青岛版数学七年级上册全册教案
新青岛版,初中数学,七年级上册,全部导学案,学案

七年级数学上册导学案第1章基本的几何图形1.1我们身边的图形世界一、导入激学:满天星斗的夜空,形形色色的建筑群,各式各样的交通工具和道路,五彩缤纷的自然界……只要你注意观察,就会发现我们生活在一个丰富多彩的图形世界里。
二、导标引学学习目标:1.经历从现实世界中抽象出图形的过程,感受图形世界的丰富多彩。
2.在具体情境中认识圆柱、圆锥、棱柱、棱锥、球,并能用自己的语言描述它们的某些特征。
3.理解平面、曲面、平面图形的概念。
三、学习过程(一)导预疑学请你利用10分钟,自学课本第4页至第6页,并完成以下问题:1.说出下列立体图形的名称。
①②③④⑤⑥⑦2.上题中棱柱有:,棱锥有。
(填序号)3._____、_____、_____、_____、_____、______、______等都是几何体,几何体简称_____。
4.观察下列实物图片,它们的形状分别类似于哪种几何体?①②③④⑤(二)导问互学问题:棱柱与圆柱、棱锥与圆锥的区别与联系:顶点棱侧面底面棱柱圆柱棱锥圆锥解决问题评价:(三)导根典学在下图中的三幅图案中,你分别看到了哪些图形?它们是怎样组合而成的?(四)导标达学1.写出如图所示图形的名称:①______;②______;③______;④______;⑤_____。
①②③④⑤2.一个七棱柱共有个面,条棱,个顶点,形状和面积完全相同的只有个面.3.图中的的几何体由几个面围成,面与面相交成几条线?它们是直的还是曲的?4.下列几何体中不是多面体的是( )A、立方体B、长方体C、三棱锥D、圆柱5.下列几何体没有曲面的是()A、圆柱B、圆锥C、球D、棱柱6.下列图案是由哪些简单的几何图形组成的?7.请你用两个圆、两个三角形和两条线段组合几幅新奇、有趣的图形,并给出文字说明。
反馈评价:四、导法慧学1.将所学知识纳入知识体系.2.本节解决问题的具体方法是怎样的?据此请总结此类问题的解题思路.3.还有没有更好的解法?你还有疑问吗?设计人:世纪学校王玉华1.2 几何图形一、导入激学:我们学过的长方体有几个面?几个顶点?几条棱?二、导标引学学习目标:1.通过丰富的实例,认识点、线、面、体,初步感受点、线、面、体之间的关系。
青岛版数学七年级上册《认识数轴》教学设计

青岛版数学七年级上册《认识数轴》教学设计一. 教材分析《认识数轴》是青岛版数学七年级上册的教学内容,本节课的主要目的是让学生理解数轴的概念,掌握数轴的表示方法,以及能够在数轴上表示和比较实数的大小。
教材通过具体的实例和问题,引导学生认识数轴,从而加深对实数和数轴之间关系的理解。
二. 学情分析七年级的学生已经具备了一定的实数基础,对实数的大小比较有一定的了解。
但是,对于数轴的概念和表示方法可能还比较陌生,需要通过具体的实例和操作,来理解和掌握数轴的知识。
三. 教学目标1.知识与技能:让学生理解数轴的概念,掌握数轴的表示方法,能够在数轴上表示和比较实数的大小。
2.过程与方法:通过具体的实例和问题,引导学生认识数轴,培养学生的抽象思维和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.数轴的概念和表示方法。
2.如何在数轴上表示和比较实数的大小。
五. 教学方法采用问题驱动法、实例教学法和合作学习法。
通过具体的问题和实例,引导学生认识数轴,让学生在实际操作中掌握数轴的知识,通过合作学习,培养学生的团队协作能力。
六. 教学准备1.教学PPT。
2.数轴的教具。
3.实数的练习题。
七. 教学过程1.导入(5分钟)通过一个具体的问题,如“小明和小华比赛跑步,小明跑了600米,小华跑了800米,谁跑得快?”引导学生思考,引出数轴的概念。
2.呈现(10分钟)用PPT展示数轴的定义和表示方法,让学生直观地感受数轴的特点。
同时,通过具体的实例,让学生在数轴上表示实数,并比较大小。
3.操练(10分钟)让学生分组合作,利用数轴的教具,进行实数的表示和比较的练习。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些实数的表示和比较的练习题,巩固数轴的知识。
教师选取部分题目进行讲解和分析。
5.拓展(10分钟)引导学生思考数轴在实际生活中的应用,如购物时的找零、判断时间的早晚等。
青岛版七年级数学上册全册完整课件

第2章 有理数
青岛版七年级数学上册全册完整课 件
青岛版七年级数学上册全册完整 课件目录
0002页 0071页 0150页 0185页 0199页 0234页 0280页 0293页 0333页 0376页 0395页 0437页 0452页 0479页 0493页 0518页 0545页
第1章 基本的几何图形 1.2 几何图形 第2章 有理数 2.2 数轴 第3章 有理数的运算 3.2 有理数的乘法与除法 3.4 有理数的混合运算 第4章 数据的收集整理与描述 4.2 简单随机抽样 4.4 扇形统计图 5.1 用字母表示数 5.3 代数式的值 5.5 函数的初步认识 6.1 单项式与多项式 6.3 去括号 第7章 一元一次方程 7.2 一元一次方程
第1章 基本的几何图形
青岛版七年级数学上册全册完整课 件
1.1 我们身边的图形世界
青岛版七年级数学上册全册完整课 件
1.2 几何图形
青岛版七年级数学上册全册完整课 件
青岛版七年级数学上学期教学计划(精选4篇)

青岛版七年级数学上学期教学计划(精选4篇)青岛版七年级数学上学期教学计划篇1一、班情分析:本学期,我教授九4、7三个班,九(4)班有学生37人,九(7)班有学生42人,大部分同学学习习惯良好,学习积极性高,能较好地完成学习任务,进入初中有半年了,现对学生的学情做如下分析,希望能做到有的放矢,因材施教。
1、学生基本学习状态:从大的方面来说,我教的的同学整体水平不均,九(7)班的学生整体要好于其他几个班,优生学习气氛浓厚,但差生比例相对要多一些,他们学习比较浮躁,这主要表现在课堂纪律和作业质量方面,优生的课堂纪律以及作业质量相对较好,思维整体来说比较活跃,能主动提出问题。
2、学生成绩:由于学生缺少自制力,因此在学习上两极分化依然存在,优生的百分频率很高,学困生连基本的小练习都不能独立完成。
3、学习习惯:部分学生有主动学习的行为,深得老师赞赏。
学习热情也很高,并喜欢与老师友好相处,同学之间、师生之间常在一起交流学习体会。
但仍有少部分学生学习懒散、学习习惯差,粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,作业喜欢与同学对题。
二、教学内容分析:1、紧扣教材与考纲,抓好基础知识。
这一阶段复习时间要长,对知识的处理不能留死角,要求我们以教材为本、以考纲为纲,落实知识条目。
①关注课文中的基础知识,进行“精要”记忆。
②关注课文中的辅助文,加强能力训练。
③注重知识的系统,点线面体相联。
④基础知识辐射时事。
⑤注意政治、社会术语。
⑥自制知识目录。
2、知识网络化,形成整体认知。
在复习基础知识的基础上,对知识点进行系统地梳理和归纳,不仅要一节一课地进行归纳,还要打破章节,对基础知识进行全面地横向、纵向梳理,通过归类、比较、联系理清知识点之间的相互关系,构建知识网络,使基础知识条理化、系统化、网络化,达到融会贯通的目的。
3、有效提升组内教师的学科素养。
要清晰了解社会思品教材呈现的知识结构,积极参加各种培训活动,不断提高我们的素养。
青岛版七年级数学上册1

4.布置课后作业,要求学生巩固所学知识,为下一节课的学习打下基础。
五、作业布置
为了巩固本节课所学的线段知识,培养学生的实际应用能力,特布置以下作业:
1.请同学们完成课本第18页的练习题1、2、3,注意作图规范,确保解答准确无误。
4.组织学生进行小组合作,培养学生的团队协作能力和沟通能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发他们学习数学的热情,使他们乐于探究、善于思考;
2.培养学生严谨、踏实的学术态度,使他们认识到数学学习需要勤奋刻苦、持之以恒;
3.通过解决实际问题,让学生体会数学在生活中的重要作用,增强学生的应用意识;
青岛版七年级数学上册1.4.2线段的作法教学设计
一、教学目标
(一)知识与技能
1.理解线段的定义,知道线段有两个端点,是有限长的;
2.学会使用直尺和圆规进行线段的作图,掌握作图的基本步骤和技巧;
3.能够根据已知条件,求解线段的长度,并正确运用在解决实际问题上;
4.理解线段中点、倍长线段的概念,并能够进行相关的作图和计算。
(二)讲授新知,500字
1.教师简要介绍线段的概念,强调线段有两个端点,是有限长的。
2.教师示范线段的作图方法,讲解作图步骤和技巧:
a.确定两个端点;
b.使用直尺连接两个端点,得到线段;
c.在线段上标出中点、倍长线段等特殊点。
3.教师引导学生思考线段的性质,如线段的长度、中点等,并举例说明。
4.教师通过例题讲解,让学生掌握线段长度计算的方法,学会运用线段解决实际问题。
1.学生对线段定义的理解程度,引导他们通过实例认识线段的本质特征;
新青岛版,初中数学,七年级上册,全部导学案,学案

七年级数学上册导学案第1章基本的几何图形1.1我们身边的图形世界一、导入激学:满天星斗的夜空,形形色色的建筑群,各式各样的交通工具和道路,五彩缤纷的自然界……只要你注意观察,就会发现我们生活在一个丰富多彩的图形世界里。
二、导标引学学习目标:1.经历从现实世界中抽象出图形的过程,感受图形世界的丰富多彩。
2.在具体情境中认识圆柱、圆锥、棱柱、棱锥、球,并能用自己的语言描述它们的某些特征。
3.理解平面、曲面、平面图形的概念。
三、学习过程(一)导预疑学请你利用10分钟,自学课本第4页至第6页,并完成以下问题:1.说出下列立体图形的名称。
①②③④⑤⑥⑦2.上题中棱柱有:,棱锥有。
(填序号)3._____、_____、_____、_____、_____、______、______等都是几何体,几何体简称_____。
4.观察下列实物图片,它们的形状分别类似于哪种几何体?①②③④⑤(二)导问互学问题:棱柱与圆柱、棱锥与圆锥的区别与联系:顶点棱侧面底面棱柱圆柱棱锥圆锥解决问题评价:(三)导根典学在下图中的三幅图案中,你分别看到了哪些图形?它们是怎样组合而成的?(四)导标达学1.写出如图所示图形的名称:①______;②______;③______;④______;⑤_____。
①②③④⑤2.一个七棱柱共有个面,条棱,个顶点,形状和面积完全相同的只有个面.3.图中的的几何体由几个面围成,面与面相交成几条线?它们是直的还是曲的?4.下列几何体中不是多面体的是( )A、立方体B、长方体C、三棱锥D、圆柱5.下列几何体没有曲面的是()A、圆柱B、圆锥C、球D、棱柱6.下列图案是由哪些简单的几何图形组成的?7.请你用两个圆、两个三角形和两条线段组合几幅新奇、有趣的图形,并给出文字说明。
反馈评价:四、导法慧学1.将所学知识纳入知识体系.2.本节解决问题的具体方法是怎样的?据此请总结此类问题的解题思路.3.还有没有更好的解法?你还有疑问吗?设计人:世纪学校王玉华1.2 几何图形一、导入激学:我们学过的长方体有几个面?几个顶点?几条棱?二、导标引学学习目标:1.通过丰富的实例,认识点、线、面、体,初步感受点、线、面、体之间的关系。
青岛版初一数学的优秀教案

青岛版初一数学的优秀教案青岛版初一数学的优秀教案1教学目标:1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.2、能用符号语言写出一个命题的题设和结论.3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.教学重点:证明的步骤与格式.教学难点:将文字语言转化为几何符号语言.教学过程:一、复习提问1、命题“两直线平行,内错角相等”的题设和结论各是什么?2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)二、例题分析例1、证明:两直线平行,内错角相等.已知:a∥b,c是截线.求证:∠1=∠2.分析:要证∠1=∠2,只要证∠3=∠2即可,因为∠3与∠1是对顶角,根据平行线的性质,易得出∠3=∠2.证明:∵a∥b(已知),∴∠3=∠2(两直线平行,同位角相等).∵∠1=∠3(对顶角相等),∴∠1=∠2(等量代换).例2、证明:邻补角的平分线互相垂直.已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.三、课堂练习:1、平行于同一条直线的两条直线平行.2、两条平行线被第三条直线所截,同位角的平分线互相平行.四、归纳小结主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.五、布置作业课本P143 5、(2),7.六、课后思考:1、垂直于同一条直线的两条直线的位置关系怎样?2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样?3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样?青岛版初一数学的优秀教案2一、教学目标设计[知识与技能目标]1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。
青岛版七年级上册初一数学全册教案(教学设计)

1.1 我们身边的图形世界【教学目标】1、经历从现实世界中抽象出图形的过程,感受图形世界的丰富多彩。
2、在具体情境中认识圆柱、圆锥、棱柱、棱锥、球,并能用自己的语言描述它们的某些特征。
3、理解平面、曲面、平面图形的概念。
【学习重点】通过观察,讨论,思考和实践等活动,将生活中常见的实物模型抽象成简单的几何体。
【学习难点】从具体实物中抽象出几何体的概念,用自己的语言准确地描述简单的几何体。
【学习过程】一、情境导入通过多媒体手段,向学生展示现实生活中的丰富多彩的图形,一方面让学生感受自然界图形之美,以美感增进学生数学学习的兴趣;另一方面在欣赏数学之美的过程中,让学生体会数学研究的对象来源于生活,很多数学研究的内容都能在生活找到模型,反之生活中的很多现象都能从数学的角度来解释。
二、探究新知1、问题导读:(1) 观察教材图1-1的立体图形,这些图片中的物品各具有怎样的形状?(2) 观察教材图1-2中的四对泥人,形状相同吗?大小相等吗??(3) 观察教材图1-3中的各种几何体,用线把几何体和它们对应的名称连接起来。
可以引导学生辨认这些图形,体验它们的联系和区别,鼓励学生用自己的语言描述这些几何体。
(4) 你能对教材中图1-1,1-2,1-3中的几何体进行简单的分类吗?分类的依据是什么?可以引导学生从多个角度进行分类,比如从组成几何体的面是平面还是曲面,或者从几何体的形状这样的角度。
(5) 每种几何体你能举出类似的实物吗?让学生举出生活中的几种简单几何体的实例,加深对几何体概念的认识。
2、合作交流:让学生交流图1-3的连线结果,并通过看课本得知圆柱,圆锥,棱柱,棱锥,球都是几何体,并简称体。
3、精讲点拨:()柱体()()几何体锥体()球体(1)数学上将面分成平面和曲面,它们都是一个泛指,数学上的平面没有边界,可以向四面八方无限延伸。
比如我们所说的黑板,它是平面,但它是有限的,而说到黑板所在的平面,它却是无限的,向四面八方延伸的(教师配上肢体语言,更有利于学生的理解)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如何表示不同的线段呢?
(1)用表示两个端点的大写字母表示:图1中的线段记为(或),图2中的线段记为(或).
(2)用一个小写字母表示:图1中的线段记为、图2中的线段记为.
2.如何表示射线呢?
射线(注意:不能记为射线)
3.直线又该怎样表示?
直线(或)
4.连一连,请你把左边对图形的描述和右边相应的图形用线连起来.
空)
(二)两点间的距离
两点之间线段的__,叫做这两点间的距离.用__可以测量线段的长度.
思考:“两点之间的线段,叫做这两点间的距离.”这种说法对吗?为什么?
对应训练二:
A B
如上图用刻度尺量得线段AB的长度为__厘米,因而,A、B两点间的距离为__厘
米.
(三)线段的长短比较
怎样比较两条线段的长短呢?对于下图中的线段AB、CD,我们用__量一下,就可以知道它们谁长谁短了.
8.你能举出两个反映“经过两点有且只有一条直线”的实例吗?
教(学)后记:
.
第一章 基本的几何图形
§1.4 哪条路最近
【知识回顾】
线段有_个端点,射线有_个端点,直线有_个端点.
【学习目标】
1.了解两点之间的所有连线中,线段最短.
2.会比较两条线段的长短.
3.掌握线段的中点及应用.
【学习重点与难点】
重点:线段的和、差、中点性质的应用
1.线段、射线和直线的概念是什么?
2.在我们的现实生活中,还有那些物体可以近似看做线段、射线和直线?
对应训练一:
1.绷紧的琴弦、人行横道线都可以近似地看做.线段有端点.
2.将线段向一个方向无限延伸就形成了.射线有个端点.
3.将线段向两个方向无限延伸就形成了.直线端点.
(二)图形的表示方法
自学要求:请自主学习课本第14页的内容,试着理解线段、射线和直线的表示方法.
方法不同,得到的图形相同吗?
动手做一做你能得到多少种平面图形?与同学交流.
练习:P12.A.4
(三)挑战自我:你一定能行!
1.用剪刀将一张正方形纸片剪去一个角,还剩几个角?与同组的同学交流你们的剪法一样吗?共有几种剪法?
2.一个立方体共有6个面,如果将这个立方体用刀切成两块,被分成的两个几何体共有几个面?如果切成的两块共有10个面,怎样切?用萝卜、马铃薯、或橡皮泥做一个正方体,请试一下.
青岛版数学七年级上册全册教案
第一章 基本的几何图形
§1.1我们身边的图形世界
【学习目标】
1.经历从现实世界抽象出几何图形的过程,体会丰富多彩的图形世界.
2.了解几何体、多面体、平面图形的范畴.
3.通过对平面图形的组合设计渗透知识来源于实践并应用于实践的思想,激发学生的学
习兴趣.
【学习重点与难点】
重点:了解几何体、多面体 、面、平面图形的特征.
让学生感受多面体的特征,举出现实中的实例.
(3)思考:几何体中的棱柱和棱锥有什么不同?你能举出形状与棱柱、圆柱、棱
锥、圆锥类似的实物吗?看谁举的例子多.分小组展示.
(4)练习巩固:P5页练习
二、平面图形的学习
1.小组合作学习:
阅读课本第6~7页内容,小组讨论课本上提出的问题,小组间互相交流后回答.
2.自学检测:
3.下面图形经过折叠可以围成一个棱柱的是( )
4.经过同一平面内任意三点中的两点共可以画出()
A.一条直线B.两条直线C.一条或三条直线D.三条直线
5.下列说法正确的是( )
A.画一条3cm长的直线 B.画一条3cm长射线
C.画一条3cm长的线段 D.在直线、射线、线段中直线最长
6.如左图所示的正方体沿某些棱展开后,能得到的图形是()
A. 1 B. 2 C. 3 D. 4
4.如图,根据图形回答:
(1)AB=__+__ = __+__
(2)CD=AC-__=__-BC-__
(3)AD+DC=__-BC=__
能力提高部分
5.已知在直线m上有线段MN=6厘米,NQ=3厘米,那么MQ的长为__厘米.
6.已知AB=6厘米, 点C是线段AB的中点, 点D是线段CB的中点,画出草图,并求出AD的长.
(1)数学上的“平面”是,可以.
(2)说出我们接触过的平面图形,看看下面的图形它们是由哪些图形组合而成的?
3.能力训练:
美丽的图形由有基本的图形组合而成,请你在下面网格中设计一副美丽图案
4.巩固练习:p8页练习
教(学)后记:
.
第一章基本的几何图形
§1.2点、线、面、体
【学习目标】
(1)理解任何平面图形都是由点和线组成的,任何立体图形都是点线面体组成的.
【学习重点与难点】
重点:线段、射线、直线的符号表示
【学习过程】
导入新课:
观察美丽的图片,从数学角度阐述你观察到的与数学有关的事实,尽可能用数学词汇表达出来.
极光 铁轨 输油管道
新知学习:
(一)线段、射线和直线的概念
自学要求:请自主学习课本第13页至14页的内容,要求解决两个问题:
容易确定下来,这说明了什么?
2.建筑工人在工地上的两个木楔上栓上一根细线,这样可以保证建起的墙是直的,请说明理由.
3.经过一张纸上的三个点中每两个点画直线,最少可以画多少条?最多可以画多少条?
【精练反馈】
基础部分
1.如图(1),用两种方式分别表示图中的两条直线.
⑴⑵
2.如图(2),已知点O、P、Q,画线段PQ,射线OP和直线OQ.
知识目标:在现实情境中了解线段、射线、直线等简单的平面图形;通过动手操作,理解两点确定一条直线等事实,积累操作活动经验.
能力目标:通过经历观察、思考、讨论、操作的过程,培养抽象化、符号化的数学思维能力,建立从数学中欣赏美,用数学创造美的思想观念.
情感目标:感受图形世界的丰富多彩,能够主动参与教师组织的数学活动.
练习:
课本 P11.练习.
【精练反馈】
基础部分:
1.判断:
(1)棱柱的上下两个面一样大( ) (2)圆柱和圆锥的底面都是圆( )
(3)棱柱的侧面都是四边形 ( )
2.长方体有_________个面,共有___条棱.
能力提高:聪明的脑袋转起来!
3.三棱柱有5个面,6个顶点,9条棱;四棱柱有6个面,8个顶点,12条棱;五棱柱有( )面,( )个顶点,( )条棱.由此你可以推及到n棱柱的面有几个?顶点有几个?棱有几条吗?
练习:课本P12.A.1.2.3.
(二)动动手:你一定能从中发现数学的美妙!
请同学们自己做一个正方体纸盒.
探究:
1.观察立方体的形状它是有几个面组成的?这些面的大小和形状都相同吗?
2.两个面的相接处是什么图形?
3.棱和棱的相接处是什么图形?
4.数一数立方体有几条棱?几个顶点?
5.把正方体纸盒剪开得到一个什么图形?如果展开的
它们的长短关系是AB__CD
讨论:上面这种比较长短的方法称为度量法,还可以怎样比较?与同学交流.
对应训练三:
1.比较图中线段AB、BC、CA的长短.
B
A C
2.如图所示,若AC=BD,则AB__CD.
(四)画一条线段等于已知线段
已知线段MN
M N
画线段AC,使AC=MN
画法:①画射线AB;
②用圆规量出已知线段MN的长度;
基础部分
1.如图,从A地到B地有三条通道,最近的一条通道是__,根据是______.
B
A
2.用刻度尺量出图中每两点间的距离,并比较它们的大小.
.A
.B .C
3.已知 点C在线段AB上,现有四个等式:(1)AC=BC (2)BC= AB (3)AB=AC (4)AB=2AC,其中能表示点C是线段AB的中点的等式的个数是( )
对应训练五:
1.如图,已知线段AB,画出它的中点C
解:(1)用刻度尺量得线段AB的长度为__厘米,
计算得 AB=__厘米,
(2)在线段AB上截取AC=__厘米,
点C就是要画的线段AB的中点.
2.小红说,“已知三点A、B、C,如果AC=BC,则点C一定是线段AB的中点.”你同意她的观点吗?
【精练反馈】
流星雨 折扇
二、新知学习:
(一)交流与发现:
从上图中你发现了:______________________________________________
几何图形是由_________________________________________组成的.
自学检测:
四棱柱是有几个面围成的?侧面是什么图形?顶点是由什么相交而成的?
知识拓展部分
7.已知在直线n上有线段AB=10厘米,PA+PB=20厘米,下列说法正确的是( )
A.点P不能在直线AB上
B.点P只能在直线AB外
C.点P只能在线段AB的延长线上
D.点P不能在线段AB上
8.已知线段BC=8厘米,点A是BC的中点,点P在直线BC上,且AP=6厘米,求BP的长.
教(学)后记:
③在射线AB上以A为圆心,截取AC =MN .
线段AC就是要画的线段.
M N A C B
对应训练四:已知线段a、b
画线段AB,使AB=a+b
画法:
总结:画一条线段等于已知线段的步骤是:______________
_______________________________.
(五)线段的中点
如图,如果点M把线段AB分成相等的两条线段AM与MB那么点M叫做线段AB的中点.此时,AM=__= __,AB=2__=2__,AM+MB=__.
(2)通过动手操作,从中体会立体图形的组成.
(3)联系现实生活,知道几何知识来源于实践,了解学习几何的必要性,从而激发学习几何的热情.