的矩阵可以看作没有区别的,这时研究一个一般的可对角化矩阵,只要研究它的标准形式——一个对角矩阵就可以了。

而对角矩阵是最简单的一类矩阵,研究起来非常方便。

这个过程相当于在一个等价类中选取最顺眼的元素进行研究。

另外,对角化突出了矩阵的特征值,而过度矩阵T反映了特征向量的信息,对角化过程的直观意义还是很明显的。

再结合正交矩阵的概念,可以得到一些不平凡的结论,例如实对称矩阵总可以对角化。

事实上,在大学的学习中矩阵对角化理论占有非常重要的地位,因此,对它的研究意义重大。

然而在高等代数学习中,大部分学生对矩阵对角化的充分必要条件的学习效果不是很理想,对什么样的矩阵可以对角化以及对角阵的求解步骤了解不深,常常出现错误,我认为主要的原因是他们对矩阵的相似对角化概念及其充分必要条件理解不透彻,本课题给出矩阵可对角化的基本概念和可对角的充分必要条件,并给出其他一些引申的充分必要条件和性质,对这些条件和性质的证明有助于学生对矩阵可对角化的条件进一步理解和强化,以及对可对角化矩阵的相似对角阵的求法和性质进一步理解掌握。

从而使高等代数中的重要概念——矩阵的对角化理论比较完整的呈现在我们面前。

总之,矩阵对角化的充要条件是一个传统但又很重要的研究课题,具有广泛的应用价值。

在很多有关矩阵数学问题的分析和证明中,我们都需要用到矩阵的对角化。

本文给出了矩阵可对角的若干充分必要条件,希望对同学们在今后的学习和实际应运中有一定的帮助。

2.本课题的基本内容
矩阵的对角化是《高等代数》中一个很重要的概念,而矩阵可对角化的充分必要条件又是矩阵对角化理论的核心内容,本论文通过对矩阵对角化的充分必要条件的深入探讨和证明,来加深对可对角化矩阵的理解和在实际中的灵活应运。

本论文主要通过阅读参考文献、查阅相关资料,总结了矩阵可对角化的概念和几个充分必要条件,并给予了相应的证明。

由于矩阵的对角化在矩阵理论中的重要地位也使矩阵可对角化的充分必要条件成为我们学习的重点。

3.本课题的重点和难点
本课题的重点是矩阵可对角化的概念和充分必要条件。

本课题的难点是对矩阵可对角化的充分必要条件的掌握和矩阵的相似对角阵的求法以及相对应的过度矩阵所代表的意义,如何在实际应用中巧妙的运用矩阵的对角化及其性质。

4.论文提纲
第1章绪论
第2章矩阵可对角化的概念
第3章矩阵可对角化的充分必要条件
3.1 矩阵可对角化的充分必要条件及其证明
3.2 可对角化矩阵的相似对角阵的求法及步骤
第4章矩阵可对角化的应用
第5章结论
参考文献:
[1] 张禾瑞,郝炳新.高等代数[M].北京:高等教育出版社,2007
[2] [苏] 普罗斯库烈柯夫,周晓钟译.线性代数习题集[M].北京:人民教育出版社,1981
[3] 张枚.高等代数习题选编[M].浙江:浙江科学技术出版社,1981
[4] 秦松喜.高等代数新编[M].厦门:厦门大学出版社,2005
[5] 杨子胥.高代代数习题解[M].山东:山东科学技术出版社,2001
[6] 张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004
[7] 张建航,李宗成.方阵的伴随矩阵性质探讨[J].高师理科学刊,2007年第01期,11-14
[8]王志武.方阵可对角化的一个充要条件[J].山东农业大学学报,2008第04期,3-5
毕业论文开题报告
指导教师意见:
(对本课题的深度、广度及工作量的意见)
指导教师:
年月日院系审查意见:
院系负责人:
年月日。

相关文档
最新文档