高二数学10月月考试题 文(扫描版)1

合集下载

2024-2025学年重庆市高二上学期10月月考数学质量检测试题(含解析)

2024-2025学年重庆市高二上学期10月月考数学质量检测试题(含解析)

2024-2025学年重庆市高二上学期10月月考数学质量检测试题一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.)1. 已知直线过点且与直线平行,则直线的一般式方程为(1l()2,5A 2:240l x y +-=1l )A. B. 290x y ++=290x y +-=C. D. 290x y ++=290x y +-=2. 已知空间向量,,则向量在向量上的投影向量是( )(2,2,1)a =- ()4,0,3b = b aA. (4,0,3)B. (4,0,3}C. (2,2,-1)D.591559(2,2,-1)133. 如图所示,在平行六面体中,为与的交点,若1111ABCD A B C D -M 11A C 11B D ,则等于()1,,AB a AD b AA c ===BM A. B. 1122-+a b c1122++a b cC. D. 1122--+ a b c1122a b c-++ 4. 已知空间三点O (0,0,0),A (12),B -1,2),则以OA ,OB为邻边的平行四边形的面积为( )A. 8B. 4C. D. 5. 已知,,,直线l 过点B ,且与线段AP 相交,则直线l 的斜()2,3A -()3,2B --()1,1P率k 的取值范围是( )A. 或B. 4k ≤-34k ≥1354k -≤≤C .或 D.或34k ≤-4k ≥15k ≤-34k ≥6. 在棱长为的正四面体中,,,则( )3ABCD 2AM MB = 2CN ND=MN =A .D. 27. 如图所示,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,E ,F 分别是BC,CD 上的点,且BE =CF =a (0<a <1),则D ′E 与B ′F 的位置关系是()A. 平行B. 垂直C. 相交D. 与a 值有关8. 已知二面角C -AB -D 的大小为120°,CA ⊥AB ,DB ⊥AB ,AB =BD =4,AC =2,M ,N分别为直线BC ,AD 上两个动点,则最小值为()MN二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9. 直线,则():10l x ++=A. 点在上B. 的倾斜角为(-l l 5π6C. 的图象不过第一象限D. 的方向向量为l l )10. 下列结论正确的是()A. 两个不同的平面的法向量分别是,则,αβ()()2,2,1,3,4,2u v =-=-αβ⊥B. 直线的方向向量,平面的法向量,则l ()0,3,0a =α()1,0,2u =//l αC. 若,则点在平面内()()()2,1,4,4,2,0,0,4,8AB AC AP =--==--P ABC D. 若是空间的一组基底,则向量也是空间一组基底,,a b b c c a +++ ,,a b c11. 如图,在多面体中,平面,四边形是正方形,且ABCDES SA ⊥ABCD ABCD DE ∥,分别是线段的中点,是线段上的一个动点SA 22,,SA AB DE M N ===,BC SB Q DC (含端点),则下列说法正确的是(),D CA. 存在点,使得Q NQ SB⊥B. 存在点,使得异面直线与所成的角为Q NQ SA 60oC. 三棱锥体积的最大值是Q AMN -23D. 当点自向处运动时,二面角的平面角先变小后变大Q D C N MQ A --三、填空题(本题共3小题,每小题5分,共15分.)12. 已知点,则直线的倾斜角是______.)(),AB AB 13.如图,在四棱锥中,平面平面,底面是矩形,P ABCD -PCD ⊥ABCD ABCD ,,点是的中点,点为线段上靠近的三26AB BC ==,⊥=PC PD PC PD O CD E PB B 等分点,则点到直线的距离为______.E AO14.如图,在中,,过的中点的动直线与线段ABC V π6,4AC BC C ===AC M l 交于点,将沿直线向上翻折至,使得点在平面内的射影AB N AMN l 1A MN 1A BCMN 落在线段上,则斜线与平面所成角的正弦值的最大值为________.H BC 1A M BCMN四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15. 已知直线过点.l (2,2)P (1)若直线与垂直,求直线的方程;l 360x y -+=l (2)若直线在两坐标轴上的截距相等,求直线的方程.l l 16. 已知空间中三点,,.(),1,2A m -()3,1,4B -()1,,1C n -(1)若,,三点共线,求的值;A B C m n +(2)若,的夹角是钝角,求的取值范围.AB BCm n +17. 如图,在四棱锥中,底面ABCD 为直角梯形,且,,P ABCD -AB AD ⊥2AD BC =u u u r u u u r已知侧棱平面ABCD ,设点E 为棱PD 的中点.AP ⊥(1)证明:平面ABP ;//CE (2)若,求点P 到平面BCE 的距离.2AB AP AD ===18. 如图1,在中,,,分别为边,的中点,且MBC △BM BC ⊥A D MB MC ,将沿折起到的位置,使,如图2,连接,2BC AM ==△MAD AD PAD △PA AB ⊥PB .PC(1)求证:平面;PA ⊥ABCD (2)若为的中点,求直线与平面所成角的正弦值;E PC DE PBD (3)线段上一动点满足,判断是否存在,使二面角PC G (01)PGPC λλ=≤≤λ的值;若不存在,请说明理由.G AD P --λ19. 人脸识别是基于人的脸部特征进行身份识别的一种生物识别技术.主要应用距离测试样本之间的相似度,常用测量距离的方式有3种.设,,则欧几里得距离()11,A x y ()22,B x y;曼哈顿距离,余弦距离(,)D A B =1212(,)d A B x x y y =-+-,其中(为坐标原点).(,)1cos(,)e A B A B =-cos(,)cos ,A B OA OB =〈〉O (1)若,,求,之间的曼哈顿距离和余弦距离;(1,2)A -34,55B ⎛⎫⎪⎝⎭A B (,)d A B (,)e A B (2)若点,,求的最大值;(2,1)M (,)1d M N =(,)e M N (3)已知点,是直线上的两动点,问是否存在直线使得P Q :1(1)l y k x -=-l ,若存在,求出所有满足条件的直线的方程,若不存在,请说明min min (,)(,)d O P D O Q =l 理由.2024-2025学年重庆市高二上学期10月月考数学质量检测试题一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.)1. 已知直线过点且与直线平行,则直线的一般式方程为(1l()2,5A 2:240l x y +-=1l )A. B. 290x y ++=290x y +-=C .D. 290x y ++=290x y +-=【正确答案】B【分析】根据题意,得到,结合直线的点斜式方程,即可求解.12l k =-【详解】直线的斜截式方程为,则其斜率为,2l24y x =-+2-因为直线过点,且与直线平行,所以,1l()2,5A 2l12l k =-则直线的点斜式方程为,即为.1l()522y x -=--290x y +-=故选:B.2. 已知空间向量,,则向量在向量上的投影向量是( )(2,2,1)a =- ()4,0,3b = b aA. (4,0,3)B. (4,0,3}C. (2,2,-1)D.591559(2,2,-1)13【正确答案】C【分析】根据向量在向量上的投影向量的概念求解即可.【详解】向量在向量上的投影向量为,b a 22224035(2,2,1)22(1)9||||b aaa a a →→→→→→⋅⨯+-⋅=⋅=-++-故选:C3. 如图所示,在平行六面体中,为与的交点,若1111ABCD A B C D -M 11A C 11B D ,则等于( )1,,AB a AD b AA c ===BMA. B. 1122-+a b c1122++a b cC. D. 1122--+ a b c1122a b c-++ 【正确答案】D【分析】根据空间向量的线性运算即可得到答案.【详解】因为为与的交点,M 11A C 11B D 所以111111()22BM BB B M AA BD AA AD AB =+=+=+-.111112222AB AD A ca b A =-++=-++故选:D.4. 已知空间三点O (0,0,0),A (12),B-1,2),则以OA ,OB为邻边的平行四边形的面积为( )A. 8B. 4C. D. 【正确答案】D【分析】先求出OA ,OB 的长度和夹角,再用面积公式求出的面积进而求得四边形OAB △的面积.【详解】因为O (0,0,0),A (12),B-1,2),所以,OA ==OB ==2),1,2),OA OB ==-,1cos ,2OA OB ==所以sin ,OA OB =以OA ,OB 为邻边的平行四边形的面积为1222ABC S =⨯⨯= 故选:D.5. 已知,,,直线l 过点B ,且与线段AP 相交,则直线l 的斜()2,3A -()3,2B --()1,1P 率k 的取值范围是()A. 或B. 4k ≤-34k ≥1354k -≤≤C.或 D.或34k ≤-4k ≥15k ≤-34k ≥【正确答案】B【分析】画出图形,数形结合得到,求出,得到答案.BP BA k k k ≥≥,BP BA k k 【详解】如图所示:由题意得,所求直线l 的斜率k 满足,BP BA k k k ≥≥即且,所以.231325k -+≥=---123134k +≤=+1354k -≤≤故选:B .6. 在棱长为的正四面体中,,,则( )3ABCD 2AM MB = 2CNND =MN =A. D. 2【正确答案】B【分析】将用、、表示,利用空间向量数量积的运算性质可求得.MN AB AC AD MN【详解】因为,所以,,2AM MB = 23AM AB=又因为,则,所以,,2CN ND = ()2AN AC AD AN -=- 1233AN AC AD =+ 所以,,122333MN AN AM AC AD AB=-=+-由空间向量的数量积可得,293cos 602AB AC AB AD AC AD ⋅=⋅=⋅==因此,1223MN AC AD AB =+-=.==故选:B.7. 如图所示,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,E ,F 分别是BC ,CD 上的点,且BE =CF =a (0<a <1),则D ′E 与B ′F 的位置关系是()A. 平行B. 垂直C. 相交D. 与a 值有关【正确答案】B【分析】建立坐标系,利用向量的乘积计算出,即可求解''0D E B F ⋅=【详解】建立如图所示空间直角坐标系.则,,,,'(0,0,1)D (1,1,0)E a -'(1,1,1)B (0,1,0)F a -,'(1,1,1)D E a ∴=-- '(1,,1)B F a =---,''(1)(1)1()(1)(1)110D E B F a a a a ∴⋅=-⨯-+⨯-+-⨯-=--+=''D E B F∴⊥ 故选:B本题考查空间向量的垂直的定义,属于基础题8. 已知二面角C -AB -D 的大小为120°,CA ⊥AB ,DB ⊥AB ,AB =BD =4,AC =2,M ,N 分别为直线BC ,AD 上两个动点,则最小值为( )MN【正确答案】D【分析】将二面角放到长方体中,根据二面角的定义得到,根据C AB D --120CAF ∠=︒几何知识得到最小值为异面直线,的距离,然后将异面直线,的距离MNBC AD BC AD 转化为直线到平面的距离,即点到平面的距离,最后利用等体积求点BC ADE C ADE 到平面的距离即可.C ADE 【详解】如图,将二面角放到长方体中,取,过点作面交C AB D --4CE BD ==E ⊥EF ABD 面于点,ABD F 由题意可知,,所以为二面角的平面角,即AB AF ⊥CA AB ⊥CAF ∠C AB D --,120CAF ∠=︒因为,分别为直线,上的两个动点,所以最小值为异面直线,M N BC AD MNBC 的距离,AD 由题意知,,所以四边形为平行四边形,,CE BD ∥CE BD =CBDE CB DE ∥因为平面,平面,所以∥平面,则异面直线,的DE ⊂ADE CB ⊄ADE CB ADE BC AD 距离可转化为直线到平面的距离,即点到平面的距离,BC ADE C ADE 设点到平面的距离为,则,,C ADE d C ADED CAE V V --=1133ADE CAE S d S AB⋅⋅=⋅⋅ 在直角三角形中,,,所以,CAH 18012060CAH ∠=︒-︒=︒2CA =1HA=,CH EF ==3AF =AE ==直角梯形中,,ABDF FD ==AD ==,DE ==因为,,所以,,222AC AECE +=222AE DE AD +=CA AE ⊥AE DE ⊥,,122CAE S =⨯⨯=12ADE S =⨯= CAE ADE S AB d S ⋅===故选:D.方法点睛:求异面直线距离的方法:(1)找出异面直线的公垂线,然后求距离;(2)转化为过直线甲且与直线乙平行的平面与直线乙的距离.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9. 直线,则():10l x ++=A. 点在上B. 的倾斜角为(-l l 5π6C. 的图象不过第一象限D. 的方向向量为l l )【正确答案】BC【分析】利用点与直线的位置关系可判断A选项;求出直线的斜率,可得出直线的倾斜l l 角,可判断B 选项;作出直线的图象可判断C 选项;求出直线的方向向量,可判断D 选l l 项.【详解】对于A 选项,,所以,点不在上,A 错;2210-++≠ (-l 对于B 选项,直线的斜率为,故的倾斜角为,B 对;lk =l 5π6对于C 选项,直线交轴于点,交轴于点,如下图所示:l x ()1,0-y 0,⎛ ⎝由图可知,直线不过第一象限,C 对;l对于D 选项,直线的一个方向向量为,而向量与这里不共线,Dl )1-)1-(错.故选:BC.10. 下列结论正确的是()A. 两个不同的平面的法向量分别是,则,αβ()()2,2,1,3,4,2u v =-=-αβ⊥B. 直线的方向向量,平面的法向量,则l ()0,3,0a =α()1,0,2u =//l αC. 若,则点在平面内()()()2,1,4,4,2,0,0,4,8AB AC AP =--==--P ABC D. 若是空间的一组基底,则向量也是空间一组基底,,a b b c c a +++ ,,a b c【正确答案】ACD【分析】根据平面向量的法向量垂直判断A ,根据直线与平面的关系判断B ,根据空间中共面基本定理判断C ,由空间向量基本定理判断D.【详解】因为,所以,故A 正确;()()2,2,13,4,26820u v ⋅=-⋅-=-+-=αβ⊥因为直线的方向向量,平面的法向量,l ()0,3,0a =α()1,0,2u =不能确定直线是否在平面内,故B 不正确;因为,()0,4,82(2,1,4)(4,2,0)2AP AB AC→→=--=---=-所以,,共面,即点在平面内,故C 正确;AP AB ACP ABC 若是空间的一组基底,,,a b b c c a +++则对空间任意一个向量,存在唯一的实数组,d →(,,)x y z 使得,()()()d x a b y b c z c a =+++++于是,()()()d x z a x y b y z c =+++++ 所以也是空间一组基底,故D 正确.,,a b c故选:ACD.11. 如图,在多面体中,平面,四边形是正方形,且ABCDES SA ⊥ABCD ABCD DE ∥,分别是线段的中点,是线段上的一个动点SA 22,,SA AB DE M N ===,BC SB Q DC (含端点),则下列说法正确的是(),D CA. 存在点,使得Q NQ SB⊥B. 存在点,使得异面直线与所成的角为Q NQ SA 60oC. 三棱锥体积的最大值是Q AMN -23D. 当点自向处运动时,二面角的平面角先变小后变大Q D C N MQ A --【正确答案】ACD【分析】以A 为坐标原点建立空间直角坐标系,向量法证明线线垂直判断A 选项;向量法求异面直线所成的角判断选项B ;由,求体积最大值判断C 选项;向量法求Q AMN N AMQV V --=二面角余弦值的变化情况判断选项D.【详解】平面,四边形是正方形,SA ⊥ABCD ABCD 以A 为坐标原点,正方向为轴,可建立如图所示空间直角坐标系,,,AB AD AS,,x y z由,22SA AB DE ===;()()()()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,2,1,0,0,2,1,0,1,2,1,0A B C D E S N M ∴对于A ,假设存在点,使得,()(),2,002Q m m ≤≤NQ SB ⊥则,又,()1,2,1NQ m =--()2,0,2SB =-,解得:,()2120NQ SB m ∴⋅=-+=0m =即点与重合时,,A 选项正确;Q D NQ SB ⊥对于B ,假设存在点,使得异面直线与所成的角为,()(),2,002Q m m ≤≤NQ SA 60o,()()1,2,1,0,0,2NQ m SA =--=-,方程无解;1cos ,2NQ SA NQ SA NQ SA ⋅∴===⋅ 不存在点,使得异面直线与所成的角为,B 选项错误;∴Q NQ SA 60o对于C ,连接;,,AQ AMAN 设,()02DQ m m =≤≤,22AMQ ABCD ABM QCM ADQ mS S S S S =---=-当,即点与点重合时,取得最大值2;∴0m =Q D AMQ S △又点到平面的距离,N AMQ 112d SA ==,C 选项正确;()()maxmax 122133Q AMN N AMQ V V --∴==⨯⨯=对于D ,由上分析知:,()()1,2,1,1,1,1NQ m NM =--=-若是面的法向量,则,(),,m x y z =NMQ ()1200m NQ m x y z m NM x y z ⎧⋅=-+-=⎪⎨⋅=+-=⎪⎩ 令,则,1x =()1,2,3m m m =-- 而面的法向量,AMQ ()0,0,1n =所以,令,cos ,m nm n m n ⋅==[]31,3t m =-∈则,而,cos ,m n ==11,13t ⎡⎤∈⎢⎥⎣⎦由从到的过程,由小变大,则由大变小,即由小变大,Q D C m t 1t 所以先变大,后变小,由图知:二面角恒为锐角,cos ,m n故二面角先变小后变大,D 选项正确.故选:ACD.三、填空题(本题共3小题,每小题5分,共15分.)12. 已知点,则直线的倾斜角是______.)(),AB AB 【正确答案】π6【分析】根据已知两点的坐标求得直线的斜率,即可求得答案.AB 【详解】由于,)(),AB故直线的斜率为,AB k ==因为直线的倾斜角范围为,[0,π)故直线的倾斜角是,AB π6故π613.如图,在四棱锥中,平面平面,底面是矩形,P ABCD -PCD ⊥ABCD ABCD ,,点是的中点,点为线段上靠近的三26AB BC ==,⊥=PC PD PC PD O CD E PB B 等分点,则点到直线的距离为______.E AO【正确答案】3【分析】说明两两垂直,从而建立空间直角坐标系,求得相关点坐标,根据空,,OO OC OP '间距离的向量求法,即可求得答案.【详解】取的中点为,连接,因为为的中点,所以AB O ',,PO OO AE ',PC PD O =CD ,PO CD ⊥又平面平面,平面平面,平面,PCD ⊥ABCD PCD ABCD CD =PO ⊂PCD 所以平面,平面,所以,⊥PO ABCD OO '⊂ABCD PO OO '⊥又底面是矩形,点是的中点,的中点为,所以,ABCD O CD AB O 'OO CD '⊥以点为原点,所在直线分别为轴建立空间直角坐标系如图所示,O ,,OO OC OP ',,x y z由,得,,,6PC PD PC PD CD ⊥==132PO CD ==所以,()()()3,3,0,3,3,0,0,0,3A B P -点为线段上靠近的三等分点,则,E PB B 22(3,3,3)33PE PB ==- 则,所以,,()2,2,1E ()1,5,1AE =-()3,3,0AO =-则,,||AE ==AO AE AO⋅== 因此点到直线的距离,E AO 3d =故314.如图,在中,,过的中点的动直线与线段ABC V π6,4AC BC C ===ACM l 交于点,将沿直线向上翻折至,使得点在平面内的射影AB N AMN l 1A MN 1A BCMN 落在线段上,则斜线与平面所成角的正弦值的最大值为________.H BC 1A M BCMN【分析】首先求出中边,角的正弦与余弦值,以底面点为空间原点建系(如ABC V AB B B 图1),设点,由,得,求出坐标,由(),,A x y z '(),0,0H x (,0,)A x z ',,A C M 得出满足的关系式,从而可得的范围也即的范围,翻折过程MC AM A M '==,x z z A H '中可得,设,,由向量的数量积为0从而得出关于MN AA '⊥1,,02N a a ⎛⎫⎪⎝⎭[)0,4a ∈x 的表达式,求得的范围,再由线面角的正弦值得出结论.a x 【详解】中,根据余弦定理,π,4C ABC =△,得AB ==sin sin ACABB C =,由知,则,sin B =AC AB <B C <cos B =如图1,以底面点为空间原点建系,根据底面几何关系,得点,设点B ()()4,2,0,6,0,0A C ,点的投影在轴上,即,由(),,A x y z 'A '(),0,0H x x ()(),0,,5,1,0A x z M ',根据两点间距离公式,MC AM A M '==.=22(5)1x z -+= 图1 图2如图2,在翻折过程中,作于点,则,AMN A MN '△≌△AE MN ⊥E A E MN '⊥并且平面,,,AE A E E AE A E ='⊂' A AE '所以平面平面,MN ⊥,A AE AA ''⊂A AE '所以,即,其中.MN AA '⊥0MN AA '⋅=()4,2,AA x z '=--又动点在线段上,设,所以,且.N AB 1,,02N a a ⎛⎫ ⎪⎝⎭15,1,02MN a a ⎛⎫=-- ⎪⎝⎭ [)0,4a ∈由,得,0MN AA '⋅= ()()132245210,52,255x a a x a ⎛⎫⎛⎤----==+∈ ⎪ ⎥-⎝⎭⎝⎦又因为,对应的的取值为,即,22(5)1x z -+=z 40,5⎛⎤ ⎥⎝⎦40,5A H ⎛⎤'∈ ⎥⎝⎦由已知斜线与平面所成角是,1A MBCMN A MH '∠所以.sin A H A MH A M ⎛∠=∈ ⎝'''故斜线与平面1A MBCMN 四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15. 已知直线过点.l (2,2)P (1)若直线与垂直,求直线的方程;l 360x y -+=l (2)若直线在两坐标轴上的截距相等,求直线的方程.l l 【正确答案】(1); 380x y +-=(2)或y x =40x y +-=【分析】(1)由垂直斜率关系求得直线的斜率,再由点斜式写出方程;l (2)分别讨论截距为0、不为0,其中不为0时可设为,代入点P ,即可求得0x y m ++=参数m【小问1详解】直线的斜率为,则直线的斜率为,则直线的方程为360x y -+=3l 13-l ,即;()1223y x -=--380x y +-=【小问2详解】当截距为0时,直线的方程为;l y x =当截距不为0时,直线设为,代入解得,故直线的方程为l 0x y m ++=(2,2)P 4m =-l .40x y +-=综上,直线的方程为或l y x =40x y +-=16. 已知空间中三点,,.(),1,2A m -()3,1,4B -()1,,1C n -(1)若,,三点共线,求的值;A B C m n +(2)若,的夹角是钝角,求的取值范围.AB BCm n +【正确答案】(1);1-(2)且不同时成立.13m n +<10m n =-⎧⎨=⎩【分析】(1)由向量的坐标表示确定、,再由三点共线,存在使,AB CBR λ∈AB CB λ= 进而求出m 、n ,即可得结果.(2)由向量夹角的坐标表示求,再根据钝角可得cos ,AB BC <>,讨论的情况,即可求范围.2(3)2(1)180m n -+--<,AB BC π<>=m n +【小问1详解】由题设,,又,,三点共线,(3,2,6)AB m =-- (2,1,3)CB n =--A B C 所以存在使,即,可得,R λ∈AB CB λ=322(1)63m n λλλ-=⎧⎪=-⎨⎪-=-⎩210m n λ=⎧⎪=-⎨⎪=⎩所以.1m n +=-【小问2详解】由,(2,1,3)BC n =--由(1)知:当时,有;,AB BC π<>=1m n +=-而,的夹角是钝cos ,||||AB BC AB BC AB BC ⋅<>==AB BC角,所以,可得;2(3)2(1)182()260m n m n -+--=+-<m n +13<综上,且不同时成立.13m n +<10m n =-⎧⎨=⎩17. 如图,在四棱锥中,底面ABCD 为直角梯形,且,,P ABCD -AB AD ⊥2AD BC =u u u ru u u r已知侧棱平面ABCD ,设点E 为棱PD 的中点.AP ⊥(1)证明:平面ABP ;//CE (2)若,求点P 到平面BCE 的距离.2AB AP AD ===【正确答案】(1)见解析 (2【分析】(1)设为的中点,连接,,利用中位线的性质证明四边形是平F PA BF EF EFBC 行四边形,则可得平面.//CE ABP (2)点为坐标原点建立合适的空间直角坐标系,求出平面的法向量,A BCE (0,1,2)n =利用点到平面的距离公式即可.【小问1详解】设为的中点,连接,,F PA BF EF是的中点,,E PD 1//,2EF AD EF AD ∴=,且,2,//AD BC AD BC =∴ 12BC AD=,//,EF BC EF BC ∴=四边形是平行四边形,,∴EFBC //CE BF ∴又平面平面,BF ⊂ ,ABP CE ⊂/ABP 平面.//CE ∴ABP 【小问2详解】由于侧棱平面,面,AP ⊥ABCD ,AB AD ⊂ABCD ,,则以点为坐标原点,以,,所在的直线,AP AB AP AD ∴⊥⊥AB AD ⊥ A AD AB AP 为轴,轴,轴建立如图空间直角坐标系,x y z,,2AD = 112BC AD ∴==,,,,(0,0,2)P ∴(0,2,0)B (1,2,0)C (1,0,1)E ,,,(1,0,0)BC ∴= (0,2,1)CE =- (0,2,2)PB =-设平面的法向量,BCE (,,)n x y z =则有,即,00n BC n CE ⎧⋅=⎪⎨⋅=⎪⎩ 020x y z =⎧⎨-+=⎩令,则,1y =(0,1,2)n =点到平面的距离.∴PBCE ||||||||||||PB n PB n d PB n PB n ⋅⋅=⋅===⋅18. 如图1,在中,,,分别为边,的中点,且MBC △BM BC ⊥A D MB MC ,将沿折起到的位置,使,如图2,连接,2BC AM ==△MAD AD PAD △PA AB ⊥PB .PC(1)求证:平面;PA ⊥ABCD (2)若为的中点,求直线与平面所成角的正弦值;E PC DE PBD (3)线段上一动点满足,判断是否存在,使二面角PC G (01)PGPC λλ=≤≤λ的值;若不存在,请说明理由.G AD P --λ【正确答案】(1)证明见解析(2(3)存在,14λ=【分析】(1)由中位线和垂直关系得到,,从而得到线面垂直;PA AD ⊥PA AB ⊥(2)建立空间直角坐标系,求出平面的法向量,求出线面角的正弦值;(3)求出两平面的法向量,根据二面角的正弦值列出方程,求出,得到答案.14λ=【小问1详解】因为,分别为,的中点,所以.A D MB MC AD BC ∥因为,所以,所以.BM BC ⊥BM AD ⊥PA AD ⊥又,,平面,PA AB ⊥AB AD A ⋂=,AB AD ⊂ABCD 所以平面.PA ⊥ABCD 【小问2详解】因为,,,所以,,两两垂直.PA AB ⊥PA AD ⊥90DAB ∠=︒AP AB AD 以为坐标原点,所在直线分别为轴,A ,,AB AD AP ,,x y z 建立如图所示的空间直角坐标系,A xyz -依题意有,,,,,,A (0,0,0)()2,0,0B ()2,2,0C D (0,1,0)()0,0,2P ()1,1,1E 则,,,.(2,2,2)PC =- (1,0,1)DE = (2,1,0)BD =-(2,0,2)BP =- 设平面的法向量,PBD ()111,,n x y z =则有()()()()11111111112,1,0,,202,0,2,,220BD n x y z x y BP n x y z x z ⎧⋅=-⋅=-+=⎪⎨⋅=-⋅=-+=⎪⎩令,得,,所以是平面的一个法向量.12y =11x =11z =()1,2,1n = PBD 因为,cos ,DE n DE n DE n⋅〈〉====⋅所以直线与平面DE PBD 【小问3详解】假设存在,使二面角λG AD P --即使二面角G AD P --由(2)得,,(2,2,2)(01)PG PC λλλλλ==-≤≤所以,,.(2,2,22)G λλλ-(0,1,0)AD = (2,2,22)AG λλλ=-易得平面的一个法向量为.PAD ()11,0,0n =设平面的法向量,ADG ()2222,,n x y z =,()()()()()2222222222220,1,0,,02,2,22,,22220AD n x y z y AG n x y z x y z λλλλλλ⎧⋅=⋅==⎪⎨⋅=-⋅=++-=⎪⎩ 解得,令,得,20y =2z λ=21x λ=-则是平面的一个法向量.()21,0,n λλ=-ADG由图形可以看出二面角,G AD P --故二面角G AD P --则有,1cos ,n,解得,.=112λ=-214λ=又因为,所以.01λ≤≤14λ=故存在,使二面角14λ=G AD P --19. 人脸识别是基于人的脸部特征进行身份识别的一种生物识别技术.主要应用距离测试样本之间的相似度,常用测量距离的方式有3种.设,,则欧几里得距离()11,A x y ()22,B x y ;曼哈顿距离,余弦距离(,)D A B =1212(,)d A B x x y y =-+-,其中(为坐标原点).(,)1cos(,)e A B A B =-cos(,)cos ,A B OA OB =〈〉O (1)若,,求,之间的曼哈顿距离和余弦距离;(1,2)A -34,55B ⎛⎫⎪⎝⎭A B (,)d A B (,)e A B (2)若点,,求的最大值;(2,1)M (,)1d M N =(,)e M N (3)已知点,是直线上的两动点,问是否存在直线使得P Q :1(1)l y k x -=-l ,若存在,求出所有满足条件的直线的方程,若不存在,请说明min min (,)(,)d O PD O Q =l 理由.【正确答案】(1)145(2)1-(3)存在,和1y =y x=【分析】(1)代入和的公式,即可求解;(,)d A B (,)e A B (2)首先设,代入,求得点的轨迹,再利用数形结合,结合公式(),N x y (,)1d M N =N ,结合余弦值,即可求解;(),e A B (3)首先求的最小值,分和两种情况求的最小值,对比后,(),D O P 0k =0k ≠(),d O P 即可判断直线方程.【小问1详解】,348614(,)125555d A B +=--+-==,cos(,)cos ,OA OB A B OA OB OA OB⋅=〈〉===;()(),1cos ,1e A B A B =-=-=【小问2详解】设,由题意得:,(,)N x y (,)|2||1|1d M N x y =-+-=即,而表示的图形是正方形,|2||1|1x y -+-=|2||1|1x y -+-=ABCD 其中、、、.()2,0A ()3,1B ()2,2C ()1,1D 即点在正方形的边上运动,,,N ABCD (2,1)OM =(,)ON x y = 可知:当取到最小值时,最大,相应的cos(,)cos ,M N OM ON =<> ,OM ON <>有最大值.(,)e M N 因此,点有如下两种可能:N ①点为点,则,可得;N A (2,0)ON =cos(,)cos ,M N OM ON =<>==②点在线段上运动时,此时与同向,取,N CD ON (1,1)DC =(1,1)ON = 则cos(,)cos ,M N OM ON =<>==的最大值为.>(,)e M N 1【小问3详解】易知,则min (,)D O P (,1)P x kx k -+(,)()|||1|d O P h x x kx k ==+-+当时,,则,,满足题意;0k =(,)()|||1|d O P h x x ==+min (,)1d O P =min (,)1D O P =当时,,0k ≠1(,)()1k d O P h x x kx k x k x k -==+-+=+⋅-由分段函数性质可知,min 1(,)min (0),k d O P h h k ⎛⎫-⎛⎫= ⎪⎪⎝⎭⎝⎭又且时等号成(0)|1|h k =-≥11k k h k k --⎛⎫=≥ ⎪⎝⎭1k =立.综上,满足条件的直线有且只有两条,和.:1l y =y x =关键点点睛:本题第二问为代数问题,转化为几何问题,利用数形结合,易求解,第3问的关键是理解,同样是转化为代数与几何相结合的问题.min min (,)(,)d O P D O Q =。

山西省部分学校2024-2025学年高二上学期10月月考数学试题(含答案)

山西省部分学校2024-2025学年高二上学期10月月考数学试题(含答案)

2024~2025学年高二10月质量检测卷数学(A 卷)考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

4.本卷命题范围:人教A 版选择性必修第一册第一章~第二章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知直线经过,两点,则的倾斜角为()A.B.C.D.2.已知圆的方程是,则圆心的坐标是( )A. B. C. D.3.在长方体中,为棱的中点.若,,,则()A. B. C. D.4.两平行直线,之间的距离为( )B.3D.5.曲线轴围成区域的面积为( )l (A (B l 6π3π23π56πC 2242110x y x y ++--=C ()2,1-()2,1-()4,2-()4,2-1111ABCD A B C D -M 1CC AB a = AD b =1AA c = AM =111222a b c -+ 111222a b c ++12a b c-+12a b c++ 1:20l x y --=2:240l x y -+=y =xA. B. C. D.6.已知平面的一个法向量,是平面内一点,是平面外一点,则点到平面的距离是( )A. B.D.37.在平面直角坐标系中,圆的方程为,若直线上存在点,使以点为圆心,1为半径的圆与圆有公共点,则实数的取值范围是( )A. B.C. D.8.在正三棱柱中,,,为棱上的动点,为线段上的动点,且,则线段长度的最小值为( )A.2二、选择题:本题共3小题,每小题6分,共18分。

河南省南阳市2024-2025学年高二上学期10月月考数学试题(含答案)

河南省南阳市2024-2025学年高二上学期10月月考数学试题(含答案)

高二数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:北师大版选择性必修第一册第一章,第二章.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设直线的倾斜角为,则( )A .B .C .D .2.已知双曲线的虚轴长是实轴长的3倍,则实数的值为( )A .B .C .D .3.已知方程表示一个焦点在轴上的椭圆,则实数的取值范围为( )A .B .C .D .4.直线被圆截得的弦长为( )ABCD .5.已知抛物线的焦点为,点为抛物线上任意一点,则的最小值为( )A .1B .C .D .6.已知椭圆的离心率为,双曲线的离心率为,则( )A .B .C .D .:80l x -+=αα=120︒60︒30︒150︒221(0)1x y a a a -=>+a 1214131822124x y m m+=--y m ()2,3()3,4()()2,33,4⋃()2,426y x =+22(2)4x y ++=23y x =F P PF 43323422122:1(0)x y C a b a b +=>>1e 22222:1x y C a b-=2e 22122e e +=112e e +=22211e e =+212e e =7.在平面直角坐标系中,已知圆,若圆上存在点,使得,则正数的取值范围为( )A .B .C .D .8.已知双曲线的左、右焦点分别为,过点的直线与双曲线的右支相交于两点,,且的周长为10,则双曲线的焦距为( )A .3BCD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知椭圆的对称中心为坐标原点,焦点在坐标轴上,若椭圆的长轴长为6,焦距为4,则椭圆的标准方程可能为( )A .B .C .D .10.如图,抛物线的焦点为,过抛物线上一点(点在第一象限)作准线的垂线,垂足为为边长为8的等边三角形.则( )A .B .C .点的坐标为D .点的坐标为11.已知双曲线的左、右焦点分别为,点为双曲线右支上的动点,过点作两渐近线的垂线,垂足分别为.若圆与双曲线的渐近线相切,则下列说法正确的是( )xOy ()222:()()(0),3,0C x a y a a a A -+-=>-C P 2PA PO =a (]0,1[]1,21,3⎡+⎣⎤⎦2222:1(0,0)x y C a b a b-=>>12,F F 2F ,A B 12224BF BF AF ==1ABF △C C C 22149x y +=22195x y +=22194x y +=22159x y +=2:2(0)C y px p =>F C P P l ,H PHF △2p =4p =P (P (222:1(0)3x y C b b-=>12,F F P C P ,A B 22(2)1x y -+=CA .双曲线的渐近线方程为B .双曲线的离心率C .当点异于双曲线的顶点时,的内切圆的圆心总在直线上D.为定值三、填空题:本题共3小题,每小题5分,共15分.12.过点且在轴、轴上截距相等的直线方程为______.13.已知是圆______.14.如图,已知椭圆的左、右焦点分别为,过椭圆左焦点的直线与椭圆相交于两点,,,则椭圆的离心率为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知的顶点坐标为.(1)若点是边上的中点,求直线的方程;(2)求边上的高所在的直线方程.16.(本小题满分15分)已知动点到点为常数且的距离与到直线的距离相等,且点在动点的轨迹上.(1)求动点的轨迹的方程,并求的值;(2)在(1)的条件下,已知直线与轨迹交于两点,点是线段的中点,求直线的方y x =C e =P C 12PF F △x =PA PB ⋅32()3,1x y (),P m n 22:(4)(4)8C x y -+-=2222:1(0)x y C a b a b+=>>12,F F 1F C,P Q 222QF PF =21cos 4PF Q ∠=C ABC △()()()1,6,3,1,4,2A B C ---D AC BD AB P (),0(F t t 0)t >x t =-()1,1-P P C t l C ,A B ()2,1M AB l程.17.(本小题满分15分)已知点,动点满足.(1)求动点的轨迹的方程;(2)已知圆的圆心为,且圆与轴相切,若圆与曲线有公共点,求实数的取值范围.18.(本小题满分17分)已知双曲线的一条渐近线方程为,点在双曲线上.(1)求双曲线的标准方程;(2)过定点的动直线与双曲线的左、右两支分别交于两点,与其两条渐近线分别交于(点在点的左边)两点,证明:线段与线段的长度始终相等.19.(本小题满分17分)在平面直角坐标系中,已知椭圆,短轴长为2.(1)求椭圆的标准方程;(2)已知点分别为椭圆的左、右顶点,点为椭圆的下顶点,点为椭圆上异于椭圆顶点的动点,直线与直线相交于点,直线与直线相交于点.证明:直线与轴垂直.()()2,0,6,0O A -(),P x y 3PA PO =P C Q (),(0)Q t t t >Q y Q C t 2222:1(0,0)x y C a b a b-=>>20x y +=()1-C C ()0,1P l C ,A B ,M N M N AM BN xOy 2222:1(0)x y C a b a b+=>>C ,A B C D C P C AP BD M BP AD N MN x2024~2025学年度10月质量检测·高二数学参考答案、提示及评分细则1.C 因为直线的斜率为,由斜率和倾斜角的关系可得又,.故选C .2.D,解得.3.A 若方程表示为焦点在轴上的一个椭圆,有解得.4.B 圆心,直线被圆截得的弦长为.故选B .5.D 设点的坐标为,有,故的最小值为.6.A 由,可得.7.C 设点的坐标为,有,整理为,可化为,若圆上存在这样的点,只需要圆与圆有交点,有,解得C .8.B 设,可得,有,解得,在和中,由余弦定理有,解得,可得双曲线的焦距为.9.BD 由题意有,故椭圆的标准方程可能为或.10.BD 设抛物线的准线与轴的交点为,由,有:80l x +=k =tan α=0180α︒≤<︒30α=︒=18a =y 20,40,24,m m m m ->⎧⎪->⎨⎪-<-⎩23m <<()2,0-=P ()00,x y 03344PF x =+≥PF 34222222221222221,1a b b a b b e e a a a a-+==-==+22122e e +=P (),x y =22230x y x +--=22(1)4x y -+=C P C 22(1)4x y -+=22a a -≤≤+13a ≤≤+221,2,4AF m BF m BF m ===13AF m =23410m m m m +++=1m =12AF F △12BF F △224194416048c c c c +-+-+=c =3,2,5a c b ====C 22195x y +=22159x y +=C x Q 60,PHF HFO FQ p ∠=∠=︒=,有,得,点的坐标为.11.ABC 由题意得,对于选项A :双曲线的渐近线方程是,圆的圆心是,半径是1(舍去),又,故A 正确;则,离心率为B 正确;对于选项C :设的内切圆与轴相切于点,由圆的切线性质知,所以,因此内心在直线,即直线上,故C 正确;对于选项D :设,则,渐近线方程是,则为常数,故D 错误.故选ABC .12.或 设在轴、轴上的截距均为,若,即直线过原点,设直线为,代入,可得,所以直线方程为,即;若,则直线方程为,代入,则,解得,所以此时直线方程为;综上所述:所求直线方程为或.13.表示点到原点的距离,由,有的取值范围为.14设椭圆的焦距为,有,在中,由余弦定理有,有,可得,有.在中,由余弦定理有可得2,HF p HQ ==28p =4p =P (0bx ±=22(2)1x y -+=()2,01,1b ==1-1,b b y x a ===2c ==c e a ===12PF F △x M 122F M F M a -=M x a =I x a =x a ==()00,P x y 222200001,333x y x y -=-=0x ±=3440x y +-=30x y -=x y a 0a =y kx =()3,113k =13y x =30x y -=0a ≠1x ya a+=()3,1311a a+=4a =4x y +=40x y +-=30x y -=⎡⎣P O 28OC r ==OC OP OC -≤≤+OP ≤≤⎡⎣C 222,,2c PF t QF t ==112,22,43PF a t QF a t PQ a t =-=-=-2PQF △2222(43)4a t t t t -=+-45t a =21886,,555QF a PQ a PF a ===22PF Q QPF ∠=∠12PF F △2c ==c e a ==15.解:(1)因为点是边上的中点,则,所以,所以直线的方程为,即;(2)因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.16.解:(1)由题意知,动点的轨迹为抛物线,设抛物线的方程为,则,所以,所以抛物线的方程为,故;(2)设点的坐标分别有,可得有,可得,有,可得直线的斜率为,故直线的议程为,整理为.17.解:(1)由得,,整理得,故动点的轨迹的方程为;(2)点的坐标为且圆与轴相切,圆的半径为,圆的方程为,D AC 3,42D ⎛⎫⎪⎝⎭14103932BD k --==--BD 01(3)9y x 1+=+109210x y -+=167312AB k --==-+AB 27-AB ()2247y x -=--27220x y +-=P C 22(0)y px p =>12p =12p =C 2y x =124p t ==,A B ()()1122,,,x y x y 12124,2,x x y y +=⎧⎨+=⎩211222y x y x ⎧=⎨=⎩222121y y x x -=-212121112y y x x y y -==-+l 12l 11(2)2y x -=-12y x =3PA PO =229PA PO =2222(6)9(2)x y x y ⎡⎤++=-+⎣⎦22(3)9x y -+=P C 22(3)9x y -+= Q (),(0)t t t >Q y ∴Q t ∴Q 222()()x t y t t -+-=圆与圆两圆心的距离为,圆与圆有公共点,,即,解得,所以实数的取值范围是.18.(1)解:由渐近线方程的斜率为,有,可得,将点代入双曲线的方程,有,联立方程解得故双曲线的标准议程为;(2)证明:设点的坐标分别为,线段的中点的坐标为,线段的中点的坐标为.设直线的方程为,联立方程解得,联立方程解得,可得,联立方程消去后整理为,∴Q C CQ == Q C 33t CQ t ∴-≤≤+2222|3|(3)(3)t t t t -≤-+≤+012t <≤t (]0,1220x y +=12-12b a -=-2a b =()1-C 22811a b-=222,811,a b a b =⎧⎪⎨-=⎪⎩2,1,a b =⎧⎨=⎩C 2214x y -=,,,A B M N ()()()()11223344,,,,,,,x y x y x y x y AB D ()55,x y MN E ()66,x y l 1y kx =+1,1,2y kx y x =+⎧⎪⎨=-⎪⎩3221x k =-+1,1,2y kx y x =+⎧⎪⎨=⎪⎩4221x k =--5212242212141kx k k k ⎛⎫=--=- ⎪+--⎝⎭221,1,4y kx x y =+⎧⎪⎨-=⎪⎩y ()2241880k x kx -++=有,可得,由,可知线段和共中点,故有.19.(1)解:设椭圆的焦距为,由题意有:,解得故椭圆的标准方程为;(2)证明:由(1)知,点的坐标为,点的坐标为,点的坐标为,设点的坐标为(其中,),有,可得,直线的方程为,整理为,直线的方程为,整理为,直线的方程为,联立方程,解得:,故点的横坐标为,直线的方程为, 联立方程,解得:,故点的横坐标为,122841k x x k +=--62441kx k =--46x x =AB MN AM BN =C 2c 22222a b c b c a⎧⎪=+⎪⎪=⎨⎪⎪=⎪⎩2,1,a b c ===C 2214x y +=A ()2,0-B ()2,0D ()0,1-P (),m n ()()2,00,2m ∈- 2214m n +=2244m n +=BD 121x y +=-112y x =-AD 121x y +=--112y x =--AP ()22ny x m =++()2,2112n y x m y x ⎧=+⎪⎪+⎨⎪=-⎪⎩24422m n x m n ++=-+M ()22222m n m n ++-+BP ()22ny x m =--()2,2112n y x m y x ⎧=-⎪⎪-⎨⎪=--⎪⎩42422n m x m n -+=+-N ()22222n m m n -++-又由,故点和点的横坐标相等,可得直线与轴垂直.()()()()()()22222222222222222222m n m n m n m n m n n m m n m n m n m n +++-+-+--++-+-=-++--++-()()()()()()()222222(2)4(2)42442880222222222222m n m n m n m n m n m n m n m n m n m n ⎡⎤⎡⎤+-+--+-+-⎣⎦⎣⎦====-++--++--++-M N MN x。

山东省菏泽市鄄城县第一中学2024-2025学年高二上学期10月月考数学试题(含解析)

山东省菏泽市鄄城县第一中学2024-2025学年高二上学期10月月考数学试题(含解析)

高二数学试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写济楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版选择性必修第一册第二章~第三章第2节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线的倾斜角为( )A.B. C. D.2.已知双曲线的焦距为4,则的渐近线方程为( )A. B.C.D.3.已知椭圆与椭圆有相同的焦点,则( )A.B.C.3D.44.已知点在圆的外部,则实数的取值范围为( )A.B.C.D.5.已知点为双曲线左支上的一点,分别为的左、右焦点,则( )A.2B.4C.6D.86.已知点,若过定点的直线与线段相交,则直线的斜率的取值范围103x --=π6π32π35π6()222:11x C y a a-=>C y =y x=±y =y x =()222:1016x y C b b +=>221125x y +=b =()0,1-22220x y x my +--+=m ()3,∞-+()3,2-()()3,22,∞--⋃+()2,2-M 22:1916x y C -=12,F F C 1122MF F F MF +-=()()2,3,3,2A B ---()1,1P l AB l k是( )A.B.C.D.7.当变动时,动直线围成的封闭图形的面积为( )A.C.D.8.已知椭圆,若椭圆上的点到直线的最短距离,则长半轴长的取值范围为( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若直线与直线平行,则的值可以是()A.0B.2C.D.410.已知点是椭圆上关于原点对称且不与的顶点重合的两点,分别是的左、右焦点,为原点,则( )A.的离心率为B.C.的值可以为3D.若的面积为,则11.已知点及圆,点是圆上的动点,则( )A.过原点与点的直线被圆截得的弦长为B.过点作圆的切线,则切线方程为C.当点到直线的距离最大时,过点与平行的一条直线的方程为D.过点作圆的两条切线,切点分别为,则直线的方程为(]3,4,4∞∞⎡⎫--⋃+⎪⎢⎣⎭34,4⎡⎤-⎢⎥⎣⎦1,5∞⎛⎫+ ⎪⎝⎭3,44⎡⎤-⎢⎥⎣⎦α2cos2sin24cos x y ααα+=π2π4π()2222:10x y E a b a b +=>>E 50x y ++=a (]0,2((⎤⎦()240a x y a -++=()()222420a x a a y -+++-=a 2-,A B 22:143x y C +=C 12,F F C O C 12228AF BF +=AB 12AF F V 3212154AF AF ⋅=()4,4P 22:40C x y x +-=Q C O P C P C 3440x y -+=Q PC Q PC 240x y ---=P C ,A B AB 240x y +-=三、填空题:本题共3小题,每小题5分,共15分.12.若方程表示椭圆,则的取值范围是__________.13.已知圆与两直线都相切,且圆经过点,则圆的半径为__________.14.把放置在平面直角坐标系中,点在直线的上方,点在边上,平分,且点都在轴上,直线的斜率为,则点的坐标为__________;直线在轴上的截距为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知直线及点.(1)若与垂直的直线过点,求与的值;(2)若点与点到直线的距离相等,求的斜截式方程.16.(本小题满分15分)已知双曲线的顶点为,且过点.(1)求双曲线的标准方程;(2)过双曲线的左顶点作直线与的一条渐近线垂直,垂足为为坐标原点,求的面积.17.(本小题满分15分)已知圆经过点,且与圆相切于原点.(1)求圆的标准方程;(2)若直线不同时为0与圆交于两点,当取得最小值时,与圆交于两点,求的值.18.(本小题满分17分)已知椭圆的上顶点与左,右焦点连线的斜率之积为.(1)求椭圆的离心率;(2)已知椭圆的左、右顶点分别为,且,点是上任意一点(与不重合),直线22164x y m m +=--m C 220,220x y x y -+=++=C ()1,1C ABC V A BC ,D E BC AD ,BAC AE BC ∠⊥,A E y AD 40,y AD -+==AC3-C AB x :210l x ay a -+-=()2,2A -l 320x my -+=A m a A ()1,1B -l l ()2222:10,0x y C a b a b-=>>()(),A B -()4P C C A C ,H O OHA V 1C ()2,0-222:480C x y x y +-+=O 1C :20(,l ax by a b a b ++-=)1C ,A B AB l 2C ,C D CD ()2222:10x y C a b a b+=>>45-C C ,A B 6AB =M C ,A B分别与直线交于点为坐标原点,求.19.(本小题满分17分)已知点是平面内不同的两点,若点满足,且,则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.,MA MB :5l x =,,P Q O OP OQ ⋅,A B P (0PAPBλλ=>1)λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()()()2,0,,2A B a b a -≠-(),A B λ221240x y x +-+=,,a b λQ (),A B OQ O 0,b λ==,a μ(),A B μ参考答案1.A 直线,所以其倾斜角为.故选A.2.D 由题意可知,所以,所以双曲线的渐近线方程为.故选D.3.C 因为椭圆与㮁圆有相同的焦点.所以,解得或(舍去).故选C.4.C 由题意可知解得或.故选C.5.B 因为为双曲线左支上的一点,分别为的左、右焦点,所以,故,由于,所以.故选B6.A 直线过定点,且直线与线段相交,由图象知,或,则紏率的取值范围是.故选A 7.D 方程可化为变动时,点到该直线的距离,则该直线是圆的切线,所以动直线围成的封闭图形的面积是圆的面积,面积为.故选D.103x --=π6214a +=23a =22213x C y -=y x =()22221016x y C b b +=>221125x y +=216125b -=-3b =3b =-222(1)20,(2)420,m m ⎧-++>⎨-+-⨯>⎩32m -<<-2m >M 22:1916x y C -=12,F F C 212MF MF a -=112222MF F F MF c a +-=-3,4,5a b c ====1122221064MF F F MF c a +-=-=-= l ()312131,1,4,21314PA PA P k k ----==-==--- AB ∴34k …4k -…k (]3,4,4∞∞⎡⎫--⋃+⎪⎢⎣⎭2cos2sin24cos x a y a a +=()2cos2sin22,x a y a α-+=()2,02d ==22(2)4x y -+=2cos2sin24cos x y ααα+=22(2)4x y -+=4π8.C 设直线与,则的方程为,由整理,得,因为上的点到直线的最短,所以,整理得,由椭圆的离心,可知,所以,所以,则,所以.故选C.9.AB 因为两直线平行,由斜率相等得,所以或,解得或0或,当时两直线重合,舍去.故选.10.AD 对于A ,椭圆中,,离心率为,A 正确;对于B.由对称性可得,所以,B 错误;对于C ,设且,则,故,所以C 错误;对于D ,不妨设在第一象限,,则,是,则,则,故,故D 正确.故选AD.11.ACD 圆的标准方程为,圆的半径,对于,直线的方程为0,点到直线,所以直线被圆截得的弦长为正确;对于,圆的过点的切线斜率存在时,设其方程为,即,,解得,此时切线方程为,另一条切线是斜率不存在的切线错误;对于C ,当点到直线的距离最大时,过点与平行的一条直线,即为与直线距离为2的图的切线,直线的斜率为2,设该切线方程为,则正确;对于D ,设,,可得切线的方程分别为l 50x y ++=l 30x y ++=22221,30,x y ab x y ⎧+=⎪⎨⎪++=⎩()2222222690a b x a x a a b +++-=E 50x y ++=()()422222Δ36490a a baa b =-+-…2290a b +-…E 22112b a -=2212b a =221902a a +-…26a …0a <…222424a a a a ---=-++20a -=2244a a ++=2a =2-2a =-AB 22:143x y C +=2,1a b c ===12c a =21BF AF =222124AF BF AF AF a +=+==(),,B m n n <<0n ≠22143m n +=)2OB ===()24,AB OB =∈A ()00,A x y 12013222AF F S c y =⋅⋅=V 032y =31,2A ⎛⎫⎪⎝⎭21335,4222AF AF ==-=12154AF AF ⋅=C ()22(2) 4.2,0x y C -+=C 2r =A OP x y -=C OP OP C A =B C P ()44y k x -=-440kx y k --+=234k =3440x y -+=4,x B =Q PC Q PC PC C PC 20x y t -+=2,4t =-±(11,A x y ()22,B x y ,PA PB,将代入两方程得,所以者在直线上,所以直线的方程为,即,D 正确.故选ACD.12.且且也给分) 由题意得,且6—,所以且,所以实数的取值范围是.易知直线与关于轴对称或关于对称,又当圆心在上时,该圆不存在,所以圆的圆心在轴上,设圆的方程为,由题意可知,,整理得,解得或,当时,,当时,.14.(2分)(3分) 直线的方程与直线联立得,因为直线的斜率为3,所以直线的方程为,由,得直线的斜率为0,由,得,所以直线的方程为,与联立得.设直线与轴交于点,点关于直线的对称点为,则点在直线上,所以.联立解得代入,得,所以直线在轴上的截距为15.解:(1)因为直线过点,所以,解得,因为与垂直,()()11122220,20x x y y x x x x y y x x +-+=+-+=()4,4P ()()11122244240,44240x y x x y x +-+=+-+=()()1122,,,A x y B x y ()44240x y x +-+=AB ()44240x y x +-+=240x y +-=()()4,55,6{|46m m ⋃<<5},46m m ≠<<5m ≠60,40m m ->->4m m ≠-46m <<5m ≠m ()()4,55,6⋃220x y -+=220x y ++=x 2x =-2x =-C x C 222()x a y r -+==22730a a -+=12a =3a =12a =r =3a =r =(1,1)AE 0x =AD 40y -+=()0,4A AC -AC 34y x =-+AE BC ⊥BC AD =AD 3AE =BC 1y =34y x =-+()1,1C AB x (),0F t F AD (),G a b G AC b a t =-402b -+=122,a tb ⎧=--⎪⎪⎨⎪=+⎪⎩34y x =-+t =AB x 320x my -+=()2,2A -6220m --+=2m =-3220x y ++=l所以.(2)解法一,若点与点到直线的距离相等,则直线与的斜率相等或的中点在上,又直钱的斜率为的中点坐标为,所以或.解得或.当时,的斜截式方程为,当时,的斜截式方程为.解法二:因为点与点到直线的距离相等,.解得,当时,的斜截式方程为,当时,的斜截式方程为.16.解:(1)因为双曲线的顶点为,且过点,所以,且,解得的标准方程为.(2)由双曲线方程,得渐近线方程为,,又,所以所以.123,32a a ==A()1,1B -l AB l AB l AB ()211,21AB --=---11,22⎛⎫- ⎪⎝⎭11a =-1121022a a --+-=1a =-1a =1a =-l 3y x =-+1a =l 1y x =+A ()1,1B -l =1a =±1a =-l 3y x =-+1a =l 1y x =+()2222:10,0x y C a b a b-=>>()(),A B -()4P a =2254161a b -=a b ==C 221188x y -=221188x y -=230x y ±=,OH HA OA ⊥=OH =11542213OHA S OH HA =⨯⨯==V17.解:(1)因为圆与图相切,且点在圆的外部,所以圆与圆外切,则三点共线,图化为.所以圆心,故圆心在直线上.设圆的标准方程为,又圆过原点,则,圆经过点,则,解得,故圆的标准方程为.(2)由(1)可知,圆的圆心坐标为,由直线化为,所以直线恒过点,易知点在圆的内部,设点到直线的距离为,则,要使取得最小值,则取得最大值,所以,此时.所以,则直线的方程为,即.又圆心到直线的距离,所以.18.解:(1)椭圆的上顶点的坐标为,左、右焦点的坐标分别为,由题意可知,即,1C 2C ()2,0-2C 1C 2C 12,,C O C 222:480C x y x y +-+=22(2)(4)20x y -++=()22,4C -1C 2y x =-1C 222()(2)x t y t r -++=1C ()0,0O 225r r =1C ()2,0-222(2)(02)5t t t --++=1t =-1C 22(1)(2)5x y ++-=1C ()1,2-:20l ax by a b ++-=()()210a x b y ++-=L ()2,1P -P 1C 1C l d AB ==AB d 1PC l ⊥121112PC k -==-+1t k =-l ()12y x -=-+10x y ++=2C 10x y ++=d 'CD ==C ()0,b ()(),0,,0c c -45b b c c ⎛⎫⋅-=- ⎪⎝⎭2245b c =又,所以,即的离心率.(2)由,得,即,所以椭圆的方程为.设,则,即,又,则,因为直线分别与直线交于点,所以,所以.19.(1)解:因为以为“稳点”的一阿波罗尼斯圆的方程为,设是该圆上任意一点,则,所以,因为为常数,所以,且,所以.(2)解:由(1)知,设,由,所以,,監理得,即,所以,222a b c =+2295a c =225,9c ca a ==C e =6AB =26a =3,2a c b ===C 22194x y +=()00,M x y 2200194x y +=22003649x y -=()()3,0,3,0A B -()()0000:3,:333y yMA y x MB y x x x =+=-+-,MA MB :5L x =,P Q 0000825,,5,33y y P Q x x ⎛⎫⎛⎫⎪ ⎪+-⎝⎭⎝⎭()()220000220000163648216641615,5,2525253399999x y y y OP OQ x x x x -⎛⎫⎛⎫⋅=⋅=+=+=-= ⎪ ⎪+---⎝⎭⎝⎭(),A B λ221240x y x +-+=(),P x y 22124x y x +=-22222222222222||(2)4416||()()22(122)24PA x y x y x xPB x a y b x y ax by a b a x by a b +++++===-+-+--++--+-+22||||PA PB 2λ2240,0a b b -+==2a ≠-2,0,a b λ====()()2,0,2,0A B -(),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--…42890x x --…()()22190x x +-…209x ……由,得,即的取值范围是.(3)证明:若,则以一阿波罗尼斯圆的方程为,整理得,该圆关于点对称.由点关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称OQ ==209r ……13OQ ……OQ []1,30b =(),A B 2222(2)2()x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()()2,0,,0A B a -2,02a -⎛⎫ ⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-,a μ(),A B μ。

湖北云学名校联盟2024-2025学年高二上学期10月月考数学试题(解析版)

湖北云学名校联盟2024-2025学年高二上学期10月月考数学试题(解析版)

2024年湖北云学名校联盟高二年级10月联考数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项考试时间:2024年10月15日15:00-17:00 时长:120分钟满分:150分是符合题目要求的.1. 已知i 为虚数单位,20253i 1i ++的虚部为( )A. i −B. iC. 1−D. 1【答案】C 【解析】【分析】根据复数乘方、乘法、除法运算法则结合复数的概念运算即可得出结果.【详解】根据复数的乘方可知()50620254i i i i =⋅=,则()()()()20253i 1i 3i 3i32i 12i 1i 1i1i 1i 2+−++−+====−+++−,其虚部为1−. 故选:C2. 已知一组数据:2,5,7,x ,10的平均数为6,则该组数据的第60百分位数为( ) A. 7 B. 6.5C. 6D. 5.5【答案】B 【解析】【分析】先根据平均数求x 的值,然后将数据从小到大排列,根据百分位数的概念求值. 【详解】因为2571065x ++++=⇒6x =.所以数据为:2,5,6,7,10.又因为560%3×=,所以这组数据的第60百分位数为:676.52+=. 故选:B3. 直线1l :20250ax y −+=,2l :()3220a x ay a −+−=,若12l l ⊥,则实数a 的值为( ) A 0 B. 1C. 0或1D.13或1 【答案】C.【分析】根据两直线垂直的公式12120A A B B +=求解即可. 【详解】因为1l :20250ax y −+=,2l :()3220a x ay a −+−=垂直, 所以()()3210a a a −+−=, 解得0a =或1a =,将0a =,1a =代入方程,均满足题意, 所以当0a =或1a =时,12l l ⊥. 故选:C .4. 为了测量河对岸一古树高度AB 的问题(如图),某同学选取与树底B 在同一水平面内的两个观测点C 与D ,测得15BCD ∠=°,30BDC ∠=°,48m CD =,并在点C 处测得树顶A 的仰角为60°,则树高AB 约为( )1.4≈1.7≈)A. 100.8mB. 33.6mC. 81.6mD. 57.12m【答案】D 【解析】【分析】先在BCD △中,利用正弦定理求出BC ,再在Rt ABC △中求AB 即可.【详解】在BCD △中,15BCD ∠=°,30BDC ∠=°,所以135CBD ∠=°,又48CD =,由正弦定理得:sin sin CD CBCBD CDB=∠∠⇒12CB=⇒CB =在Rt ABC △中,tan 60AB BC =°=24 1.4 1.7≈××57.12=. 故选:D5. 如果直线ax +by =4与圆x 2+y 2=4有两个不同的交点,那么点P (a ,b )与圆的位置关系是( ) A. P 在圆外 B. P 在圆上D. P 与圆的位置关系不确定 【答案】A 【解析】224a b ∴+,所以点(),a b 在圆外考点:1.直线与圆的位置关系;2.点与圆的位置关系6. 在棱长为6的正四面体ABCD 中,点P 与Q 满足23AP AB = ,且2CD CQ =,则PQ 的值为( )A.B.C.D.【答案】D 【解析】【分析】以{},,AB AC AD 为基底,表示出PQ,利用空间向量的数量积求模.【详解】如图:以{},,AB AC AD 为基底,则6AB AC AD ===,60BAC BAD CAD ∠=∠=∠=°,所以66cos 6018AB AC AB AD AC AD ⋅=⋅=⋅=××°=.因为()1223PQ AQ AP AC AD AB =−=+− 211322AB AC AD =−++. 所以22211322PQ AB AC AD =−++222411221944332AB AC AD AB AC AB AD AC AD =++−⋅−⋅+⋅ 169912129=++−−+19=.所以PQ =.故选:D7. 下列命题中正确的是( )A. 221240z z +=,则120z z ==; B. 若点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,则点P 、Q 、R 、S 、T 共面;C. 若()()1P A P B +=,则事件A 与事件B 是对立事件; D. 从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为310; 【答案】D 【解析】【分析】举反例说明ABC 不成立,根据古典概型的算法判断D 是正确的.【详解】对A :若1i z =,22z =,则221240z z +=,但120z z ==不成立,故A 错误; 对B :如图:四面体S PRT −中,Q 是棱PR 上一点,则点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,但点P 、Q 、R 、S 、T 不共面,故B 错误; 对C :掷1枚骰子,即事件A :点数为奇数,事件B :点数不大于3, 则()12P A =,()12P B =,()()1P A P B +=,但事件A 、B 不互斥,也不对立,故C 错误; 对D :从长度为1,3,5,7,9的5条线段中任取3条,有35C 10=种选法, 这三条线段能构成一个三角形的的选法有:{}3,5,7,{}3,7,9,{}5,7,9共3种, 所以条线段能构成一个三角形的的概率为:310P =,故D 正确. 故选:D8. 动点Q 在棱长为3的正方体1111ABCD A B C D −侧面11BCC B 上,满足2QA QB =,则点Q 的轨迹长度为( )A. 2πB.4π3C.D.【解析】【分析】结合图形,计算出||BQ =,由点Q ∈平面11BCC B ,得出点Q 的轨迹为圆弧 EQF,利用弧长公式计算即得.【详解】如图,易得AB ⊥平面11BCC B ,因BQ ⊂平面11BCC B ,则AB BQ ⊥,不妨设||BQ r =,则||2AQ r =, ||3AB ==,解得r =又点Q ∈平面11BCC B ,故点Q 的轨迹为以点B EQF,故其长度为π2. 故选:D.二、选择题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在平面直角坐标系中,下列说法正确的是( ) A. 若两条直线垂直,则这两条直线的斜率的乘积为1−;B. 已知()2,4A ,()1,1B ,若直线l :20kx y k ++−=与线段AB 有公共点,则21,32k∈−; C. 过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=;D. 若圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1,则1b =−±. 【答案】BD 【解析】【分析】根据直线是否存在斜率判断A 的真假;数形结合求k 的取值范围判断B 的真假;根据截距的概念判断真假;转化为点(圆心)到直线的距离求b 判断D 的真假.【详解】对A :“若两条直线垂直,则这两条直线的斜率的乘积为1−”成立的前提是两条直线的斜率都存若两条直线1条不存在斜率,另一条斜率为0,它们也垂直.故A 是错误的. 对B :如图:对直线l :20kx y k ++−=⇒()21y k x −=−+,表示过点()1,2P −,且斜率为k −的直线, 且()422213APk −==−−,()121112BP k −==−−−, 由直线l 与线段AB 有公共点,所以:203k ≤−≤或102k −≤−<,即203k −≤≤或102k <≤,进而得:2132k −≤≤.故B 正确; 对C :过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=或2y x =,故C 错误; 对D :“圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1”可转化为“圆心(1,0)到直线y x b =+的距离等于1”.1⇒1b =−±.故D 正确.故选:BD10. 如图所示四面体OABC 中,4OB OC ==,3OA =,OB OC ⊥,且60AOB AOC ∠=∠=°,23CD CB =,G 为AD 的中点,点H 是线段OA 上动点,则下列说法正确的是( )A. ()13OG OA OB OC =++ ;B. 当H 是靠近A 的三等分点时,DH ,OC ,AB共面;C. 当56OH OA = 时,GH OA ⊥ ;D. DH OH ⋅的最小值为1−.【答案】BCD 【解析】【分析】以{},,OA OB OC为基底,表示出相关向量,可直接判断A 的真假,借助空间向量共面的判定方法可判断B 的真假,利用空间向量数量积的有关运算可判断CD 的真假.【详解】以{},,OA OB OC 为基底,则3OA = ,4OB OC == ,6OA OB OA OC ⋅=⋅= ,0OB OC ⋅=.对A :因为23AD AC CD AC CB =+=+ ()23AC AB AC =+−2133AB AC +()()2133OB OA OC OA =−+−2133OA OB OC =−++ . 所以12OG OA AG OA AD =+=+ 121233OA OA OB OC =+−++111236OA OB OC =++ ,故A 错误;对B :当H 是靠近A 的三等分点,即23OH OA =时,DH AH AD =− 121333OA OA OB OC =−−−++221333OA OB OC =−− ,又AB OB OA =−,所以13DH AB OC − .故DH ,AB ,OC 共面.故B 正确;对C :因为HG OG OH OA AG OH =−=+− 1526OA AD OA =+−12152336OA OA OB OC OA =+−++− 111336OA OB OC =−++,所以:HG OA ⋅= 111336OA OB OC OA −++⋅ 2111336OA OB OA OC OA =−+⋅+⋅1119660336=−×+×+×=,所以HG OA ⊥ ,故GH OA ⊥,故C 正确;对D :设OH OA λ=,()01λ≤≤.因为:DH OH OD =−()OA OA AD λ=−+ 2133OA OA OA OB OC λ =−−++2133OA OB OC λ=−− .所以DH OH ⋅ 2133OA OB OC OAλλ =−−⋅()2233OA OA OB OA OCλλλ−⋅−⋅296λλ−,()01λ≤≤.当13λ=时,DH OH ⋅ 有最小值,为:1196193×−×=−,故D 正确. 故选:BCD11. 已知()2,3P 是圆C :22810410x y x y a +−−−+=内一点,其中0a >,经过点P 的动直线l 与C 交于A ,B 两点,若|AAAA |的最小值为4,则( ) A. 12a =;B. 若|AAAA |=4,则直线l 的倾斜角为120°;C. 存在直线l 使得CA CB ⊥;D. 记PAC 与PBC △的面积分别为PAC S ,PBC S ,则PAC PBC S S ⋅△△的最大值为8. 【答案】ACD 【解析】【分析】根据点()2,3P 在圆内,列不等式,可求a 的取值范围,在根据弦|AAAA |的最小值为4求a 的值,判断A 的真假;明确圆的圆心和半径,根据1l CP k k ⋅=−,可求直线AB 的斜率,进而求直线AB 的倾斜角,判断B 的真假;利用圆心到直线的距离,确定弦长的取值范围,可判断C 的真假;由三角形面积公式和相交弦定理,可求PAC PBC S S ⋅△△的最大值,判断D 的真假. 【详解】对A :由222382103410a +−×−×−+<⇒8a >. 此时圆C :()()2245x y a −+−=.因为过P 点的弦|AAAA |的最小值为4,所以CP=又CP =⇒12a =.故A 正确;对B :因为53142CP k −==−,1l CP k k ⋅=−,所以直线l 的斜率为1−,其倾斜角为135°,故B 错误; 对C :当|AAAA |=4时,如图:sin ACP ∠==,cos ACP ∠==41cos 1033ACB ∠=−=>, 所以ACB ∠为锐角,又随着直线AB 斜率的变化,ACB ∠最大可以为平角, 所以存在直线l 使得CA CB ⊥.故C 正确; 对D :如图:直线CP 与圆C 交于M 、N 两点,链接AM ,BN ,因为MAP BNP ∠=∠,APM NPB ∠=∠,所以APM NPB .所以AP MP NPBP=⇒(4AP BP MP NP ⋅=⋅=−+=.又1sin 2PACS PA PC APC APC =⋅⋅∠=∠ ,PBCS BPC =∠ ,且sin sin APC BPC ∠=∠.所以22sin PAC PBC S S PA PB APC⋅=⋅⋅∠ 28sin APC ∠8≤,当且仅当sin 1APC ∠=,即AB CP ⊥时取“=”.故D 正确. 故选:ACD【点睛】方法点睛:在求PAC PBC S S ⋅△△的最大值时,应该先结合三角形相似(或者蝴蝶定理)求出AP BP ⋅为定值,再结合三角形的面积公式求PAC PBC S S ⋅△△的最大值. 三、填空题:本题共3小题,每小题5分,共15分.12. 实数x 、y 满足224x y +=,则()()2243x y −++的最大值是______. 【答案】49 【解析】【分析】根据()()2243x y −++几何意义为圆上的点(),x y 与()4,3−距离的平方,找出圆上的与()4,3−的最大值,再平方即可求解.【详解】解:由题意知:设(),p x y ,()4,3A −,则(),p x y 为圆224x y +=上的点, 圆224x y +=的圆心OO (0,0),半径2r =, 则()()2243x y −++表示圆上的点(),p x y 与()4,3A −距离的平方,又因为max 27PA AO r=+=+=, 所以22max749PA==; 故()()2243x y −++的最大值是49. 故答案为:49.13. 记ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,已知()cos2cos a B c b A =−,其中π2B ≠,若ABC 的面积S =,2BE EC = ,且AE = ,则BC 的长为______.【解析】【分析】利用正弦定理对()cos 2cos a B c b A =−化简,可得π3A =,再由三角形面积公式求出8bc =,根据题意写出1233AE AB AC =+,等式两边平方后,可求出,b c 的值,由余弦定理2222cos a b c bc A =+−,求出BC 的长.【详解】()cos 2cos a B c b A =−,由正弦定理可得:sin cos 2sin cos sin cos A B C A B A =−,sin cos cos sin 2sin cos A B A B C A +=, ()sin 2sin cos A B C A +=,()sin πC 2sin cos C A −=,sin 2sin cos (sin 0)C C A C >,即1cos 2A =,π3A =,1sin 2ABC S bc A == ,得8bc =, ∵2BE EC = ,∴1233AE AB AC =+ ,221233AE AB AC =+, 即2228144cos 3999c b bc A =++,由8bc =,解得42b c = = 或18b c = = , 根据余弦定理2222cos a b c bc A =+−,当42b c = =时,a =,此时π2B =,不满足题意, 当18b c = =时,a =..14. 如图,已知四面体ABCD 的体积为9,E ,F 分别为AB ,BC 的中点,G 、H 分别在CD 、AD 上,且G 、H 是靠近D 的三等分点,则多面体EFGHBD 的体积为______.【答案】72##3.5 【解析】 【分析】多面体EFGHBD 的体积为三棱锥G DEH −与四棱锥E BFGD −的体积之和,根据体积之比与底面积之比高之比的关系求解即可.【详解】连接ED ,EG ,因为H 为AAAA 上的靠近D 的三分点,所以13DH AD =, 因为E 为AAAA 的中点,所以点E 到AAAA 的距离为点B 到AAAA 的距离的一半, 所以16DEH BAD S S = , 又G 为CCAA 上靠近D 的三分点,所以点G 到平面ABD 的距离为点C 到平面ABD 的距离的13, 所以111119663182G DEH G BAD C BAD V V V −−−==×=×=, 1233BCD FCG BCD BCD BCD BFGD S S S S S S =−=−= 四边形, 所以2211933323E BFGD E BCD A BCD V V V −−−==×=×=, 所以多面体EFGHBD 的体积为17322G DEH E BFGD V V −−+=+=. 故答案为:72. 【点睛】关键点点睛:将多面体转化为两个锥体的体积之和,通过体积之比与底面积之比高之比的关系求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 在对某高中1500名高二年级学生的百米成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高二年级学生中男生有900人,且抽取的样本中男生成绩的平均数和方差分别为13.2秒和13.36,女生成绩的平均数和方差分别为15.2秒和17.56.(1)求抽取的总样本的平均数;(2)试估计高二年级全体学生的百米成绩的方差.【答案】(1)14 (2)16【解析】【分析】(1)先确定样本中男生、女生的人数,再求总样本的平均数.(2)根据方差的概念,计算总样本的方差.【小问1详解】 样本中男生的人数为:100900601500×=;女生的人数为:1006040−=. 所以总样本的平均数为:6013.24015.214100x ×+×=. 【小问2详解】记总样本的方差为2s , 则()(){}22216013.3613.2144017.5615.214100s =×+−+×+− 16=. 所以,估计高二年级全体学生的百米成绩的方差为16.16. 在平面直角坐标系xOy 中,ABC 的顶点A 的坐标为()4,2−,ACB ∠的角平分线所在的直线方程为10x y −+=,AC 边上中线BM 所在的直线方程为220x y +−=. (1)求点C 的坐标;(2)求直线BC 的方程.【答案】(1)(3,4)C ;(2)72130x y −−=【解析】【分析】(1)设(,1)C m m +,则43(,)22m m M −+,代入220x y +−=,求解即可; (2)设直线BC 的方程为:340x ny n +−−=,在直线10x y −+=取点(0,1)P ,利用点P 到直线AC 的距离等于点P 到直线BC 的距离,求解即可.【小问1详解】解:由题意可知点C 在直线0x y −+=上, 所以设(,1)C m m +,所以AC 中点43(,)22m m M −+, 又因为点43(,)22m m M −+在直线220x y +−=上, 所以34202m m +−+−=,解得3m =, 所以(3,4)C ;【小问2详解】解:因为(3,4)C ,设直线BC 的方程为:340x ny n +−−=, 又因为(4,2)A −,所以直线AC 的方程为:27220x y −+=, .又因为ACB ∠的角平分线所在的直线方程为10x y −+=, 在直线10x y −+=取点(0,1)P ,则点P 到直线AC 的距离等于点P 到直线BC 的距离,=,整理得21453140n n ++=, 解得:72n =−或27n =−, 当72n =−时,所求方程即为直线AC 的方程, 所以27n =−, 所以直线BC 的方程为: 72130x y −−=. 17. 直三棱柱111ABC A B C −中,12AB AC AA ===,其中,,E F D 分别为棱111,,BC B A B C 的中点,已知11AF A C ⊥,(1)求证:AF DE ⊥;(2)设平面EFD 与平面ABC 的交线为直线m ,求直线AC 与直线m 所成角的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取AB 的中点G ,连接1,EG A G 证得四边形ADEG 为平行四边形,得到1//DE A G ,利用1A AG ABF ≌,证得90AHG ∠= ,得到1AF A G ⊥,即可证得AF DE ⊥;(2)根据题意,证得11A C ⊥平面11ABB A ,得到1111A C A B ⊥,以A 为原点,建立空间直角坐标系,求得(0,2,0)AC = ,再取AC 的中点M ,延长,MB DF 交于点N ,得到直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,求得(4,1,0)N −,得到(3,2,0)EN =− ,结合向量的夹角公式,即可求解.【小问1详解】证明:取AB 的中点G ,连接1,EG A G ,因为E 的中点,可得//EG AC ,且12EG AC =, 又因为1//A D AC ,且112A D AC =,所以1//EG A D ,且1EG A D =, 所以四边形ADEG 平行四边形,所以1//DE A G ,在正方形11ABB A 中,可得1A AG ABF ≌,所以1A GA AFB ∠=∠, 因为90AFB AFB ∠+∠= ,所以190AFB A GA ∠+∠= ,AGH 中,可得90AHG ∠= ,所以1AF A G ⊥,又因为1//DE A G ,所以AF DE ⊥.【小问2详解】解:在直三棱柱111ABC A B C −中,可得1AA ⊥平面111A B C ,因为11AC ⊂平面111AB C ,所以111AA A C ⊥, 又因为11AF A C ⊥,且1AA AF A ∩=,1,AA AF ⊂平面11ABB A ,所以11A C ⊥平面11ABB A , 因为11A B ⊂平面11ABB A ,所以1111A C A B ⊥,即直三棱柱111ABC A B C −的底面为等腰直角三角形,以A 为原点,以1,,AB AC AA 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,因为12AB AC AA ===,可得(0,0,0),(0,2,0)A C ,则(0,2,0)AC =, 为在取AC 的中点M ,连接,MB DM ,可得1//DM CC 且1DM CC =,因为11//BB DD 且11BB DD =,所以//BF DM ,且12BF DM =, 延长,MB DF 交于点N ,可得B 为MN 的中点,连接EN ,可得EN 即为平面DEF 与平面ABC 的交线,所以直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,又由(0,1,0),(2,0,0),(1,1,0)M B E , 设(,,)N x y z ,可得MB BN =,即(2,1,0)(2,,)x y z −=−, 可得4,1,0x y z ==−=,所以(4,1,0)N −,可得(3,2,0)EN =− ,设直线EN 与直线AC 所成角为θ,可得cos cos ,AC EN AC EN AC EN θ⋅=== 即直线AC 与直线m18. 已知圆C :22430x y y +−+=,过直线l :12y x =上的动点M 作圆C 的切线,切点分别为P ,Q .(1)当π3PMQ ∠=时,求出点M 的坐标; (2)经过M ,P ,C 三点的圆是否过定点?若是,求出所有定点的坐标;(3)求线段PQ 的中点N 的轨迹方程.【答案】(1)(0,0)或84(,)55(2)过定点(0,2)或42(,)55(3)22173042x y x y +−−+= 【解析】【分析】(1)点M 在直线l 上,设(2,)M m m ,由对称性可知30CMP ∠= ,可得2MC =,从而可得点M 坐标.(2)MC 的中点,12m Q m+,因为MP 是圆P 的切线,进而可知经过C ,P ,M 三点的圆是以Q 为圆心,以MC 为半径的圆,进而得到该圆的方程,根据其方程是关于m 的恒等式,进而可求得x 和y ,得到结果;(3)结合(2)将两圆方程相减可得直线PQ 的方程,且得直线PQ 过定点13,42R,由几何性质得MN RN ⊥,即点N 在以MR 为直径的圆上,进而可得结果.【小问1详解】(1)直线l 的方程为20x y −=,点M 在直线l 上,设(2,)M m m , 因为π3PMQ ∠=,由对称性可得:由对称性可知30CMP ∠= ,由题1CP =所以2MC =,所以22(2)(2)4+−=m m , 解之得:40,5==m m 故所求点M 的坐标为(0,0)或84(,)55. 【小问2详解】 设(2,)M m m ,则MC 的中点(,1)2m E m +,因为MP 是圆C 的切线, 所以经过,,C P M 三点的圆是以Q 为圆心,以ME 为半径的圆,故圆E 方程为:2222()(1)(1)22m m x m y m −+−−=+−化简得:222(22)0x y y m x y +−−+−=,此式是关于m 的恒等式,故2220,{220,x y y x y +−=+−=解得02x y = = 或4525x y = = , 所以经过,,C P M 三点的圆必过定点(0,2)或42(,)55.【小问3详解】 由()22222220,430x y mx m y m x y y +−−++= +−+=可得PQ :()22320mx m y m +−+−=,即()22230m x y y +−−+=, 由220,230x y y +−= −=可得PQ 过定点13,42R . 因为N 为圆E 的弦PQ 的中点,所以MN PQ ⊥,即MN RN ⊥,故点N 在以MR 为直径的圆上,点N 的轨迹方程为22173042x y x y +−−+=. 19. 四棱锥P ABCD −中,底面ABCD 为等腰梯形,224AB BC CD ===,侧面PAD 为正三角形;(1)当BD PD ⊥时,线段PB 上是否存在一点Q ,使得直线AQ 与平面ABCD所成角的正弦值为若存在,求出PQ QB 的值;若不存在,请说明理由. (2)当PD 与平面BCD 所成角最大时,求三棱锥P BCD −的外接球的体积.【答案】(1)存在;1.(2【解析】【分析】(1)先证平面PAD ⊥平面ABCD ,可得线面垂直,根据垂直,可建立空间直角坐标系,用空间向量,结合线面角的求法确定点Q 的位置.(2)根据PD 与平面BCD 所成角最大,确定平面PAD ⊥平面ABCD ,利用(1)中的图形,设三棱锥P BCD −的外接球的球心,利用空间两点的距离公式求球心和半径即可.【小问1详解】因为底面ABCD 为等腰梯形,224AB BC CD ===,所以60BAD ∠=°,120BCD ∠=°,30CBD ABD ∠=∠=°,所以90ADB ∠=°. 所以BD AD ⊥,又BD PD ⊥,,AD PD ⊂平面PAD ,且AD PD D = ,所以BD ⊥平面PAD .又BD ⊂平面ABCD ,所以平面PAD ⊥平面ABCD .取AD 中点O ,因为PAD △是等边三角形,所以PO AD ⊥,平面PAD ∩平面ABCD AD =,所以⊥PO 平面ABCD .再取AB 中点E ,连接OE ,则//OE BD ,所以OE AD ⊥.所以可以O 为原点,建立如图空间直角坐标系.则()0,0,0O ,()1,0,0A ,()1,0,0D −,()E ,()1,B −,(P ,()C −.(1,PB =−− .设PQ PB λ= ,可得)()1Q λλ−−所以)()1,1AQ λλ=−−− ,取平面ABCD 的法向量()0,0,1n = .因为AQ 与平面ABCD ,所以AQ nAQ n ⋅⋅ ,解得12λ=或5λ=(舍去). 所以:线段PB 上存在一点Q ,使得直线AQ 与平面ABCD ,此时1PQ QB =. 【小问2详解】当平面PAD ⊥平面ABCD 时, PD 与平面BCD 所成角为PDA ∠.当平面PAD 与平面ABCD 不垂直时,过P 做PH ⊥平面ABCD ,连接HD ,则PDH ∠为PD 与平面BCD 所成角,因为PH PO <,sin PH PDH PD ∠=,sin PO PDA PD∠=,s s n i i n PDA PDH ∠∠<,所以A PDH PD ∠∠<. 故当平面PAD ⊥平面ABCD 时,PD 与平面BCD 所成角最大.此时,设棱锥P BCD −的外接球球心为(),,G x y z ,GP GB GC GD R====,所以(()(()(()2222222222222222121x y z R x y z R x y z R x y z R ++= ++−+= ++−+=+++=,解得20133x y z R = = = = 所以三棱锥P BCD −的外接球的体积为:34π3V R ==. 【点睛】方法点睛:在空间直角坐标系中,求一个几何体的外接球球心,可以利用空间两点的距离公式,根据球心到各顶点的距离相等列方程求解..。

江苏省扬州中学2024-2025学年高二上学期10月月考试题 数学(含答案)

江苏省扬州中学2024-2025学年高二上学期10月月考试题 数学(含答案)

2024—2025学年第一学期高二上10月自主学习效果评估数学试卷2024.10.08一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,直线过定点,且与线段相交,则直线的斜率的取值范围是( )A B. C. 或 D. 或2. 若圆与圆相切,则()A. 6B. 3或6C. 9D. 3或93. 已知直线,,则过和的交点且与直线垂直的直线方程为( )A. B. C. D.4. 若点在圆内,则直线与圆C 的位置关系为( )A. 相交B. 相切C. 相离D. 不能确定5. 圆心为,且与直线相切的圆的方程为( )A. B. C. D.6. 已知圆上有四个点到直线的距离等于1,则实数的取值范围为( )A. B. C. D.7. 已知圆关于直线对称,则实数( ).()()2,02,3A B 、l ()1,2P AB l k 21k -≤≤112k -≤≤12k ≤-1k ≥2k ≤-1k ≥()2221:(4)0O x y r r ++=>222:(2)9O x y -+=r =1:10l x y -+=2:210l x y --=1l 2l 3450x y +-=3410x y --=3410x y -+=4310x y --=4310x y -+=(),P a b221Cx y +=:1ax by +=(2,1)M -2+1=0x y -22(2)(1)5x y -+-=22(2)(1)5x y -++=22(2)(1)25x y -++=22(2)(1)25x y -+-=224x y +=y x b =+b ()2,2-(()1--()1,1-22:330C x y mx y +-++=:0l mx y m +-=m =A 1或 B. 1 C. 3 D. 或38. 若圆与圆交于两点,则的最大值为( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.9. 若直线与圆交于两点,则( )A. 圆的圆心坐标为B. 圆的半径为3C. 当时,直线倾斜角为D. 的取值范围是10. 已知点在上,点,,则( )A. 点到直线的距离最大值是B. 满足的点有2个C. 过直线上任意一点作的两条切线,切点分别为,则直线过定点D. 的最小值为11. 设直线系(其中均为参数,),则下列命题中是真命题的是()A. 当时,存在一个圆与直线系中所有直线都相切B. 当时,若存在一点,使其到直线系中所有直线的距离不小于1,则C. 存在,使直线系中所有直线恒过定点,且不过第三象限D. 当时,坐标原点到直线系中所有直线的距离最大值为1三、填空题:本题共3小题,每小题5分,共15分..的3-1-22:(cos )(sin )1(02π)M x y θθθ-+-=≤<22:240N x y x y +--=A B 、tan ANB ∠344543:2cos 0l x y θ-⋅=22:10E x y +--=,A B E ()-E 1cos 2θ=l π4AB ⎡⎢⎣P 22:4O x y +=e ()3,0A ()0,4B P AB 125AP BP ⊥P AB O e ,M N MN 4,13⎛⎫ ⎪⎝⎭2PA PB +:cos sin 1m n M x y θθ+=,,m n θ{}02π,,1,2m n θ≤≤∈1,1m n ==M 2,1m n ==(),0A a M 0a ≤,m n M m n =M12. 已知直线,圆,写出满足“对于直线上任意一点,在圆上总存在点使得”的的一个值______.13. 已知二次函数与轴交于两点,点,圆过三点,存在一条定直线被圆截得弦长为定值,则该定值为__________.14. 如图,点C 是以AB 为直径的圆O 上的一个动点,点Q 是以AB 为直径的圆O 的下半个圆(包括A ,B 两点)上的一个动点,,则的最小值为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知直线与直线.(1)若,求m 的值;(2)若点在直线上,直线过点P ,且在两坐标轴上的截距之和为0,求直线的方程.16. 已知:及经过点的直线.(1)当平分时,求直线的方程;(2)当与相切时,求直线的方程.17. 如图,已知,直线.(1)若直线等分的面积,求直线的一般式方程;(2)若,李老师站在点用激光笔照出一束光线,依次由(反射点为)、(反射点为)反射后,光斑落在点,求入射光线的直线方程.的:1l x my =--22:6890O x y x y ++++=l A O B π2ABO ∠=m ()()223411y x m x m m =+---∈R x ,A B ()1,3CG ,,A B C l G ,3,2PB AB AB PB ⊥==1)3AP BA QC +⋅(()1:280l m x my ++-=2:40,R l mx y m +-=∈12l l //()1,P m 2l l l C e ()()22124x y -+-=()1,1P --l l C e l l C el (()(),0,0,12,0A BC (():20l k x y k k +--=∈R l ABC Vl (2,P P BC K AC I P PK18. 已知圆与直线相切于点,圆心在轴上.(1)求圆的标准方程;(2)若直线与圆交于两点,当数的值;(3)过点且不与轴重合的直线与圆相交于两点,为坐标原点,直线分别与直线相交于两点,记的面积为,求的最大值.19. 在数学中,广义距离是泛函分析中最基本概念之一.对平面直角坐标系中两个点和,记,称为点与点之间的“距离”,其中表示中较大者.(1)计算点和点之间的“距离”;(2)设是平面中一定点,.我们把平面上到点的“距离”为的所有点构成的集合叫做以点为圆心,以为半径的“圆”.求以原点为圆心,以为半径的“圆”的面积;(3)证明:对任意点.的M 340x -+=(M x M ()()():21174l m x m y m m +++=+∈R M ,P Q PQ =m M x M ,A B O ,OA OB 8x =,C D ,OAB OCD V V 12,S S 12S S ()111,P x y ()222,P x y 1212121212max ,11tx x y y PP x x y y ⎧⎫--⎪⎪=⎨⎬+-+-⎪⎪⎩⎭12t PP 1P 2P t -{}max ,p q ,p q ()1,2P ()2,4Q t -()000,P x y 0r >0P t -r 0P r t -O 12t -()()()111222333131223,,,,,,t t t P x y P x y P x y PP PP P P ≤+2024—2025学年第一学期高二上10月自主学习效果评估数学试卷2024.10.08一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】D二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.【9题答案】【答案】BC【10题答案】【答案】BCD【11题答案】【答案】ABC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】1(答案不唯一)【13题答案】【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)或【16题答案】【答案】(1) (2)或.【17题答案】【答案】(1; (2).【18题答案】【答案】(1) (2). (3).【19题答案】【答案】(1); (2)4;(3)证明见解析.3--1m =-10x y -+=20x y -=3210x y -+=1x =-51270x y --=170y +-=2100x -=22(4)16x y -+=23m =-1423。

福建省2024-2025学年高二上学期10月月考模拟数学试卷 (解析版)

福建省2024-2025学年高二上学期10月月考模拟数学试卷 (解析版)

2024-2025学年福建省高二上学期10月月考模拟数学试卷注 意 事 项1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将案写在答题卡上指定位置上,在其他位置作答一律无效.3.本卷满分为150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量(0,3,3)a =是直线l 的方向向量,(1,1,0)b − 是平面m 的一个法向量,则直线l与平面m 所成的角为( ) A .π6B .π4C.π3D .π2【答案】A【分析】根据题意,由空间向量的坐标运算,结合线面角的公式即可得到结果. 【详解】设直线l 与平面m 所成的角为θ,由题意可得,1sin cos ,2a θ=< ,即π6θ=.故选:A 2.已知()2,1,3a =−,()1,4,2b =−− ,(),2,4c λ= ,若a ,b ,c共面,则实数λ的值为( )A .1B .2C .3D .4【答案】C【分析】由a,b,c 三向量共面,我们可以用向量a,b作基底表示向量c,进而构造关于λ的方程,解方程即可求出实数λ的值.【详解】 ()2,1,3a =− ,()1,4,2b =−−,∴a与b不平行,又 a,b,c三向量共面,则存在实数x ,y 使c xa yb =+,即242324x y x y x y λ−= −+=−= ,解得213x y λ== =. 故选:C3.如图,在棱长均相等的四面体O ABC −中,点D 为AB 的中点,12CE ED =,设,,OA a OB b OC c === ,则OE =( )A .111663a b c ++B .111333a b c ++C .111663a b c +−D .112663a b c ++【答案】D【分析】根据空间向量的线性运算求得正确答案.【详解】由于12CE ED =, 所以()11113332CE CD CA AD CA AB==+=+ 1136CA AB +, 所以1136OE OC CE OC CA AB =+=++()()1136OC OA OC OB OA =+−+−112112663663OA OB OC a b c =++=++. 故选:D4.设,R x y ∈,向量(),1,1a x = ,()1,,1b y =,()2,4,2c =− 且,//a c b c ⊥,则a b += ( )A.BC .3D .4【答案】C【分析】根据空间向量平行与垂直的坐标表示,求得,x y 的值,结合向量模的计算公式,即可求解.【详解】由向量(),1,1,a x = ()1,,1,= b y ()2,4,2,=−c 且,//a c b c ⊥,可得2420124x y−+== − ,解得1,2x y ==−,所以()1,1,1a = ,()1,2,1b =− ,则()2,1,2a b +− ,所以3a b +=. 故选:C.5.已知三棱锥O ABC −,点M ,N 分别为OA ,BC 的中点,且OA a = ,OB b =,OC c = ,用a ,b ,c表示MN ,则MN 等于( )A .()12b c a +− B .()12a b c +− C .()12a b c −+ D .()12c a b −− 【答案】A【分析】由向量对应线段的空间关系,应用向量加法法则用OA ,OB ,OC 表示出MN即可.【详解】由图知:1111()2222MN MO OC CN OA OC CB OA OC OB OC =++=−++=−++− 1111()2222OA OB OC b c a =−++=+−.故选:A6.已知正三棱柱111ABC A B C −的各棱长都为2,以下选项正确的是( )A .异面直线1AB 与1BC 垂直B .1BC 与平面11AA B BC .平面1ABC 与平面ABCD .点C 到直线1AB【答案】B【分析】建立如图所示的空间直角坐标系,由空间向量法求空间角、距离,判断垂直. 【详解】如图,以AB 为x 轴,1AA 为z 轴,建立如图所示的空间直角坐标系, 则(0,0,0)A ,(2,0,0)B,C ,1(0,0,2)A ,1(2,0,2)B,1C ,11(2,0,2),(2)AB BC −,112420AB BC ⋅=−+=≠ ,1AB 与1BC不垂直,A 错;平面11AA B B 的一个法向量为(0,1,0)m =,111cos ,BC m BC mBC m ⋅==所以1BC 与平面11AA B BB 正确; 设平面1ABC 的一个法向量是(,,)n x y z = ,又(2,0,0)AB =,由100n AB n BC ⋅= ⋅=得2020x x z = −+= ,令2y =得(0,2,n = ,平面ABC 的一个法向量是(0,0,1)p =,cos ,n p =所以平面1ABC 与平面ABCC 错;AC =,12AB AC ⋅=,d 所以点C 到直线1AB的距离为h ===,D 错; 故选:B .7.在正方体1111ABCD A B C D −中,在正方形11DD C C 中有一动点P ,满足1PD PD ⊥,则直线PB 与平面11DD C C 所成角中最大角的正切值为( )A .1 BC D 【答案】D【分析】根据题意,可知P 是平面11DD C C 内,以1DD 为直径的半圆上一点.由BPC ∠即为直线PB 与平面11DD C C 所成的角可知当PC 取得最小值时,PB 与平面11DD C C 所成的角最大.而连接圆心E 与C 时,与半圆的交点为P,此时PC 取得最小值.设出正方体的棱长,即可求得PC ,进而求得tan BPC ∠.【详解】正方体1111ABCD A B C D −中,正方形11DD C C 内的点P 满足1PD PD ⊥ 可知P 是平面11DD C C 内,以1DD 为直径的半圆上一点,设圆心为E,如下图所示:当直线PB 与平面11DD C C 所成最大角时,点P 位于圆心E 与C 点连线上 此时PC 取得最小值.则BPC ∠即为直线PB 与平面11DD C C 所成的角设正方体的边长为2,则1PC EC EP =−−,2BC =所以tan BC BPC PC ∠=【点睛】本题考查了空间中动点的轨迹问题,直线与平面夹角的求法,对空间想象能力要求较高,属于中档题.8.我国古代数学名著《九章算术》中记载的“刍薨”(chumeng )是底面为矩形,顶部只有一条棱的五面体.如下图五面体ABCDEF 是一个刍薨,其中四边形ABCD 为矩形,其中8AB =,AD =ADE 与BCF 都是等边三角形,且二面角E AD B −−与F BC A −−相等,则EF长度的取值范围为( )A .()2,14B .()2,8C .()0,12D .()2,12【答案】A【分析】由题意找到二面角E AD B −−与F BC A −−的两个极端位置,即二面角的平面角为0 和180 时,求得相应EF 的长,集合题意即可得答案.【详解】由题意可知AD =ADE 与BCF 都是等边三角形,故ADE 与BCF 的底边,AD BC 上的高为3=, 因为二面角E AD B −−与F BC A −−相等,故当该二面角的平面角为0 时,此时EF 落在四边形ABCD 内,长度为8232−×=,当该二面角的平面角为180 时,此时EF 落在平面ABCD 上,长度为82314+×=,由于该几何体ABCDEF 为五面体,故二面角E AD B −−与F BC A −−的平面角大于0 小于180 ,故EF 长度的取值范围为()2,14,二、选择题:本题共3小题,每小题6分,共18分。

高二数学10月月考试题(含解析)

高二数学10月月考试题(含解析)

【2019最新】精选高二数学10月月考试题(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在中,内角,,所对的边分别为,,,若,,则的面积是()A. B. C. D.【答案】C【解析】试题分析:,,故选C.考点:余弦定理.【易错点睛】本题主要考查了余弦定理,三角形面积公式.解三角形问题的两重性:①作为三角形问题,它必须要用到三角形的内角和定理,正弦、余弦定理及其有关三角形的性质,及时进行边角转化,有利于发现解题的思路;②它毕竟是三角变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的,注意“三统一”(即“统一角、统一函数、统一结构”)是使问题获得解决的突破口.2. 在中,若,,则的值为()A. B. C. D.【答案】D【解析】试题分析:由正弦定理得,因此得,所以,即..考点:正弦定理和余弦定理的应用.3. 以下关于正弦定理或其变形的叙述错误的是()A. 在中,B. 在中,若,则C. 在中,若,则,若,则都成立D. 在中,【答案】B【解析】由正弦定理易知A,C,D正确,对于B,由sin2A=sin2B,可得A=B或,即A=B或,所以a=b或,故B错误4. 如图,测量河对岸的塔高时可以选与塔底在同一水平面内的两个测点与,测得,,,并在点测得塔顶的仰角为,则塔高等于()A. B. C. D.【答案】D【解析】在中,由正弦定理得,解得在中,5. 已知数列的前项和为,且,则()A. B. C. D.【答案】D【解析】又符合上式,故6. 已知,(),则数列的通项公式是()A. B. C. D.【答案】D【解析】因为,所以,所以所以7. 数列中,,,则()A. B. C. D.【答案】B【解析】由,得,所以是公比为的等比数列因为,所以,故,所以8. 数列中,,并且(),则数列的第100项为()A. B. C. D.【答案】D考点:1等差中项;2等差数列的通项公式.9. 已知等差数列的前项和为,且,,则过点,()的直线的斜率为()A. B. C. D.【答案】A【解析】由S 2=10,S 5=55得a 1=3,d=4,直线斜率为:请在此填写本题解析!10. 在等差数列中,已知,(,,且),则数列的前项和()A. B. C. D.【答案】D【解析】,所以11. 在等差数列中,,其前项和为,若,则的值等于()A. B. C. D.【答案】C【解析】试题分析:等差数列中,即数列是首项为,公差为的等差数列;因为,,所以,,,所以,,选.考点:等差数列的求和公式,等差数列的通项公式.12. 在中,,,,则此三角形解的情况是()A. 一般B. 两解C. 一解或两解D. 无解【答案】B【解析】试题分析:,所以由两解,故选B.考点:判断三角形个数第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 某同学骑电动车以的速度沿正北方向的公路行驶,在点处测得电视塔在电动车的北偏东方向上,后到点处,测得电视塔在电动车的北偏东方向上,则点与电视塔的距离是_________.【答案】【解析】由题意可得,,由正弦定理得,解得点睛:本题考查的是解三角形在实际中的应用,在处理解三角形问题时,要注意抓住题目所给的条件,在题设中给定三角形中利用正弦定理或利用余弦定理结合三角形内角和为构造边或者是角的关系;把已知的给定的值代入正弦定理或者是余弦定理,求出要求的具体的值14. 设的内角,,的对边分别为,,,且,,,则__________.【答案】4【解析】试题分析:由及正弦定理,得.又因为,所以.由余弦定理得:,所以.考点:正余弦定理.15. 在等比数列中,,,则__________.【答案】32【解析】设此数列公比为q,由,16. 设数列的前项和为,点()均在直线上.若,则数列的前项和__________.【答案】【解析】依题意得,即当时,当时,符合,所以则,由,可知为等比数列,故三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,内角,,的对应的边分别为,,,且满足.(1)求角;(2)若,求的取值范围.【答案】(1).(2).【解析】试题分析:(Ⅰ)由余弦定理将角化成边得,(Ⅱ)由余弦定理得,再根据基本不等式得,,另外为三角形三边关系得,即求出的取值范围.试题解析:(Ⅰ)(Ⅱ),,即考点:余弦定理【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.18. 在中,内角,,所对的边分别为,,,且.(1)若,,求的值;(2)若,且的面积,求和的值.【答案】(1).(2),.【解析】试题分析:(Ⅰ)由余弦定理可以解出cosC;(Ⅱ)用二倍角的余弦公式对方程进行化简,结合所给的面积解出a=3,b=3,试题解析:(1)由题意知,,由余弦定理,得.(2)∵,由正弦定理可知,,又因,故,由于,∴,从而,解得,.点晴:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档