高一数学平面向量同步练习.doc
平面向量练习题及答案

平面向量练习题及答案一、选择题1. 设向量a和向量b是两个不共线的向量,若向量c=2向量a-3向量b,向量d=向量a+4向量b,那么向量c和向量d的夹角的余弦值是()A. 1/2B. -1/2C. 0D. 12. 若向量a和向量b的模长分别为3和4,且它们的夹角为60°,则向量a和向量b的点积是()A. 6B. 12C. 15D. 183. 已知向量a=(1,2),向量b=(3,4),则向量a和向量b的向量积的大小是()A. 5B. 6C. 7D. 8二、填空题4. 若向量a=(x,y),向量b=(2,-1),且向量a与向量b共线,则x=______,y=______。
5. 向量a=(3,4),向量b=(-1,2),则向量a和向量b的夹角的正弦值是______。
三、计算题6. 已知向量a=(2,3),向量b=(4,-1),求向量a和向量b的点积。
7. 已知向量a=(-1,3),向量b=(2,-4),求向量a和向量b的向量积。
8. 已知向量a=(1,0),向量b=(2,3),求向量a在向量b上的投影。
四、解答题9. 设向量a=(1,-1),向量b=(2,3),求证向量a和向量b不共线。
10. 已知向量a=(x,y),向量b=(1,1),若向量a和向量b的点积为6,求x和y的值。
答案:1. B2. C3. B4. 2,-15. 根号下((3+4)的平方-(3*(-1)+4*2)的平方)除以(5*根号下2)6. 向量a和向量b的点积为:2*4+3*(-1)=57. 向量a和向量b的向量积为:(3*(-4)-4*2)i-(2*3-1*4)j=-20i+2j8. 向量a在向量b上的投影为:(向量a·向量b)/向量b的模长^2 * 向量b = (1*2+0*3)/(2^2+3^2) * 向量b = (2/13) * (2,3)9. 证:假设向量a和向量b共线,则存在实数k使得向量a=k向量b。
高中平面向量经典练习题1(含答案)

高中平面向量经典练习题【编著】黄勇权一、填空题1、已知向量a=a=((-2-2,,1),向量),向量|b|= 2|a||b|= 2|a|,若,若b ·(·(a-b a-b a-b))= -30,则向量,则向量b 的坐标坐标= =。
2、已知a=a=((2,1),),3a-2b=3a-2b=3a-2b=((4,-14,-1),则),则a ·b=。
3、向量a=(m ,-2-2)),向量b=(-6-6,,3),若a ∥b ,则(3a+4b 3a+4b))·(6a-5b 6a-5b))= 。
4、已知向量a 、b 满足满足|a|=2|a|=2|a|=2,,b=b=((-1-1,, 2),且(),且(),且(4a-b 4a-b 4a-b)·)·(a+b a+b))=22=22,则,则a 、b 的夹角的夹角。
5、在矩形ABCD 中,)3,1(-=AB ,)2,(-=k AC ,则实数=k 。
6、已知向量(1,),(,9)a t b t ==r r ,若→a ∥→b ,则t = _______。
7、已知、已知|||=1|=1,,||=, =0,点,点C 在∠在∠AOB AOB 内,且∠内,且∠AOC=30AOC=30AOC=30°,设°,设=m +n (m 、n ∈R ),则等于等于。
8、若、若||+|=|﹣|=2||,则向量+与的夹角为的夹角为 。
9、已知向量=(2,1),=10=10,,|+|=,则,则|||=|=(( )1010、已知平面向量、已知平面向量,,x ∈R ,若,则,则|||=______|=______。
二、选择题1、已知向量a=a=((2,1),向量b=b=((1,-1-1),那么),那么2a+b=。
A 、 (5,5,,,1) B 、(、(44,1) C 、(、(55,2) D 、(、(44,2)2、已知向量a=a=((2,4),向量b=b=((-3-3,,0),则b a 21+= 。
平面向量专题练习(带答案详解)

平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。
3 B。
2 C。
1 D。
02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。
-4 B。
-1 C。
1 D。
43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。
1 B。
5/3 C。
3/5 D。
7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。
-4 B。
-2 C。
2 D。
45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。
$\frac{8}{3}$ B。
$\frac{26}{9}$ C。
$\frac{2}{3}$ D。
$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。
18 B。
(word完整版)高一数学数学必修4平面向量复习题

1•设a 、b 、c 是单位向量,且 a -b = o ,贝U a c ? b c 的最小值为(D )2A.1B.2C. 2A. 2B. 2 2C. 1D.12r r rr r r r r r uu r r r 2解析Q a,b,c 是单位向量a c ?bc ago (a b)gs crr r _ r r r1 |ab|gc| 1 <2cos ab,c 1.2.2.已知向量a 2,1 ,ab 10,|ab| 5J2,则 |b|(C )A. .5B. .10C.5D. 25r r 宀 r 宀 r r r 宀“ r2 2 2 2解析 Q50 |a b| |a | 2a gD |b| 5 20 | b ||b| 5 故选 C.3.平面向量a 与b 的夹角为600, a (2,0) , b 1则a 2b ( B )A.、3B. 2 3C. 4D.2解析 由已知 |a|= 2,|a + 2b|2= a 2 + 4a b + 4b 2= 4+ 4X2X1 Xcos60° + 4= 12A a 2b2^3LUIUuiuuuu uiPC) = 2AP PM=2 AP PM cosO 2 -5.已知a 3,2 , b1,0,向量a b 与a2b 垂直,则实数的值为()1 A.—1 B.-1 C.—D.17766uuruur uuu UUJ uujruuu6.设 D 、E 、 F 分别是△ ABC 的三边 BC 、CA 、AB 上的点,且DC2BD,CE2EA, AF 2FB,UJLT 则ADUUU uuu uuu BE CF 与 BC(A)A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直(A )4444A.B.c.D.9339uu 由APUuu UJ uuuu 解析 2PM 知,p 为 ABC 的重心,根据向量的加法 ,PB P C2PM则 uur 4.在 ABC 中,M 是BC 的中点,AM=1,点P 在AM 上且满足学PALunn uur uuu uuu2PM ,则 PA (PB PC)等于uuruuu uiuuu uuu AP (PB1•设a 、b 、c 是单位向量,且 a -b = o ,贝U a c ? b c 的最小值为( D )27.已知a , b 是平面内两个互相垂直的单位向量,右向量 c 满足(ac) (b c)0,则 c 的最大值是(C )3 4uuu uuu uuur8.已知O 是厶ABC 所在平面内一点,D 为BC 边中点,且2OA OB OC 0,那么( A )则—的取值范围是mA .、3B . 2.3C .6 D . 2、616.在平行四边形 ABCD 中, uuu AE 1 uuu unr-AB, AF1 UULT一AD , CE 与BF 相交于G 点.的最小值为(B ) A. uuir unr AO ODunr uuir B. AO 2ODuuir uuirC. AO 3ODuur unr D. 2AO OD 9•设a5 ^2(4,3) , a 在b 上的投影为 ,b 在x 轴上的投影为2,且 | b |< 14,则 b 为(B ) (2,4)2,C .D . (2,) 10.设a, b 是非零向量,若函数f(x)(xa b) (a xb )的图象是一条直线, 则必有( A )11.设两个向量a ( 2,a//2cos C . |a|)和b|b|D . |a| |b|mm,—2 sin ,其中,m, 为实数.若a 2b ,A . [-6, 1]B. [4,]C. (-6, 1] D . [-1 , 6]12.已知向量a(1, n),(1, n ),若2a b 与b 垂直,则|a(C13•如图,已知正六边形 RP 2P 3P 4P 5P 6 ,F 列向量的数量积中最大的是(A. RP2 ,R F 3B. P 1P 2, P 1P4C. P 1P 2 , P 1 P 5D.P 1P 2 ,P 1P614.已知向量a 尢,|e |= 1,对任意t € R , 恒有|a - t e | 冷一e |,贝y ( B )A. a 丄 eB. e 丄(a - e )C.a 丄(a - e )D.(a + e )丄(a - e )15.已知向量 unr unr n uurOA , OB 的夹角为一,|OA| 4 ,3luu r|OB| 1,若点 M 在直线 OB 上,贝U |&A OM |uuu r uur r uuur AB a, AD b,则AG342 r 1 r 2 rA. a bB. a7 7 7 17.设向量a与b的夹角为A」10 B. 3b 73.10 10C.(2,1),C.1 r r 4 rb D. a7 72b (4,5),则cosD.18.已知向量a , b的夹角为3,且|a||b| 1 ,19.20.21.22.23.24.中,25.7等于D 则向量a与向量a 2b的夹角等于(5A .6已知向量A. [0, .2]已知单位向量A . 2.3在厶ABC 已知向量已知向量中,arOib-r-|b|其中b均为非零向量, 则| p |的取值范围是(B )B.[0,1]C.(0,2]D.[0,2]a,b的夹角为一,那么a2bAR 2RB,CP 2PR,若AP mAB nAC,贝U mC.a和b的夹角为120 ,B. 7|a| 2,且(2aOAA. [0,4]b) a,则|b |(0,2),OB (2,0),BCB .[冷C 2 cos ,2 sinC. [4,3T]),贝UOA与OC夹角的取值范围是(上海)直角坐标系xOy中,i, j分别是与x, y轴正方向同向的单位向量. 在直角三角形ABC若AB 2i A. 1 j, AC 3i k j,则k的可能值个数是(B. 2若四边形ABCD满足AB CDc.「uuu0 , (AB3uiur uuirAD) ACD. 4则该四边形一定是BA.直角梯形B.菱形C.矩形D.正方形ir r ir 26.已知向量m,n的夹角为一,且|m |6uuir D为BC边的中点,贝U | AD |(乜,订| 2 ,在△ABC中,uuuABir r uuur ir r2m 2n,AC 2m 6n,112427. A . 2 uuu|OA|已知A.3 B . uuu,|OB| .3 ,OA?O B =0 , AOCD . 8uuur 30o ,设OC uuu uuu mOA nOB (m, nR),则D. 28.如图, 其中45°直角三角板的斜边与 所对的直角边重合.若 x , y 等于B x 3, y 1B. 345°直角三角板和 30°直角三角板拼在一起, 直角三角板的 30°角 uuur y DA , uu u DB 30° uuu r DC 则A. C. x 2, y . 3 二、填空题 1. 若向量 a , b 满足 2. 3. 4. 5. 6. 7.8. 答案 .7 设向量 答案 1 3,y 3 3,y 1 3 1,b 2且a 与b 的夹角为—, 3 a (1,2), (2,3),若向量 a b 与向量c (4, 7)共线,则已知向量a 与b 的夹角为120°,且a b 4,那么 b (2a b)的值为答案 0 已知平面向量a (2,4) , b ( 1,2).答案 8,2b 的夹角为120 ,答案设向量 答案若向量 答案若向量 答案uuuAB60若 c a (a 则5a bb)b , 则|C|uu ur 2, ACuuu uur3, AB AC | J 19,则r r aba 与b 的夹角为60 , 1,则 a? a bCABa,b 满足2,(a b) a ,则向量a 与b 的夹角等于uuu UULT LUU LUT UJU9. O 为平面上定点,A, B, C 是平面上不共线的三若 (OB OC ) •OB OC 2OA)=0,贝U ABC 的形状是 __________________________ .等腰三角形答案 -2510.不共线的向量m^ , m 2的模都为2,若a3m i2m 2 , b 2mi 3m 2 ,则两向量a b 与a b 的夹角为 _________________ 90 ° 11 •定义一种运算 S a b ,在框图所表达的算法中揭示了这种运算“”的含义•那么,按照运算 “”的含义,计算 tan 15o tan300 tan300 tan 15o _________ 1 ___r r12、 已知向量 a (cos15o ,sin150), b ( sin 150, cos1S),贝y a b 的值为 ________ . 答案113、 已知 Rt △ ABC 的斜边BC=5 ,则 AB BC BC CA CA AB 的值等于y 轴平行的单位向量,若直角三角形ABC 中,uur r AB ir uuur r rj , AC 2i mj ,则实数 m=答案 —2或0三、解答题rr r r r r1、已知ia 4,|b| 3,(2a — 3b) (2a b) 61 ,r rr r(1 )求 a b 的值;求a 与b 的夹(3)求b 的值;r r r r 心解:(1)由(2a —3b) (2a b) 61 得4a r r 「2「2又由 k 4,|b| 3得 a 16, 9代入上式得64 4a b 2761 a br rr3b14.在直角坐标系xOy 中,i[j 分别是与x 轴,艸(13|fr!=4・得卜2・{妨=』_虛讪一&r5 52’uuuruur uur(2, 4),在向量OC 上是否存在点P ,使得PA PB ,若存在,求出点P 的坐标,若不存在,请说明理由。
平面向量同步练习题(练习题)讲义

r
r
r
r
r
r
r
r r
→
r
r
→
→
→
r
r
r
r
r r
9.若菱形 ABCD 的边长为 2 ,则 AB − CB + CD = ________ 10.若 a = (2,3) , b = (−4,7) ,则 a 在 b 上的投影为________ 11.已知向量 a = (cos θ ,sin θ ) ,向量 b = ( 3, −1) ,则 2a − b 的最大值是________ 12.若 A(1, 2), B (2,3), C (−2,5) ,试判断则△ABC 的形状________ 13.若 a = (2, −2) ,则与 a 垂直的单位向量的坐标为________ 14.若向量 | a |= 1,| b |= 2,| a − b |= 2, 则 | a + b |= ________ 15.平面向量 a, b 中,已知 a = (4, −3) , b = 1 ,且 a ⋅ b = 5 ,则向量 b = ________
r
r
r
r
r
r
r
9.平面向量 a = ( 3, −1), b = ( ,
r
r
1 3 ) ,若存在不同时为 0 的实数 k 和 t ,满足条件: 2 2
r r r r r r r r x = a + (t 2 − 3)b , y = −ka + tb ,且 x ⊥ y ,试求函数关系式 k = f (t ) 。
《平面向量》练习题及答案

《平面向量》练习题及答案《平面向量》练习题及答案向量是近代数学中重要和基本的概念,是沟通代数、几何与三角函数的一种工具,它有着极其丰富的实际背景,又有着广泛的实际应用,具有很高的教育价值。
接下来小编为你带来《平面向量》练习题及答案,希望对你有帮助。
一、教材分析全章地位:平面向量基本定理是共线向量基本定理的一个推广,将来还可以推广到空间向量,得到空间向量基本定理。
这三个定理可以看成是在一定范围内向量分解的唯一性定理。
应用空间:平面向量基本定理蕴涵了一种十分重要的数学思想——转化思想,因此,有着十分广阔的应用空间。
二、教学目标【知识与能力】(1)了解平面向量基本定理及其意义,会用基底表示一向量,掌握两向量夹角的定义及两向量垂直的概念,会初步求解简单两向量的夹角;(2)培养学生作图、判断、求解的基本能力。
【过程与方法】(1)经历平面向量基本定理的探究过程,让学生体会由特殊到一般的思维方法;(2)让学生体会用基底表示平面内一向量的方法、求两简单向量的夹角的方法。
【情感态度与价值观】培养学生动手操作、观察判断的能力,体会数形结合思想。
三、教学重点平面向量基本定理及其意义,两向量夹角的简单计算。
四、教学难点平面向量基本定理的.探究,向量夹角的判断。
五、学情分析前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。
六、学法指导教师平等地参与学生的自主探究活动,通过启发、引导、激励来体现教师的主导作用,根据学生的认知情况和情感发展来调整整个学习活动的梯度和层次,引导学生全员、全过程参与,保证学生的认知水平和情感体验分层次向前推进。
七、教学基本流程定理探究↓形成定理↓定理思考与应用↓定义形成与应用八、教学情境设计。
平面向量同步练习

平面向量同步练习预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制平面向量的概念及线性运算A组专项基础训练一、选择题(每小题5分,共20分)1. 给出下列命题:①两个具有公共终点的向量,一定是共线向量;②两个向量不能比较大小,但它们的模能比较大小;③?a = 0(入为实数),则入必为零;④入□为实数,若?a= b 则a与b共线.其中错误命题的个数为A. 1B. 2C. 3D. 42. 设P是厶ABC所在平面内的一点,BCrB A= 2西贝UA.PA^ PB= 0B. P CT P A= 0C. P B+ PC= 0D. PA^ PB+ PC= 03. 已知向量a, b不共线,c= ka+ b (k€ R), d= a—b.如果c// d,那么A. k = 1且c与d同向B. k= 1且c与d反向C. k =— 1且c与d同向D. k=— 1且c与d反向4. (2011四川)如图,正六边形ABCDEI中, B A^C D^ EF等于()A. 0B. "BEC. ADD. CF二、填空题(每小题5分,共15分)5.____________________________________________________________________ ____________________________ 设a、b是两个不共线向量,X B= 2a+ pb, BC= a+ b, CD= a—2b,若A、B D三点共线,则实数p的值为_________________6. 在?ABCDK X B= a, At= b, AN= 3心M为BC的中点,贝U S= ___(用a, b 表示).7. 给出下列命题:①向量AB勺长度与向量BA的长度相等;②向量a与b平行,则a与b的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④向量AB与向量CD是共线向量,则点A、B、C D必在同一条直线上.其中不正确的个数为_________ .三、解答题(共22分)18 (10分)若a, b是两个不共线的非零向量,a与b起点相同,则当t为何值时,a, t b, 3(a+ b)三向量的终点在同一条直线上?9. (12分)在厶ABC中, E、F分别为AC AB的中点,BE与CF 相交于G点,设AB= a,AC= b,试用a, b表示AG。
平面向量经典练习题(含答案)

高中平面向量经典练习题【编著】黄勇权一、填空题1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。
2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。
3、已知点A(1,2),B(2,1),若→AP=(3,4),则→BP= 。
4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。
5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。
6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。
7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。
8、在△ABC中,D为AB边上一点,→AD =12→DB,→CD =23→CA + m→CB,则m= 。
9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。
10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且→AP= 2→PD,则点C的坐标是()。
二、选择题1、设向量→OA=(6,2),→OB=(-2,4),向量→OC垂直于向量→OB,向量→BC平行于→OA,若→OD +→OA=→OC,则→OD坐标=()。
A、(11,6)B、(22,12)C、(28,14)D、(14,7)2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标()A、(4 , 2)B、(3,1)C、(2,1)D、(1,0)3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。
A、90°B、60°C、30°D、0°4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()A、 15B、 14C、 13D、 115、在菱形ABCD中,∠DAB=60°,|2·→0C +→CD|=4,则,|→BC+→CD|=______.A、12B、8C、4D、26题、7题、8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为________.A、2B、4C、8D、169题、10、已知正方形ABCD的边长为2,E为CD的中点,则→AE·→BD=.A、-1B、1C、-2D、2三、解答题1、在△ABC中,M是BC的中点,AM=3,BC=10,求→AB·→AC的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章平面向量一、选择题1.如图所示,ABCD 中, AB- BC+CD等于( ) .A. BC B. DAC. CB D. BD2.在矩形 ABCD 中,| AB|= 3 ,| BC | =1,则向量 ( AB+ AD + AC)的长等于( ) .A . 2 B. 2 3(第 2题) C.3 D.43.如图, D, E, F 是△ ABC 的边 AB, BC, CA 的中点,则 AF - DB 等于 ( ) .A. FDB. FCC. FE D. BE4.下列说法中正确的是() .A .向量 a 与非零向量 b 共线,向量 b 与向量 c 共线,则向量 a 与 c 共线B.任意两个模长相等的平行向量一定相等C.向量 a 与 b 不共线,则 a 与 b 所在直线的夹角为锐角D.共线的两个非零向量不平行5.下面有四个命题,其中真命题的个数为() .①向量的模是一个正实数.②两个向量平行是两个向量相等的必要条件.③若两个单位向量互相平行,则这两个向量相等.④模相等的平行向量一定相等.A . 0 B. 1 C. 2 D. 3 6.下列说法中,错误的是( ) .A .零向量是没有方向的C.零向量与任一向量平行7.在△ ABC 中, AD ,BE,CF 分别是B.零向量的长度为0D.零向量的方向是任意的BC,CA ,AB 边上的中线, G 是它们的交点,则下列等式中不正确的是( ) .A. BG=2 BE 3B.DG=1AG2C. CG =- 2FGD.1DA+2FC=1BC 3 3 28.下列向量组中能构成基底的是( ) .A . e1= ( 0, 0) , e2=( 1, 2) B. e1=(- 1, 2) ,e2=( 5, 7)C.e1= ( 3, 5) ,e2= ( 6, 10) D.e1= ( 2, - 3) , e2= ( 1, - 3 ) 2 49.已知 a= (- 1, 3) , b=( x,- 1) ,且 a∥ b,则 x 等于 ( ) .A . 3 B.- 2 C.1D.-1 3 310.设 a, b, c 是任意的非零平面向量,且相互不共线,则①( a·b) · c- ( c· a) · b=0;② | a| - | b| < | a- b| ;③ ( b· c) · a- ( c· a) ·b 不与 c 垂直;④ ( 3a+ 2b) ·( 3a- 2b) = 9| a| 2- 4| b| 2中,是真命题的是 () .A .①②B.②③C.③④D.②④二、填空题:11.若非零向量,满足|+|=|-|,则与所成角的大小为.12.在ABCD 中, AB = a, AD = b, AN = 3 NC , M 为 BC的中点,则MN = _______. ( 用 a, b 表示 )13.已知 a+b= 2i - 8j,a- b=- 8i + 16j ,那么 a·b=.(第 12题) 14.设 m,n 是两个单位向量,向量a= m- 2n ,且 a= ( 2, 1) ,则 m,n 的夹角为.15.已知 AB = ( 6, 1) . BC = ( x,y) . CD = (- 2, - 3) .则向量AD 的坐标为 ______.三、解答题:16.如图,四边形ABCD 是一个梯形, AB∥ CD ,且 AB= 2CD,M, N 分别是 DC 和AB 的中点,已知AB = a, AD = b,试用 a, b 表示 BC 和 MN .(第 16 题) 17.已知 A( 1, 2) , B( 2, 3) ,C( -2, 5) ,求证△ ABC 是直角三角形.18.己知 a= ( 1, 2) , b=( - 3, 2) ,当 k 为何值时,( 1) ka+ b 与 a- 3b 垂直?( 2) ka+ b 与 a- 3b 平行?平行时它们是同向还是反向?19.已知 | m| = 4, | n| = 3,m 与 n 的夹角为60°, a= 4m- n , b= m+ 2n ,c=2m- 3n .求:( 1) a2+ b2+c2.( 2) a·b+ 2b· c- 3c· a.第二章平面向量参考答案一、选择题1.答案: C解析:从图上可看出AD=BC,则 AB-BC=AB-AD=DB,而 DB+CD=CD-BD=CB.2. D解析:如图∵AB+AD+AC=AB+BC+AC=AC+AC=2AC.3. D解析:向量可以自由平移是本题的解题关键,平移的目的是便于按向量减法法则进行运算,由图可知.∴AF-DB=AF-AD=DF=BE.4. A(第1题)(第2题) (第 3题)解析:向量共线即方向相同或相反,故非零向量间的共线关系是可以传递的.模长相等的平行向量可能方向相反,故 B 不正确.向量不共线,仅指其所在直线不平行或不重合,夹角可能是直角,故 C 不对.而选项 D 中向量共线属于向量平行.5. B解析:正确解答本题的关键是把握住向量的两个要素,并从这两个要素入手区分其他有关概念.①向量的模应是非负实数.②是对的③两个单位向量互相平行,方向可能相同也可能相反,因此,这两个向量不一定相等.④模相等且方向相同的向量才相等.6. A解析:零向量是规定了模长为0 的向量,其方向是任意的,它和任一向量共线,因此,0 绝不是没有方向.7. B解析:如图,G 是重心, DG =1GA ,所以 B 错.21DA+2FC =DG +GC=DC =1BC,所以不能选 D.3 3 28. B(第7题)解析:利用 e1 21221∥ ex y - x y = 0,可得只有 B 中 e1, e2不平行,故应选 B .9. C解析:由 a∥ b,得 3x= 1,∴ x=1.310. D解析:①平面向量的数量积不满足结合律.故①假;②由向量的减法运算可知 | a| ,| b| ,| a- b| 恰为一个三角形的三条边长,由“两边之差小于第三边” ,故②真;③因为[ ( b·c) ·a- ( c·a) ·b]·c= ( b·c) ·a·c- ( c·a) ·b·c= 0,所以垂直.故③假;④( 3a+ 2b) · ( 3a- 2b) =9· a· a- 4b· b=9| a| 2- 4| b| 2成立.故④真.二、填空题11.答案: 90°.解析:由 |+| = |-|,可画出几何图形,如图,| - | 表示的是线段AB 的长度,| + | 表示线段 OC 的长度,由|AB|=| OC|,( 第 11题) ∴平行四边形 OACB 为矩形,故向量与所成的角为 90°.1112.答案:a+b.44解:如图,由AN = 3 NC ,得 4 AN = 3 AC = 3( a+ b) , AM=a+1b,2所以 MN =3( a+b) - ( a+1b) =-1a+1b.424 4(第 12 题)13.答案:- 63.a=- 3i +4 j=( -3,4)解析:解方程组得b=5i-12 j=( 5,-12)∴a· b=( - 3) ×5+ 4× ( -12) =- 63.14.答案:90°.解析:由a= ( 2, 1) ,得 | a| = 5 ,∴ a2= 5,于是( m- 2n) 2= 5 m2+ 4n 2- 4m· n=5.∴ m· n= 0.∴ m, n 的夹角为90°.15.答案:( x+ 4, y- 2) .解析:AD AB BC CD = ( 6, 1) + ( x, y) + ( - 2,- 3) =( x+ 4, y- 2) .三、解答题16.答案:BC = b-1 a, MN = 1 a- b2 4解:如图,连结CN,则AN DC .∴四边形ANCD 是平行四边形.(第 16题)CN =- AD =- b,又∵ CN + NB + BC = 0,∴BC =- CN - NB =b-1a. 2∴MN = CN - CM = CN +1AN =- b+1a=1a-b.24 417.解析:∵AB =( 2-1, 3-2) = ( 1,1) , AC =( -2-1, 5-2) = ( -3,3) .∴AB · AC =1×(- 3) +1× 3=0.∴AB⊥AC.∴△ ABC 是直角三角形.18.答案: ( 1) 当 k= 19 时, ka+ b 与 a- 3b 垂直;( 2) 当 k=-1时, ka+ b 与 a- 3b 平行,反向.3解析: ( 1) ka+ b= k( 1, 2) +( - 3, 2) = ( k- 3,2k+2) ,a- 3b= ( 1, 2) - 3( - 3, 2) = ( 10,- 4) .当 ( ka + b) · ( a -3b) = 0 时,这两个向量垂直.由 ( k -3, 2k + 2) · ( 10,- 4) = 0,得 10( k - 3) + ( 2k + 2)( - 4) = 0.解得 k =19,即当 k = 19 时, ka + b 与 a - 3b 垂直.( 2) 当 ka + b 与 a - 3b 平行时,存在实数,使 ka + b = ( a -3b) ,由 ( k -3, 2k + 2) = ( 10,- 4) ,得 k -3=10 2k+2=- 4=-1k解得3=-13即当 k =- 1时, ka + b 与 a - 3b 平行,此时 ka +b =- 1 , 3 3 a + b∵ =- 1< 0,∴- 1a +b 与 a - 3b 反向.3 319.答案: ( 1) 366, ( 2) - 157.解析:∵| m |= 4,| n |= 3, m 与 n 的夹角为 60°,∴ m · n = | m|| n| cos 60°= 4× 3× 1=6. 2( 1) a 2+ b 2+ c 2= ( 4m - n) 2 +( m + 2n) 2+ ( 2m - 3n) 2= 16|m |2-8m · n +| n |2+| m |2+4m ·n +4|n |2+4| m |2-12m ·n + 9|n |2= 21|m |2- 16m · n + 14| n | 2= 21×16- 16×6+ 14× 9= 366.( 2) a ·b + 2b · c - 3c · a= ( 4m - n) · ( m + 2n) +2( m + 2n) · ( 2m - 3n) -3( 2m - 3n) · ( 4m - n)=- 16| m | 2+ 51m · n -23| n | 2=- 16× 16+ 51× 6- 23× 9=- 157.另解: a · b + 2b · c - 3c · a = b · ( a +2c) - 3c · a = =- 157.。