第二章 禁忌搜索算法
禁忌搜索

禁忌搜索算法又名“tabu搜索算法”为了找到“全局最优解”,就不应该执着于某一个特定的区域。
局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。
禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。
兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。
就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。
当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。
这就是禁忌搜索中“禁忌表(tabu list)”的含义。
那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best to far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。
这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。
伪码表达:procedure tabu search;begininitialize a string vc at random,clear up the tabu list;cur:=vc;repeatselect a new string vn in the neighborhood of vc;if va>best_to_far then {va is a string in the tabu list}begincur:=va;let va take place of the oldest string in the tabu list;best_to_far:=va;end elsebegincur:=vn;let vn take place of the oldest string in the tabu list;end;until (termination-condition);end;以上程序中有关键的几点:(1)禁忌对象:可以选取当前的值(cur)作为禁忌对象放进tabu list,也可以把和当前值在同一“等高线”上的都放进tabu list。
禁忌搜索

禁忌长度:
禁忌表的大小
候选解:
利用当前解的邻域函数产生其所有(或若干) 邻域解,并从中确定若干候选解。 候选解集的确定是选择策略的关键,对算法 性能影响很大。
藐视准则:
当一个禁忌移动在随后T次的迭代内再度出现
时,如果它能把搜索带到一个从未搜索过的区域,
则应该接受该移动即破禁,不受禁忌表的限制。
4.迭代③ 编码:4-2-7-1-5-6-3
Cx 14, C x* 18
结论:因渴望水平发挥作用,交换在破禁 表中的4和5
5.迭代④ 编码:5-2-7-1-4-6-3
Cx C x* 20
结论:交换7和1
6.迭代⑤ 编码:5-2-1-7-4-6-3
Cx C x* 20
*
.更新T表,转步骤2
四、禁忌算法示例
问题:由七层不同的绝缘材料构成的一种绝 缘体,应如何排列顺序,可获得最好的绝 缘性能
编码方式:顺序编码
初始编码:2-5-7-3-4-6-1
目标值:极大化目标值 邻域定义:两两交换是一个邻 域移动 邻域大小:Tabu Size: 3 NG: 5
禁忌搜索
专业:物流工程 姓名:冯颖 学号:201322303100
一、禁忌搜索概述
二、禁忌搜索的重要参数与基本
原理 三、禁忌搜索的算法步骤 四、禁忌算法示例
一、概述
禁忌搜索(Tabu Search或Taboo Search,简称TS ) 的思想最早由Glover提出,它是对局部领域搜索的一 种扩展,是一种全局逐步寻优算法,是对人类智力过 程的一种模拟。TS算法通过引入一个灵活的存储结构 和相应的禁忌准则来避免迂回搜索,并通过藐视准则 来赦免一些被禁忌的优良状态,进而保证多样化的有 效搜索以最终实现全局优化。
图节点着色问题中的禁忌搜索算法

图节点着色问题中的禁忌搜索算法09-03-25 作者:编辑:校方人员图节点着色问题是组合最优化中典型的非确定多项式(NP)完全问题,也是图论中研究得最久的一类问题。
目前解决该问题的算法很多,如回溯算法、分支界定法、Welsh-Powell算法、神经网络、遗传算法以及模拟退火算法等。
综合比较各种算法,前两种算法是精确算法,但时间复杂性太大;后三种属于近似算法,虽然时间复杂性可接受,能够得到较好的近似解,但算法本身过于复杂,算法效率难以保证。
本文采用禁忌搜索算法,它同时拥有高效性和鲁棒性。
禁忌搜索是一种全局逐步寻优的人工智能算法,它常能有效的应用于一些典型NP问题,如TSP。
但禁忌搜索存在一些参数较难设置,这也是应用于通信系统时研究的热点。
本文提出针对着色问题的禁忌搜索的具体设计方案,较好的设置了参数,并优化了数据结构,通过实验比较得到了较好的效果。
最后提出通过领域简单的变化,禁忌搜索能较好的用于一般算法难以实现的List着色问题。
1图节点着色问题图的着色问题可分为边着色、顶点着色、List着色和全着色,其中最主要的给定一个无向图G=(V,E),其中V是节点集V={1,2,…n},E是边集,其中(i,j)表示有连接(i,j)的一条边。
若,且V i内部的任何两个节点没有E中的边直接相连,则称(V1,V2,…,V n)为V的一个划分。
图的节点着色问题可以描述为:求一个最小的k,使得(V1,V2,…,V n)为V的一个划分。
通常的解决着色问题的算法采用蛮力法、贪婪法、深度优先或广度优先等思想可以得到最优解,但时间复杂性太大,如回溯法,其计算时间复杂性为指数阶的;有的在多项式时间内能得到可行解,但不是最优解,如Welsh-Powell算法和贪婪算法。
Welsh-Powell算法只能保证最多使用(为图中顶点的最大度)种颜色给一个图正常着色,而由Brooks定理,对于既不是完全图又不是奇圈的简单连通图,所需的颜色数。
禁忌搜索和应用

目录一、摘要 (2)二、禁忌搜索简介 (2)三、禁忌搜索的应用 (2)1、现实情况 (2)2、车辆路径问题的描述 (3)3、算法思路 (3)4、具体步骤 (3)5、程序设计简介 (3)6、算例分析 (4)四、禁忌搜索算法的评述和展望 (4)五、参考文献 (5)禁忌搜索及应用一、摘要工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。
禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。
本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。
二、禁忌搜索简介禁忌搜索(Tabu Search或Taboo Search,简称TS)的思想最早由Glover(1986)提出,它是对局部领域搜索的一种扩展,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。
TS算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。
相对于模拟退火和遗传算法,TS是又一种搜索特点不同的meta-heuristic算法。
迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。
禁忌搜索是人工智能的一种体现,是局部领域搜索的一种扩展。
禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索。
禁忌搜索涉及到邻域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu length)、候选解(candidate)、藐视准则(aspiration criterion)等概念。
禁忌搜索算法

3 禁忌搜索的关键参数和操作
3.1 变化因素
禁忌表的主要指标(两项指标)
禁忌对象:禁忌表中被禁的那些变化元素
禁忌长度:禁忌的步数
状态变化(三种变化) 解的简单变化 解向量分量的变化
目标值变化
3 禁忌搜索的关键参数和操作
3.1 变化因素
解的简单变化
假设x, y D,邻域映射为 N,其中D为优化问题的定义域, 则简单解变化 x y N ( x) 是从一个解变化到另一 个解。
2 禁忌搜索
2.2 禁忌搜索示例
四城市非对称TSP问题
初始解x0=(ABCD),f(x0)=4,邻域映射为两个城市 顺序对换的2-opt,始、终点都是A城市。
2 禁忌搜索
2.2 禁忌搜索示例
四城市非对称TSP问题
第1步
解的形式 A B C D f(x0)=4 禁忌对象及长度 B A B C C D 候选解
2 禁忌搜索
2.1 算法的背景 使用传统的方法,我们必须对每一个问题都去设 计一套算法,相当不方便,缺乏广泛性,优点在 于我们可以证明算法的正确性,我们可以保证找 到的答案是最优的;而对于启发式算法,针对不 同的问题,我们可以套用同一个架构来寻找答案, 在这个过程中,我们只需要设计评价函数以及如 何找到下一个可能解的函数等,所以启发式算法 的广泛性比较高,但相对在准确度上就不一定能 够达到最优,但是在实际问题中启发式算法那有 着更广泛的应用。
此时H已达到4个解,新选入的解代替最早被禁的解
3 禁忌搜索的关键参数和操作
3.2 禁忌表
禁忌对象的选取
情况1:禁忌对象为简单的解变化
第5步—— xnow=(AECBD),f(xnow)=44,H={(ACBDE;43) , (ACBED;43) ,(ABCED;44) ,(AECBD;44)} Can_N(xnow)={(AEDBC;43),(ABCED;44), (AECBD;44),(AECDB;44),(AEBCD;45)}。 xnext=(AEDBC)
TSP的几种求解方法及其优缺点

TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij )是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji , ni j=1 , 2, 3, ?, n);2)非对称旅行商问题(dij dji, ? i, j=1 , 2, 3, ?, n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={V1, V2, V3, ?, V n}的一个访问顺序为T={t l, t2, t3, ?, t i, ?, t n},其JT中t& V (i=1 , 2, 3, ?, n),且记t n+1=t1,则旅行商问题的数学模型为:minL= TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略2.1模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略一一路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV );③插入操作(INS)。
禁忌搜索算法.pptx

候选集合
禁忌表
3,2
[1,4,2,5,3,1] f1=8
3-4
3,5
[1,4,5,3,2,1] f2=10
2-3
5,2
[1,4,3,2,5,1] f3=14
4,2
[1,2,3,5,4,1] f4=16
对x3交换3和2时最优f(x)=8,不满足藐视准则,且由于3-2已经在禁忌表中,因此 我们退而求其次选择f2=10对应的解,此时x4=[1,4,5,3,2,1] f(x4)=10,历史最优为5, 将5-3放入禁忌表中,由于禁忌长度为2,因此将最先放入禁忌表中的3-4移出禁忌 表。
[1,4,3,5,2,1] f4=5
对x2交换2和3时,5最优,此时x3=[1,4,3,5,2,1] f(x3)=5,历史最优为5,将2-3放入禁 忌表中
禁忌表
3-4
2-3
禁忌搜索算法(Tabu search)
x3=[1,4,3,5,2,1】 5(x3)=5,历史最优为5
邻域移动(交换中间两个城市)
禁忌表 3-5 2-3
参考教材和资料
彭扬, 伍蓓. 物流系统优化与仿真[M]. 中国物资出版社, 2007.
通过局部邻域搜索和相应 的禁忌准则来避免迂回搜 索,并通过特赦准则释放 被禁忌的优良状态。以保 证多样化的有效搜索,最
终实现全局最优化。
禁忌搜索算法的思想
禁忌搜索算法的思想
1
禁忌搜索算法的思想
2
1
5
4
3
禁忌搜索算法的思想
15 14 13
11 10
12 9
2
1
58
4 6
3
7
时间步 T=1
禁忌表 1、2、3、4、5
禁忌搜索算法ppt课件

个候选解?
的解替换当前解
用新的解替换 当前解;
否
找出下一个 次好的新解
更新tabulist NI=NI+1
NI=0 Intensification
n=n+1
否 NI=M?
是 Diversification
NI=0 是
n<N
否
25
End
判断是否为tabu, 决定接受与否
接受最好的候选解,并替换当前解
NI=0 是
n<N
否
21
End
求得初始解 BS=初始解
初始解
Sequence The length of the route
132456
28
BS
Sequence The length of the route
132456
28
22
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
Sequence The length of the route
当前解 413256
30
Sequence The length of the route
BS
132456
28
Tabu list {41, },NI=1,n=1
26
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
The length of the route
30
35
38
40
45
24
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
n=0;NI=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初始解为xbest=(ABCDE),f(xbest)=45,定义邻域映射 为对换两个城市位置的2-opt,选定A城市为起点。
智能计算
2.1 局部搜索
2.1.3 局部搜索示例 • 五个城市的对称TSP问题
方法1:全邻域搜索
第1步 N(xbest)={(ABCDE),(ACBDE),(ADCBE), (AECDB),(ABDCE),(ABEDC),(ABCED)}, 对应目标函数为f(x)={45, 43, 45, 60, 60, 59, 44} xbest:=xnow=(ACBDE)
情况2:禁忌对象为分量变化
第1步—— xnow=(ABCDE),f(xnow)=45,H=Φ Can_N(xnow)={(ACBDE;43),(ADCBE;45), (AECDB;60),(ABEDC;59),(ABCED;44)}。
xnext=(ACBDE)
智能计算
2.3 禁忌搜索的关键参数和操作
2.2.2 禁忌搜索示例 • 四城市非对称TSP问题
第3步
解的形式 A CDB f(x2)=3.5 禁忌对象及长度 B A C D 候选解
对换 评价值
B
3 C
2
CD BC BD
8 T 4.5 T 7.5 ☻
智能计算
2.2 禁忌搜索
2.2.2 禁忌搜索示例 • 四城市非对称TSP问题
第4步
解的形式 A CB D f(x3)=7.5 禁忌对象及长度 B A C D 候选解
智能计算
2.1 局部搜索
2.1.3 局部搜索示例 • 五个城市的对称TSP问题
方法2:一步随机搜索
第1步 从N(xbest)中随机选一点,如xnow=(ACBDE), 对应目标函数为f(xnow)=43< 45
xbest:=xnow=(ACBDE)
智能计算
2.1 局部搜索
2.1.3 局部搜索示例 • 五个城市的对称TSP问题
智能计算
2.1 局部搜索
2.1.1 邻域的概念
• 例
TSP问题解的邻域映射可由2-opt,推广到k-opt。
• 邻域概念的重要性
邻域的构造依赖于决策变量的表示, 邻域的结构在现代优化算法中起重要的作用。
智能计算
2.1 局部搜索
2.1.2 局部搜索算法 • STEP 1
选定一个初始可行解x0,记录当前最优解xbest:=x0, T=N(xbest);
xnext=(ACBDE)
智能计算
2.3 禁忌搜索的关键参数和操作
2.3.2 禁忌表 • 禁忌对象的选取
情况1:禁忌对象为简单的解变化
第2步—— xnow=(ACBDE),f(xnow)=43,H={(ABCDE;45), (ACBDE;43)} Can_N(xnow)={(ACBDE;43),(ACBED;43), (ADBCE;44),(ABCDE;45),(ACEDB;58)}。 xnext=(ACBED)
2.2.2 禁忌搜索示例 • 四城市非对称TSP问题
第6步
解的形式 A DCB f(x5)=8 禁忌对象及长度 B A C D 候选解
对换 评价值
B
2 C
0 1
CD BC BD
3.5 T 4.5 T 4 ☻
智能计算
2.3 禁忌搜索的关键参数和操作
2.3.1 变化因素 • 禁忌表的主要指标(两项指标)
智能计算
第二章 禁忌搜索算法
智能计算
2.1 局部搜索
2.1.1 邻域的概念 2.1.2 局部搜索算法 2.1.3 局部搜索示例
2.2 禁忌搜索
2.2.1 算法的主要思路 2.2.2 禁忌搜索示例
2.3 禁忌搜索的关键参数和操作
2.3.1 变化因素 2.3.2 禁忌表 2.3.3 其他
2.4 禁忌搜索的实现与应用
智能计算
2.3 禁忌搜索的关键参数和操作
2.3.2 禁忌表 • 禁忌对象的选取
情况2:禁忌对象为分量变化
禁忌长度为3,从2-opt邻域中选出最佳的5个解组 成候选集Can_N(xnow),初始解xnow=x0=(ABCDE), f(x0)=45。
智能计算
Hale Waihona Puke 2.3 禁忌搜索的关键参数和操作
2.3.2 禁忌表 • 禁忌对象的选取
智能计算
2.3 禁忌搜索的关键参数和操作
2.3.1 变化因素 • 目标值的变化
目标值的变化隐含着解集合的变化。
智能计算
2.3 禁忌搜索的关键参数和操作
2.3.2 禁忌表 • 禁忌对象的选取
情况1:禁忌对象为简单的解变化
禁忌长度为4,从2-opt邻域中选出最佳的5个解组 成候选集Can_N(xnow),初始解xnow=x0=(ABCDE), f(x0)=45,H={(ABCDE;45)}。
智能计算
2.3 禁忌搜索的关键参数和操作
方法2:一步随机搜索
第2步 从N(xbest)中又随机选一点,如xnow=(ADBCE), 对应目标函数为f(xnow)=44> 43
xbest:=xnow=(ACBDE)
智能计算
2.1 局部搜索
2.1.3 局部搜索示例 • 五个城市的对称TSP问题
简单易行,但无法保证全局最优性;
局部搜索主要依赖起点的选取和邻域的结构; 为了得到好的解,可以比较不同的邻域结构和不同 的初始点; 如果初始点的选择足够多,
智能计算
2.1 局部搜索
2.1.1 邻域的概念
• 例
TSP问题解的一种表示方法为D={x=(i1,i2,…,in)|
i1,i2,…,in是1,2,…,n的排列},定义它的邻域映射为2
-opt,即x中的两个元素进行对换,N(x)中共包含 x的Cn2=n(n-1)/2个邻居和x本身。 例如:x=(1,2,3,4),则C42=6,N(x)={(1,2,3,4), (2,1,3,4), (3,2,1,4), (4,2,3,1), (1,3,2,4), (1,4,3,2), (1,2,4,3)}
2.3.2 禁忌表 • 禁忌对象的选取
情况2:禁忌对象为分量变化
第2步—— xnow=(ACBDE),f(xnow)=43,H={(B,C)} Can_N(xnow)={(ACBED;43),(ADBCE;44), (ABCDE;45),(ACEDB;58),(AEBDC;59)}。
xnext=(ACBED)
2.4.1 30城市TSP问题(d*=423.741 by D B Fogel) 2.4.2 基于禁忌搜索算法的系统辨识
智能计算
2.1 局部搜索
2.1.1 邻域的概念 • 函数优化问题中
在距离空间中,通常的邻域定义是以一点为中心的 一个球体;
• 组合优化问题中
N : x D N ( x) 2 D , 且x N ( x),称为一个邻域映射, 其中2 D 表示D 的所有子集组成的集合 。 N ( x)称为x的邻域,y N ( x)称为x的一个邻居。
智能计算
2.3 禁忌搜索的关键参数和操作
2.3.2 禁忌表 • 禁忌对象的选取
情况1:禁忌对象为简单的解变化
第5步—— xnow=(AECBD),f(xnow)=44,H={(ACBDE;43) , (ACBED;43) ,(ABCED;44) ,(AECBD;44)} Can_N(xnow)={(AEDBC;43),(ABCED;44), (AECBD;44),(AECDB;44),(AEBCD;45)}。 xnext=(AEDBC)
禁忌对象:禁忌表中被禁的那些变化元素
禁忌长度:禁忌的步数 • 状态变化(三种变化) 解的简单变化 解向量分量的变化
目标值变化
智能计算
2.3 禁忌搜索的关键参数和操作
2.3.1 变化因素 • 解的简单变化
假设x, y D,邻域映射为 ,其中D为优化问题的定义域, N 则简单解变化 x y N ( x) 是从一个解变化到另一 个解。
对换 评价值
B
2 C
3 1
CD BC BD
4.5 T 4.5 T 3.5 T
禁忌长度的选取
智能计算
2.2 禁忌搜索
2.2.2 禁忌搜索示例 • 四城市非对称TSP问题
第4步(如果减小禁忌长度)
解的形式 A CB D f(x3)=7.5 禁忌对象及长度 B A C D 候选解
对换 评价值
B
1 C
2 0
智能计算
2.3 禁忌搜索的关键参数和操作
2.3.2 禁忌表 • 禁忌对象的选取
情况1:禁忌对象为简单的解变化
第1步—— xnow=(ABCDE),f(xnow)=45,H={(ABCDE;45)} Can_N(xnow)={(ACBDE;43),(ABCDE;45), (ADCBE;45),(ABEDC;59),(ABCED;44)}。
智能计算
2.3 禁忌搜索的关键参数和操作
2.3.1 变化因素 • 向量分量的变化
设原有的解向量为(x1, …, xi-1, xi, xi+1, …, xn),向量 分量的最基本变化为
(x1, …, xi-1, xi, xi+1,…, xn)→(x1, …, xi-1, yi, xi+1,…, xn) 即只有第i个分量发生变化。 也包含多个分量变化的情形。
A B C
D E
智能计算
2.1 局部搜索
2.1.3 局部搜索示例 • 五个城市的对称TSP问题
方法1:全邻域搜索
第2步 N(xbest)={(ACBDE),(ABCDE),(ADBCE), (AEBDC),(ACDBE),(ACEDB),(ACBED)}, 对应目标函数为f(x)={43, 45, 44, 59, 59, 58, 43} xbest:=xnow=(ACBDE)