基础科学7正交试验设计
正交试验设计范文

正交试验设计范文正交试验设计(orthogonal experimental design)是一种统计方法,用来确定影响一个或多个因素的不同水平对观测结果的影响程度和相互关系。
该方法通过一系列的实验来探索不同因素对结果的影响,同时最大限度地减少干扰因素的影响,提供实验数据分析的依据和决策依据。
正交试验设计是基于正交阵(也称为拉丁方)的设计方法,通过将因素的不同水平进行排列组合,从而构建一个有效的实验方案。
正交阵的特点是各因素之间相互独立,能够同时考虑多个因素的影响,降低实验的复杂度和成本。
在正交试验设计中,首先需要确定研究的因素和水平。
因素是影响结果的变量,水平是每个因素的取值范围。
然后,通过正交阵的组合,构建不同水平的因素组合,形成实验方案。
在实验过程中,根据实验结果对各个因素进行分析和比较,确定主要因素和最佳组合。
1.减少实验次数:正交试验设计能够通过少量的实验次数,确定最佳因素组合,大大减少实验的工作量和成本。
2.消除干扰因素:正交试验设计能够排除干扰因素的影响,提高实验的可靠性和准确性。
3.有效分析因素:正交试验设计能够同时考虑多个因素的影响,找到主要因素和最佳组合,提高实验结果的可比性和可靠性。
然而,正交试验设计也存在一些限制和注意事项:1.模型简化:正交试验设计假定各个因素之间相互独立,这可能不符合实际情况,导致结果的失真。
2.限定水平选择:正交试验设计的水平选择通常是事先确定的,可能无法包含所有可能的取值范围,影响结果的全面性。
3.实验误差控制:正交试验设计无法完全消除实验误差,可能会影响结果的可靠性。
综上所述,正交试验设计是一种有效的实验设计方法,通过少量的实验次数,确定最佳因素组合,提高实验结果的可靠性和准确性。
在应用正交试验设计时,需要注意模型的简化、水平选择的局限性和实验误差的控制。
正交试验设计在工程、生产和科学研究中具有广泛的应用前景。
正交试验设计法简介

正交试验设计法简介一、本文概述正交试验设计法是一种高效、系统的试验设计方法,广泛应用于科学研究、工程实践以及日常生产中的优化问题。
本文将对正交试验设计法的基本概念、原理、应用及其优势进行详细介绍,旨在帮助读者更好地理解和应用这一实用的试验设计方法。
正交试验设计法基于数理统计和正交表的理论,通过合理安排试验因素与水平,以较少的试验次数获得丰富的试验信息。
该方法的核心在于利用正交表的正交性,使得各试验因素之间互不干扰,从而能够准确地评估各因素对试验结果的影响程度。
本文将从正交试验设计法的基本原理出发,阐述其在实际应用中的操作步骤和方法。
通过具体案例的分析,展示正交试验设计法在解决实际问题中的优势和应用价值。
本文还将对正交试验设计法的局限性和改进方向进行探讨,以期为读者提供更为全面、深入的了解。
二、正交试验设计法的基本原理正交试验设计法是一种以数理统计和正交性原理为基础的高效试验设计方法。
其基本原理在于,通过选择一组具有代表性的试验点,即正交表中的行,来全面、均衡地考察多个因素在不同水平下的试验效果。
这种方法能够在保证试验全面性的大大减少试验次数,提高试验效率。
正交试验设计法主要基于两个核心原理:正交性原理和代表性原理。
正交性原理指的是在试验设计中,各因素之间应相互独立,互不影响,从而确保试验结果的准确性和可靠性。
代表性原理则是指在选择试验点时,应确保每个试验点都能代表一定的因素水平组合,以便全面考察各因素对试验结果的影响。
正交表是正交试验设计法的核心工具,它是一种具有特定结构的表格,用于安排试验因素和水平。
正交表具有均衡分散和整齐可比的特点,能够确保每个试验点都具有一定的代表性,并且各因素之间保持正交性。
通过正交表,可以方便地安排试验,并对试验结果进行分析和比较。
正交试验设计法的应用范围广泛,适用于多因素、多水平的试验场景。
它不仅可以用于新产品的开发和优化,还可以用于工艺改进、质量控制等领域。
通过正交试验设计法,可以更加高效地找出最优的参数组合,提高产品的性能和质量,降低生产成本,为企业带来更大的经济效益。
正交试验设计讲义

河南工业大学
shiyanshujuchulishiyongfangfa
二、正交试验设计法 正交设计方法主要讨论: (1) 如何合理地安排试验,确定试验数据收集的方法 (2) 如何对试验中所得的试验数据进行分析与处理 可达到的目的: (1) 因素的主次,即各因素对所考察指标影响 的大小 顺序; (2) 因素与指标的关系,即每个因素水平不同 时,指
整齐可比性-----正交表中任意两列,把同行的两
个数字看成有序数对时,所有可能的数对出现的次数 相同;
表示:任意两因素的各种水
平的搭配在所选试验中出现的
次数相等。
设计正交试验表 的基本准则
河南工业大学
2. 混合水平正交表
shiyanshujuchulishiyongfangfa
在试验中,由于条件的限制,会出现个别因素不能多
试验号 1 1 2 3 4 5 6 7 8 1 1 2 2 3 3 4 4
列
1列),4 个是 2水
平因素(位于第2 ~ 5 列)。
河南工业大学
shiyanshujuchulishiyongfangfa
第二节 正交设计的基本方法
正交试验设计一般来说包括两部分:
一是,试验设计,也即方案的选择与确定。
二是,数据处理,进行统计推断。
如三因素四水平43并包括第一二个因素的交互作用的正交试验至少应安排的试验次数为?????34141??????34141???3342?又如安排的混合水平的正交试验至少应安排??4141?111919????所以一般地有1iijiij?ndfdf?????若再加上包括第一五个因素的交互作用的正交试验则至少应安排的试验次数为?????????4341321121?161??????????341321113?????次以上的试验
正交试验设计范文

正交试验设计范文正交试验设计是一种统计试验设计方法,其目的是在尽可能少的试验次数下,对多个因素进行系统地、全面地分析,从而找出对研究对象所产生影响的主要因素和最佳组合。
正交试验设计被广泛应用于工程实验、产品开发、过程改进等领域,具有试验次数少、结果可靠等优点。
正交试验设计的基本原理是将整个试验因素空间分成若干等价子空间,通过选择适当的试验条件在每个子空间内进行试验。
这样做的好处是,可以使得各个因素之间的相互作用得到最大限度地展示,从而减少试验次数。
同时,经过适当的设计,也能够得到可靠的统计分析结果,进一步提高试验效率和准确性。
一般来说,正交试验设计可以分为正交数组设计和正交表格设计两种。
正交数组设计是根据因素的水平数目和试验次数来选择的。
最常用的正交设计是正交二水平设计,即每个因素有两个水平。
正交二水平设计最简单,试验次数最少,适用于因素之间相互独立的情况。
它的优点是试验结果易于分析,能够快速得到结论。
但是,它并不能够得到准确的因素间相互影响的统计推断。
正交表格设计是根据因素的水平数目和试验次数来选择的。
正交表格设计适用于因素之间存在相互影响的情况。
常见的正交表格设计有正交L8、正交L16等。
正交表格设计的优点是可以快速得到因素间相互影响的统计推断,可以更全面地分析因素之间的关系。
但是,试验次数相对较多,需要充分利用资源。
使用正交试验设计的步骤如下:1.确定试验目标:明确需要研究的问题和目标,确定试验的目标,明确需要研究的因素和因素的水平。
2.选择试验因素:根据试验目标,选择需要考虑的因素和因素的水平。
3.设计试验矩阵:根据选择的试验因素和水平,设计正交试验的矩阵,确定每个试验条件的组合。
4.进行试验:按照设计好的试验条件进行实际试验。
5.分析实验结果:根据实验结果,进行统计分析,分析因素之间的关系和影响,得出结论。
6.优化因素组合:根据分析结果,确定最佳的因素组合,优化实验结果。
正交试验设计的优点在于通过有限的试验次数,可以全面地研究多个因素对研究对象的影响,找出影响主要的因素和最佳组合。
正交试验设计

摘要:正交试验设计是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分析因式设计的主要方法,是一种高效率、快速、经济的实验设计方法。
关键字正交试验设计单指标直观分析正交表引言如今,科学的快速进步带来各种各样革命性的产品,这些产品不是凭空而生,是人类科学家经过多次成功与失败的试验总结完善而成。
试验设计融会于各种学科领域,并非只存于工学;它是一个理论到实践应用实施的过程,包括明确试验目的、制定可行方案、结合专业和统计学的知识,做出周密完整、科学严谨的整个试验过程。
但试验往往需消耗大量人力、物力和财力,所以实际试验过程中我们应该仔细分析导致各种试验结果的影响因素,挑选最合适的的主干部分,用最优的方案去得到我们需要的试验结果。
而正交试验设计可以满足上述特点,试验次数少、效率高、低成本。
本文主要论述单指标正交试验设计及其结果的直观分析。
1 普通试验方法1.1 独立重复试验某几个试验因素各自不同的因素水平数相乘便得到独立重复试验的总次数,如对a因素b水平试验来说,其试验总次数为次。
这种试验盲目性大,没有明确的最优试验方案,耗时耗力,特别是对于某些杂,多的因素水平而言,毫操作性。
2 正交表2.1 等水平正交表正交表是一整套规则的设计表格,是正交试验设计用来安排试验因素和水平数并分析试验结果的基本工具,符号表示举例如下:正交表的构造需要用到组合数学和概率学知识,而且如果我们在实际应用中正交表类型选择不当,则会造成很大一部分人力物力的浪费,甚至有些正交表其构造方法到目前还未解决。
但目前广泛使用的正交表有以下几种:2水平正交表:3水平正交表:4水平正交表:5水平正交表:表一3水平正交表:2.2 选择正交表的基本原则一般都是先确定试验的因素、水平和交互作用,后选择适用的L表。
在确定因素的水平数时,主要因素宜多安排几个水平,次要因素可少安排几个水平。
正交试验设计和分析方法研究

正交试验设计和分析方法研究一、本文概述正交试验设计是一种高效、系统的试验设计方法,广泛应用于科学研究、工程实践以及社会调查等领域。
通过正交表的正交性、均匀分散性和整齐可比性,正交试验设计能够在众多试验因素中快速找出关键因素,优化试验方案,提高试验效率。
本文旨在深入研究正交试验设计的理论基础,探讨其在实际应用中的优化策略,分析正交试验设计的优缺点,并展望其未来发展趋势。
本文首先介绍正交试验设计的基本原理和常用正交表,然后详细阐述正交试验设计的步骤和方法,接着通过案例分析展示正交试验设计在不同领域的应用实践,最后对正交试验设计的未来发展进行展望,以期为相关领域的研究和实践提供有益的参考和借鉴。
二、正交试验设计基本原理正交试验设计是一种高效、系统的试验设计方法,其核心在于利用正交表来安排试验,通过对试验因素与水平进行全面、均匀的搭配,从而找出最佳的试验方案。
正交试验设计的基本原理主要包括以下几点:正交性原理:正交表具有正交性,即表中的每一行(或列)所代表的因素水平组合都是唯一的,且在整个表中均匀分布。
这种正交性保证了试验点在试验范围内均匀分布,从而能够全面反映试验因素与水平的变化情况。
代表性原理:正交表中的每一行都代表一组试验因素与水平的组合,这些组合在试验范围内具有代表性。
通过选择适当的正交表,可以在较少的试验次数下获得较为全面的试验结果。
综合可比性原理:正交表中的每一列都对应一个试验因素,不同列之间的因素是相互独立的。
这意味着每个因素在不同水平下的效果可以单独进行分析和比较,从而便于找出影响试验结果的主要因素及其最佳水平。
分析简便性原理:正交试验设计的结果分析简便易行,可以通过直观分析或方差分析等方法快速得出结论。
直观分析法可以直接从正交表中观察出各因素在不同水平下的效果,而方差分析法则可以进一步检验各因素对试验结果的影响程度。
正交试验设计通过合理利用正交表的性质,实现了试验的高效、系统和全面。
在实际应用中,只需根据试验需求选择合适的正交表,按照表中的安排进行试验,并对试验结果进行简便的分析,即可得出较为准确的结论。
正交实验设计
正交实验设计正交实验设计是一种广泛应用于实验研究中的统计方法。
正交实验设计的主要目的是通过设置一组经过精心选择的实验条件,来研究多个因素对实验结果的影响。
通过使用正交设计,可以在尽可能少的试验次数内获得详尽而可靠的数据,从而节省时间和资源,提高实验效率。
正交实验设计的特点之一是能够同时考虑多个因素的影响。
在传统的单因素实验设计中,每次只能研究一个因素,无法考虑多个因素交互作用的影响。
而正交实验设计则可以同时研究多个因素,通过合理的设计,确定每个因素的水平,使得各种可能的因素组合均匀分布在试验中。
这样就能够充分考虑多个因素的影响,把握各个因素对实验结果的主要影响。
正交实验设计的另一个特点是能够充分利用样本资源。
在实际研究中,样本资源通常是有限的,无法进行大规模的试验。
而正交实验设计可以在有限的样本资源下获得最大程度的结果信息。
通过合理设置因素水平和试验组合,正交实验设计能够在尽可能少的试验次数内获得最全面的数据,从而提高实验的效率和可靠性。
正交实验设计还具有实用性和灵活性。
正交实验设计可以应用于各种不同的实验研究领域,包括工程、生物学、医学等。
不同领域的实验可以根据具体情况选择合适的因素和因素水平,并进行正交实验设计。
正交实验设计还可以根据实验需求进行调整,例如增加或减少因素的数量,调整因素之间的交互作用等。
这就使得正交实验设计具有很强的灵活性,可以应对不同的实验需求和研究目标。
在进行正交实验设计时,需要注意一些关键的步骤和要点。
首先,需要明确实验的目的和要研究的因素。
在确定因素时,要充分考虑实验的实际情况和需求,选择对实验结果有重要影响的因素进行研究。
其次,需要确定因素的水平。
在正交实验设计中,因素水平是根据实验要求和研究目标来确定的,要确保各个因素水平的合理性和可操作性。
然后,通过正交实验设计软件或表格,确定合适的试验组合。
这是正交实验设计中非常重要的一步,试验组合的设置要考虑到各个因素间的交互作用,尽量避免重复或冗余的组合。
正交试验设计完整版本
2020/3/26
数理统计在化学中的应用
李 振 华 制
10 造
2. 拉丁方试验设计
均衡分布思想,虽然远在古代就有,但只是在近代才与生 产科研实际相结合,产生了拉丁方、正交表,显示出它的 巨大威力。
2020/3/26
数理统计在化学中的应用
李 振 华 制
3造
2020/3/26
数理统计在化学中的应用
李 振 华 制
4造
2020/3/26
数理统计在化学中的应用
李 振 华 制
5造
$8.3 试验设计
试验设计的目的就是为了试验优化. 试验优化由于具有设计灵活、计算简便、试验次数
少、优化成果多、可靠性高以及适用面广等特点, 因而发展迅速,应用广泛,已成为多快好省地获取 试验信息的现代通用技术,成为科学实验、质量管 理的一个科学工具。
反应时间
产量
1小时 平均值
反应温度
50 oC
69.5
70 oC
71.5
2020/3/26
数理统计在化学中的应用
2小时 平均值
72.0
64.5
李 振 华 制
29 造
最佳条件:
显色剂浓度:2% 显色温度:50 oC 显色时间:2小时 操作方法:不搅拌
2020/3/26
数理统计在化学中的应用
李 振 华 制
18世纪的欧洲,普鲁士弗里德里希·威廉二世(1712一1786 )要举行一次与往常不同的6列方队阅兵式。他要求每个方 队的行和列都要由6种部队的6种军官组成,不得有重复和 空缺。这样.在每个6列方队中,部队军官在行和列全部排 列均衡。群臣们冥思苦想,竟无一人能排出这种方队。后 来,向当时著名的数学家欧拉(1707—1783)请教,由此 引起了数学家们的极大兴趣,致使各种拉丁方问世。
正交试验设计原理与实例
1 正交试验设计的意义
正交试验属于试验设计方法的一种。简单
地讲,试验设计是研究如何科学安排试验,以
较少的人力物力消耗而取得较多较全面的信息。
试验安排得好,事半功倍;反之则事倍功半,
甚至达不到预期目的。因此,如何进行试验设 计是一个至关重要的问题。
正交试验设计是试验优化的常用技术。
所谓试验优化,是指在最优化思想的指导
3.3 选择合适的正交表
(3)再看允许做试验的正交表的次数和有无重点因素 要考察。如果只允许做9次试验,而考察因素只有 3-4个,则用3水平的L9 (34 )表来安排试验。若有 重点因素要详细考察则可选用水平数不等的正交表 如L8(4X24)等,将重点因素多取几个水平加以详细 考察。 ①要求精度高,可选较大的n值的L表。 ②切不可遗漏重要因素,所以可倾向于多考察些因 素。 ③可以先用水平数少的正交表作试验,找出重要因 素后,对少数重要因素再作有交互作用的细致考察。
(2)代表性。代表性的含义之一,在于正交 表的正交性中: ①任一列的各水平都出现,使得部分试验 中包含所有因素的所有水平。 ②任意2列间的所有组合全部出现,使任意 两因素间都是全面试验。因此,在部分试验 中,所有因素的所有水平信息及两两因素间 的所有组合信息都无一遗漏。这样,虽然安 排的是部分试验,却能够了解全面试验的情 况,从这个意义上讲可以代表全面试验。
常用的正交表已由数学工作者制定出来,供进行 正交设计时选用。2水平正交表除L8(27)外,还有L4(23)、 L16(215) 等 ; 3 水 平 正 交 表 有 L9(34) 、 L27(213)…… 等 (详见附表17及有关参考书)。
表11-6是一张正交表,记号为L9(34),其中
“L”代表正交表;L右下角的数字“9”表示有9
正交试验设计-有重复试验情况下的数据分析
目的和意义
目的
通过对重复试验数据的分析,揭 示试验因素的主效应、交互效应 以及试验误差,为优化试验方案 和提高试验效率提供依据。
意义
有助于提高试验的准确性和可靠 性,减少试验成本和时间,为实 际生产和科学研究的优化提供有 力支持。
02
正交试验设计基础
正交试验设计概念
正交试验设计是一种通过合理安排多 因素、多水平试验的方法,以最少的 试验次数获得尽可能多的试验信息。
数据筛选
根据试验目的和要求,筛选出符合要求的数据进行分析。
数据转换
根据需要,对数据进行适当的转换,如求平均值、求和等。
重复试验的数据分析方法
描述性分析
对重复试验的数据进行描述 性分析,如求平均值、中位 数、标准差等,了解数据的 分布和特征。
方差分析
通过方差分析方法,比较不 同处理组之间的差异,了解 重复试验数据的变异来源和 显著性检验。
06
参考文献
参考文献
01
[1] 王兆军, 张文彤. 正交试验设计中的数据分析方法[M]. 北 京: 科学出版社, 2018.
02
[2] 孙璇. 正交试验设计在数据分析中的应用研究[J]. 统计与 决策, 2019(12): 2ห้องสมุดไป่ตู้-27.
03
[3] 赵丽华. 正交试验设计在数据分析中的优化策略[J]. 数据 分析与科学应用, 2020(6): 45-50.
THANKS
感谢观看
在重复试验的情况下,正交试验设计 能够有效地减少试验次数,提高试验 效率,降低试验成本。
正交试验设计的基本原理
正交性原理
正交试验设计利用正交表来安排试验 ,确保每个因素在各个水平上都有均 匀的分布,避免了冗余和浪费。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交试验设计
1正交试验的引入
在实际的生产实践当中,由于需要考虑的因素(对结果产生影响的变量)通常比较多,同时,每个因素的水平个数(每个变量的可取值个数)也不止一两个。
如果对每个因素的每个水平交互搭配全部进行试验,例如:对于5因素4水平的实验,全部次数为:541024 ,需要用相当长的时间进行统计分析计算,同时耗费了大量的人力物力。
而如果采用正交试验设计,试验的次数将大大减少,同时对统计结果的分析也变得简单。
正交试验设计是利用正交表科学的安排与分析多因素试验的方法,是最常用的试验设计之一。
2正交表的分类及优势
正交表分为:等水平正交表和混合水平正交表。
等水平代表各因素所取的水平数相同,混合水平表示各因素的水平数不一定相同。
正交表的优点:(1)能够在所有方案中均匀的选出具有代表性的方案; (2)通过对少数试验的分析,可以推得较优的方案,并且较优方案往往不包含在少数进行试验了的方案中。
(3)通过对结果分析,可以得到更多有用的信息。
包括各因素的重要性等。
3正交试验设计的步骤
总的来说包括两部分:一是试验设计,二是数据处理。
归纳为: (1) 明确试验目的,确定评价指标; (2) 挑选因素,确定水平;
(3) 选正交表,进行表头设计:一般要求为 因素数≤正交表列数 (4) 明确试验方案,进行试验得到结果;
(5) 对结果进行统计分析:采用直观分析法或方差分析法,得到因素的主
词以及优方案等信息;
(6) 进行验证试验,做进一步的分析。
4有交互作用的正交试验设计
在许多试验中,不仅要考虑各个因素对试验指标起作用,还有考虑因素间的交互作用对试验解结果的影响。
在这种正交试验的设计当中,要把交互作用也作为因素考虑进去。
可以查对应的正交表来进行表头设计。
5举例
下面通过举例来说明如何设计正交表以及对用不同的方法对试验结果进行分析。
例1(三水平三因素正交表设计以及直观分析法)以下试验考虑的两个指标全部
解:可选用正交表49(3)L 来安排试验
级差R 0.59 0.55 0.59 1.86
因素主次 CAB 优方案131C A B
符号说明:
:表示人一类上水平号为i 是所对应的试验结果之和;
级差R :表示在任一列上K 的最大值与最小值之差;级差越大,说明对结果影响越大,那么这个因素越重要。
在此题的求解中,首先要把不同的指标进行无量纲化处理,这里转化为它们的隶属度,计算方法如下:
指标值-指标最小值
指标隶属度=
指标最大值-指标最小值
在此题中,取代度和脂化率的权重分别取0.4和0.6,对各指标的加权和作为综合分数。
对结果进行直观分析,可以得到最优方案为:131C A B 。
同时对结果进行一次验证试验,从而确定真正最好的试验方案。
方差分析法的基本步骤与格式如下:
(1) 计算离差平方和(包括总离差平方和T SS ,各因素的离差平方和j SS ,
试验误差的离差平方和e SS ,交互作用的离差平方和A B SS ⨯)
(2) 计算自由度:
总平方和的总自由度:
df 1n 1T =-=-总试验次数
各因素离差平方和对应的自由度:
df 1r 1j =-=-因素水平数
两因素交互作用的自由度等于两因素自由度之积。
误差自由度:e df df =∑空列
(3) 计算平均离差平方和(均方)
SS MS df
=
(4) 计算F 值
将各因素或交互作用的均方除以误差的均方,得到F 值,例如:
A
A e
MS F MS =
(5) 显著性检验 例2(二水平正交试验的方差分析)某厂采用化学吸收法用填料塔吸收废气中的2SO ,通过正交试验进行探索,因素与水平如下表:
需要考虑交互作用,A B B C ⨯⨯。
将A ,B ,C 放入正交表78(2)L 的1,2,4列,即通过已知,试对方差进行分析。
2
2
11
,,n
n
i i
i i T T y Q y P n =====∑∑ (2)计算离差平方和:
总离差平方和:448.875T SS Q P =-= 由公式:2121
()j SS K K n
=
-解的结果如上表所示。
误差平方和:5727.25e SS SS SS =+= (3)计算自由度
df n 1=7T =-
df r 1=1=df j =-交互
e d
f df 2==∑空列
(4)计算均方
由于各因素和交互作用的自由度为1,所以均方与各自离差平方和相同。
A j MS SS = 误差的均方为e
e e
SS MS df =
=13.625 如果某个因素的均方小于误差的均方,那就称此因素为次要因素,归为误差项,重新计算新的误差:
新误差平方和:36.5e e A C SS SS SS SS ∆=++= 新误差自由度:4e e A C df df df df ∆=++= 新误差均方:e e e
SS MS df ∆∆
∆
==9.125
(5)计算F 值
14.92e
B
B MS F MS ∆
=
= 18.75e A B
A B MS F MS ⨯⨯∆
=
= 11.52e
B C
B C MS F MS ⨯⨯∆
=
= (6) F 检验
查表有:0.050.01(1,4)7.71,(1,4)21.20F F ==,可见,对于给定水平0.05α=,因素B 及AB 交互项,BC 交互项对试验结果又显著影响。
(7)优方案的确定
交互作用对试验指标有显著影响,所以因素A,B,C优水平的确定要依据A,
由于指标为低优指标,所以确定A,B的搭配为:
A B
12
同理,可以确定B,C的搭配为:
B C。
22
所以最优方案为:
A B C,即碱浓度为5%,操作温度为20度,填料选择
122
为乙。