第16章《二次根式》单元测试题

合集下载

第十六章 二次根式 单元测试 人教版八年级数学下册

第十六章   二次根式    单元测试  人教版八年级数学下册

2022年春人教版初中八年级数学下册第十六章二次根式班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( )A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是()A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( ) A.4 B.2 C. 2 D.04.下列各式中不正确的是( )A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是()A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( )A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( ) A.2 B.4 C.3 D.128. 2,5,m 是某三角形三边的长,则(m -3)2+(m -7)2等于( )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__ _.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __ __.15.(河北模拟)32+8=a b ,则ab =__ __.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分12分)计算:(1)⎝⎛⎭⎪⎪⎫27-43÷3;(2)20.75+12-|3-2|;(3)-12÷2-13×12+1224;(4)(5+3)(5-3)-(3-1)2.18.(本题满分10分)计算: (1)239a +a4-a 1a;(2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a .19.(本题满分10分 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程: (1)________的解法是错误的;(2)求代数式a +2a 2-6a +9的值,其中a =-2 022.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.21.(本题满分10分)如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.22.(本题满分10分)先化简,再求值.⎝⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3.23.(本题满分12分)已知x =3+2,y =3-2,求: (1)x 2-y 2的值; (2)x y +yx 的值.24.(本题满分12分)据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)求从40 m高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x 2+2的有理化因式是1+x 2+2. (2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如: 11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2.【知识理解】(1)填空:2x 的有理化因式是________; (2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________.【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n .参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( B)A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是( B)A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( B) A.4 B.2 C. 2 D.04.下列各式中不正确的是( A)A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是(D)A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( C)A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( C) A.2 B.4 C.3 D.128. 2,5,m是某三角形三边的长,则(m-3)2+(m-7)2等于( D )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( A ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( D )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( A )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( D )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022【解析】先求出a 1,a 2,a 3,…,a n 的值,代入原式利用公式1n (n +1)=1n -1n +1进行化简与计算,即可求解. 二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__4__.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __2__.15. 32+8=a b ,则ab =__10__.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__-52__. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)计算:(1)⎝ ⎛⎭⎪⎪⎫27-43÷3; 解:原式=⎝⎛⎭⎪⎫33-233÷3=73. (2)20.75+12-|3-2|; 解:原式=3+23-(2-3)=43-2.(3)-12÷2-13×12+1224; 解:原式=-6-2+6=-2.(4)(5+3)(5-3)-(3-1)2.解:原式=5-9-(3-23+1)=-8+2 3.18.(本题满分10分)计算: (1)239a +a 4-a 1a ; 解:原式=2a +12a - a =32a. (2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a . 解:原式=⎝⎛⎭⎪⎫-4× 12× 23·8a 2·2a ·2a =-1623. 19.(本题满分10分) 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程:(1)________的解法是错误的;(2)求代数式a +2a 2-6a +9a =-2 022.解:(1)小亮. (2)∵a =-2 022,∴a +2a 2-6a +9=a +2(a -3)2=a +2|a -3| =a +2(3-a)=-a +6,=2 022+6=2 028.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.解:∵9<11<16,∴3<11<4,∴2<11-1<3,∴a=2,∴b=11-1-2=11-3,∴(11+2)(11-3+1)=(11+2)(11-2)=11-4=7.21.(本题满分10分) 如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.解:(1)制作长方体盒子的纸板的面积为(63)2-4×(3)2=108-12=96(cm2).(2)长方体盒子的体积为(63-23)(63-23)×3=43×43×3=483(cm3).22.(本题满分10分)先化简,再求值.⎝ ⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝ ⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3. 解:原式=6xy +3xy -4xy -6xy=-xy , 当x =32,y =3时,原式=-32×3=-322. 23.(本题满分12分) 已知x =3+2,y =3-2,求:(1)x 2-y 2的值;(2)x y +y x的值.解:(1)∵x =3+2,y =3-2,∴x +y =(3+2)+(3-2)=23,x -y =(3+2)-(3-2)=22, ∴x 2-y 2=(x +y)(x -y)=23×22=4 6. (2)xy =(3+2)(3-2)=1, 则x y +y x =x 2+y 2xy =(x +y )2-2xy xy =(23)2-2×11=10.24.(本题满分12分) 据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t =h 5(不考虑风速的影响). (1)求从40 m 高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?解:(1)由题意知h=40 m,t=h5=405=8=22(s).(2)不正确,理由:当h2=80 m时,t2=805=16=4(s),∵4≠2×22,∴不正确.(3)当t=6 s时,6=h5,h=180 m,鸡蛋产生的动能=10×0.05×180=90(J).25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x2+2的有理化因式是1+x2+2.(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如:11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2. 【知识理解】(1)填空:2x 的有理化因式是________;(2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________. 【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n. 解:(1)∵2x ×x =2x ,∴2x 的有理化因式是x.故答案为x.(2)①原式=7-6(7+6)(7-6)=7- 6. ②原式=32-17(32+17)(32-17)=32-17. 故答案为①7-6;②32-17.(3)原式=2-1(1+2)(2-1)+3-2(3+2)(3-2)+2-3(2+3)(2-3)+…+n +1-n (n +1+n )(n +1-n ), =2-1+3-2+2-3+…+n +1-n ,=n +1-1.。

2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)

2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)

2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。

人教版初中数学八年级下册《第十六章 二次根式》单元测试题(含答案

人教版初中数学八年级下册《第十六章 二次根式》单元测试题(含答案

《第十六章二次根式》单元测试题一、选择题(本大题共10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一项符合题意)1.要使代数式x +1x -1有意义,则x 的取值范围是( ) A .x ≥-1且x ≠1 B .x ≠1C .x >-1且x ≠1 D .x ≥-1 2.下列各等式成立的是( )A .(-3)2=-3 B.2-2=-2C .(5 3)2=15 D.(-3)2=33.下列运算正确的是( )A.2+3=6B.3×2=6C.()3-12=3-1 D.52-32=5-3 4.计算412+3 13-8的结果是( ) A.3+2B.3C.33D.3- 2 5.若a =2 2+3,b =2 2-3,则下列等式成立的是( ) A .ab =1 B .ab =-1C .a =b D .a =-b6.已知k ,m ,n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系正确的是( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n7.实数a ,b 在数轴上对应点的位置如图1所示,且|a |>|b |,则化简a 2-|a +b |的结果为( )图1A .2a +bB .-2a +bC .2a -bD .b 8.若y =x -2+2-x3-3,则(x +y )x 的值为( )A .2B .-3C .7-4 3D .7+4 39.一个等腰三角形两边的长分别为75和18,则这个三角形的周长为( ) A .10 3+3 2B .5 3+6 2C .10 3+3 2或5 3+6 2D .无法确定10.按图2所示的程序计算,若开始输入的x 值为2,则最后输出的结果是( )图2A .14B .16C .8+5 2D .14+ 2二、填空题(本大题共7小题,每小题3分,共21分)11.若最简二次根式a 与-32a -5能够合并,则a =________. 12.若整数x 满足|x |≤3,则使7-x 为整数的x 的值为________. 13.计算:8-2(3-2)0+⎝⎛⎭⎫12-1=_________.14.当a =15时,代数式2a -3-5a +7a +3的值为________. 15.计算:(54-1496)÷27=________.16.已知x =3+1,y =3-1,则x 2+2xy +y 2=________. 17.若a =2+1,则a 3-5a +2019=________. 三、解答题(本大题共5小题,共49分) 18.(9分)计算: (1)20+55-13×12; (2)512÷1550×1532;(3)(3 2-1)(1+3 2)-(3 2-1)2.19.(8分)已知a =2-2,b =2+2,求a 3b +a 2b 2a 2+2ab +b 2÷a 2-aba 2-b 2的值.20.(10分)已知x =7+4 3,y =-7+4 3,求下列各式的值. (1)1x +1y ;(2)x y +y x .21.(10分)若无理数A 的整数部分是a ,则它的小数部分可表示为A -a .例如:π的整数部分是3,因此其小数部分可表示为π-3.若x 表示47的整数部分,y 表示它的小数部分,求代数式(47+x )y 的值.22.(12分)一个三角形三边的长分别为a ,b ,c ,设p =12(a +b +c ),根据海伦公式S =p (p -a )(p -b )(p -c )可以求出这个三角形的面积.若a =2,b =3,c =2 2,求: (1)三角形的面积S ; (2)长为c 的边上的高h .详解详析1.[解析] A 要使代数式有意义,应满足⎩⎪⎨⎪⎧x +1≥0,x -1≠0,解得x ≥-1且x ≠1.2.[解析] D 选项A 的被开方数为负数,无意义;2-2=122=⎝⎛⎭⎫122=12;()5 32=52×()32=25×3=75;()-32=|-3|=3.3.[解析] B A 项,2+3已是最简形式,不能再合并,故错误; B 项,3×2=6,故正确;C 项,()3-12=(3)2-2×3×1+1=3-2 3+1=4-2 3,故错误; D 项,52-32=16=42=4,故错误.故选B. 4.[解析] B 412+3 13-8=4×22+3×33-2 2= 3. 5.[解析] B ab =(2 2+3)(2 2-3)=(2 2)2-32=8-9=-1. 故选B. 6.[解析] D135=k 15=15×9=3 15,所以k =3;450=15m =15×15×2=15 2,所以m =2;180=6n =36×5=6 5,所以n =5.所以m <k <n .7.[答案] D8.[解析] C 由二次根式有意义的条件,得⎩⎪⎨⎪⎧x -2≥0,2-x ≥0,解得x =2.于是y =- 3.所以(x+y )x =(2-3)2=7-4 3.故选C.9.[解析] A 因为75=5 3,18=3 2.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,5 3=75,72<75,所以不能构成三角形,故三角形的周长为10 3+3 2.10.[解析] C 将2代入x (x +1)运算:2(2+1)=2+ 2.∵2+2<15,∴将2+2再次代入x (x +1)运算:(2+2)(2+2+1)=(2+2)(3+2)=8+5 2.∵8+5 2>15,∴将8+5 2输出.故选C.11.[答案] 5[解析] 由题意,知a 与-3 2a -5的被开方数相同,所以a =2a -5,解得a =5.12.[答案] -2或3[解析] 当x 取-2或3时,原式的值为整数,分别等于3或2. 13.[答案] 2+2[解析] 先把零指数幂和负整数指数幂按公式a 0=1(a ≠0),a -p =1a p (a ≠0)化简,8-2(3-2)0+⎝⎛⎭⎫12-1=2 2-2+2=2+2.14.[答案] 4 3[解析] 将a =15代入代数式得27-75+108,化简结果为4 3. 15.[答案]2 23[解析] 原式=(3 6-14×4 6)÷3 3=2 6÷3 3=2 23.16.[答案] 12[解析] 由x =3+1,y =3-1,得x +y =2 3,∴x 2+2xy +y 2=(x +y )2=(2 3)2=4×3=12.17.[答案] 2021[解析] ∵a 2=(2+1)2=3+2 2,∴原式=a (a 2-5)+2019=(2+1)(3+2 2-5)+2019=2(2+1)(2-1)+2019=2+2019=2021.18.解:(1)原式=2 5+55-33×2 3=3-2 =1.(2)原式=⎝⎛⎭⎫5×5×1512×150×32=5 36100=3.(3)方法一:原式=(3 2)2-12-[(3 2)2-2×3 2+12] =(3 2)2-1-(3 2)2+6 2-1 =6 2-2.方法二:原式=(3 2-1)[(1+3 2)-(3 2-1)] =(3 2-1)×2 =6 2-2.19.解:a 3b +a 2b 2a 2+2ab +b 2÷a 2-ab a 2-b 2=a 2b (a +b )(a +b )2·(a +b )(a -b )a (a -b )=ab ,当a =2-2,b =2+2时, 原式=(2-2)(2+2)=2.20.解:∵x =7+4 3,y =-7+4 3, ∴x +y =(7+4 3)+(-7+4 3) =7+4 3-7+4 3=8 3, xy =(7+4 3)(-7+4 3) =(4 3)2-72=48-49=-1. (1)1x +1y =x +y xy =8 3-1=-8 3. (2)x y +y x =x 2+y 2xy =(x +y )2-2xy xy=(8 3)2-2×(-1)-1=-194.21.[解析] 解决该问题的关键在于确定出47的整数部分,然后再表示出它的小数部分,最后代入代数式求值.解:∵6<47<7, ∴47的整数部分为6, 即x =6,则47的小数部分y =47-6,∴(47+x )y =(47+6)(47-6)=(47)2-62=47-36=11. 22.解:(1)p =12(2+3+2 2)=32(2+1),p -a =3+22,p -b =32(2-1),p -c =3-22,S =p (p -a )(p -b )(p -c )=32(2+1)×3+22×32(2-1)×3-22=347.(2)∵S =12ch ,∴h =2S c =327÷2 2=3814.。

(完整版)第十六章二次根式测试题

(完整版)第十六章二次根式测试题

…○…………○…………内…………○…………装…………○…………订…………○…………线…………○…………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………学校: 班级: 考号 姓名:第十六章二次根式测试题一、选择题(每题3分,共30分) 1.下列各式成立的是( )A.222-=-)(B.552-=-)( C.x =2x D.662=-)(2.如果a 是任意数,下列各式中一定有意义的是( ) A.a B.2a1C.12+aD.2a - 3.下列根式中,最简二次根式是 ( ) A.a 25 B.22b a + C.2aD.5.0 4.计算)2012)(3252(+-的结果是( ) A.32 B.16 C.8 D.45.等式(1)(1)11a a a a +-=+•-成立的条件是( ) A. 1a ≥- B. 1a ≤ C. 1<1a -≤ D. 11a -≤≤6.若x <2,化简x x -+-3)2(2的正确结果是 ( ) A.-1 B.1 C.2x-5 D.5-2x7.若13-m 有意义,则m 能取的最小整数值是 ( ) A.m=0 B.m=1 C.m=2 D.m=38.131x 3+-=+-x xx 成立的条件是( ) A.x ≥-1 B.x ≤3 C.-1≤x ≤3 D.-1<x ≤39.下列各式(1)752=+(2)x x 32x 5=-(3)72542508=+=+ (4)a a a 362733=+ 其中正确的是( )A.(1)和(3)B.(2)和(4)C.(3)和(4)D.(1)和(4)10.实数a ,b 在数轴上的位置如图所示,则化简222)(a b a b ---的结果是( )A.-2bB.-2aC.2(b-a)D.0二、填空题(每题4分,共28分)11.当123x -=时,代数式22x 2++x 的值是12.52-的绝对值是 ,2的倒数是 (填最简二次根式) 13.当x 时,52+x 有意义,若xx-2有意义,则x . 14.化简=⨯04.0225 ,=-22108117 15.=•y xy 82 ,=⨯2712 . 16.比较大小:32 13(填“>”、“=”、“<”) 17.若2(2)2a a -=-,则a 的取值范围是三、解答题(42分)装订线内不许答题 18.计算(1)272833-+- (2)222664÷-)((3)22525522552)())((---+(4)a a aa a 278148a 72+-19.如图,用一个面积为x 的正方形和四个相同的长方形拼成一个面积为8x 的正方形图案,求长方形的周长。

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。

16章二次根式全章测试题

16章二次根式全章测试题

第16章 二次根式一、选择题(每小题2分,共20分)1.有意义,那么x 的取值范围是( ) A.3x ≠ B.3x < C.3x > D.3x ≥2.12a -,那么( ) A.a <12 B.错误!未找到引用源。

≤12 C.a >12D.a ≥123.能够合并,那么a 的值为( )A.2B.3C.4D.54.已知3y =错误!未找到引用源。

, 则2xy 的值为( )A.15-B.15C.152-D.1525..对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是3 6.下列计算正确的是 ( )①69494=-⋅-=--))((;②69494=⋅=--))((;③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个7. 下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:abab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共24分)11.实数范围分解因式:⑴52-x =⑵742-a = (3)2223y x-=12.比较大小;______错误!未找到引用源。

;23-______32-. 13.计算:(1)=-222425 (2)=⋅baa b 182____________;(3)=⋅b a 10253___________.14.已知a ,b 为两个连续的整数,且a b ,则a b -= . 15.若实数y x ,2(0y =,则xy 的值为 .16.已知,a b 为有理数,,m n 分别表示5的整数部分和小数部分, 且21amn bn +=,则2a b += .17.当x___________时,x 31-是二次根式;当a=3时,则=+215a ___________.18.已知:2420-=x ,则221x x +的值是___________;若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.⑴))((36163--⋅-; ⑵63312⋅⋅;⑶521312321⨯÷;⑷)(b a b b a 1223÷⋅.(5)1); (6)20.先化简,再求值:(1)((6)a a a a --,其中12a =(2)111x x ⎛⎫- ⎪+⎝⎭其中x .21. (6分)已知22x y ==+,求下列代数式的值:(1)222x xy y ++ ; (2)22x y -.22.(6分)一个三角形的三边长分别为54 (1)求它的周长(要求结果化简); (2)请你给出一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.23.(4分)已知,a b 为等腰三角形的两条边长,且,a b满足4b ,求此三角形的周长.24.(6分)阅读下面问题:1=;2=. (1的值;(2(n 为正整数)的值; (3⋅⋅⋅25.(8分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:23(1+=,善于思考的小明进行了一下探索:设2(a m ++ (其中,,,a b m n均为正整数),则有2222a m n +=++, ∴ 222,2a m n b mn =+=.这样小明就找到一种把部分a +. 请仿照小明的方法探索并解决下列问题:(1)当,,,a b m n均为正整数时,若2(a m ++,用含有,m n 的式子分别表示a ,b ,得a =______,b =__________. (2)利用所探索的结论,找一组正整数,,,a b m n 填空:.(答案不唯一)(3)若2(a m ++,且,,a m n 均为正整数,求a 的值.。

人教版八年级下册《第16章二次根式》单元测试(有答案)

人教版八年级下册《第16章二次根式》单元测试(有答案)

第十六章《二次根式》单兀测试题14. 选择题(本大题共10小题,每小题2分,共20分)1. 下列式子一定是二次根式的是( )A. . - X - 2B. 、. XC. X 2D.m-1 ----------------------2. 二次根式3 ^2(m 3)的值是( )A. 3.2B. 2,3C.2.2D. 03. 若,3m -1有意义,则m能取的最小整数值是(A. m= 0B. m= 1C. m= 2D. m = 3X_ X24. 若X < 0,则--一的结果是( )XA. 0B. - 2C. 0 或一2D. 2 15.16.17.18.19.20.21.5.下列二次根式中属于最简二次根式的是A.賦B. J48C. £) D. - 4a 46.如果x ・x - 6 = x(x - 6),那么( )A. X - 0B. x_6C. 0_x_6D. x 为一切实数7.小明的作业本上有以下四题:①』16a4 =4a2;②寸5a 汉』10a = 5V2a :③ a l- = ^/a^— = 7a •,④J3a 2a =V a。

\ a \ a做错的题是(A.①)B.②C.③D.④(118.化简•-V5 6的结果是()A.J1B.30、330C.一330D.30 11 30309.若最简二次根式1a与、4-2a的被开方数相冋, 则a的值为()34a 二1 a = TA. a 二B a =_C D.4310.若■■ 75n是整数, 则正整数n的最小值是()A.2B.3C.4 D.5填空题(本大题共10小题,每小题3分,共30分)11. 若J(3—b)2 =3—b,贝V b的取值范围是____________12. 1(2-丿5)2= ____________ 。

13. 若m < 0,贝U m +Pm2 +Vm3 = _______________ 。

1 一一—一—与43^12的关系是______________.3 - . 2;■' 2若x = •. 5 - 3,则i x 6^ 5的值为右一个长方体的长为2、6 cm,宽为.3 cm,咼为2 cm,则它的体积为_____________若y = J x- 3 +』3- x + 4,贝V x十y = ___________ 。

人教版八年级下册《第16章二次根式》单元测试(有答案)-(数学)

人教版八年级下册《第16章二次根式》单元测试(有答案)-(数学)

第十六章 《二次根式》单元测试题一、 选择题(本大题共10小题,每小题2分,共20分) 1. 下列式子一定是二次根式的是( ) A.2--xB.xC.22+xD.22-x2. 二次根式13)3(2++m m 的值是( )A. 23B. 32C.22D. 03. 若13-m 有意义,则m 能取的最小整数值是( )A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( )A. 0B. -2C. 0或-2D. 2 5. 下列二次根式中属于最简二次根式的是( ) A.14B.48C.ba D.44+a6. 如果)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数7. 小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a =•=112;④a a a =-23。

做错的题是( )A. ①B. ②C. ③D. ④8. 化简6151+的结果是( ) A.3011B. 33030C.30330D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( )A. 43-=aB. 34=a C. 1=a D. 1-=a 10. 若n 75是整数,则正整数n 的最小值是( )A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。

12.2)52(-=__________。

13. 若m < 0,则332m m m ++=_______________。

14.231-与23+的关系是____________。

15. 若35-=x ,则562++x x 的值为___________________。

16. 若一个长方体的长为62c m ,宽为3c m ,高为2c m ,则它的体积为_______c m 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16章《二次根式》单元测试题
班别 姓名 一.选择题:(每小题3分,共30分) 1、下列各式一定是二次根式的是( )
A 、7-
B 、32
C 、12+x
D 、m 2
2、若32--x x 有意义,则x 满足条件( )
A 、x >2且x ≠3.
B 、x ≥2且x ≠3
C 、x <2且x ≠3
D 、x ≤2且x ≠3.
3、下列二次根式中,是最简二次根式的是( )
A 、8x
B 、32-x
C 、x -y x
D 、b a 23
4、计算82-的结果是( )
A 、6
B 、6
C 、2
D 、2
5、以下运算错误的是( )
A 、3535⨯=⨯
B 、169169+=+
C 、2222⨯=
D 、2342a b ab b =
6、2的倒数是( )
A 、2-
B 、2
C 、22-
D 、22
7、下列二次根式中,可以合并的是( )
A 、2
3a a a 和 B 、232a a 和 C 、a a a a 132和 D 、2423a a 和 8、已知20n 是整数,则满足条件的最小正整数n 为( )
A .2
B .3
C .4
D .5
9、等式2111x x x -⋅+=-成立的条件是( )
A.1x >
B.1x <-
C.≥
D. D.≤
10、设a=
19-1,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和5
二、填空题:(每小题4分,共24分)
11.比较大小:11,
12.若0)1(32=++-n m ,则m -n 的值为 。

13.三角形三边长分别为45,80,125,则这个三角形周长为 。

14、若3的整数部分是a ,小数部分是b ,则=-b a 3 。

15.计算:20102009)23()23(+•-= 。

16.观察下列各式:①312311=+,②413412=+ ③5
14513=+,…… 请用含n (n ≥1)的式子写出你猜想的规律: .
三、解答题:每小题5分,共15分
17、计算(2
-; 18、计算3)154276485(÷+-;
19
-

四、解答题:每小题8分,共24分
20、2)23()12)(12(-+-+
21、已知 ,求下列各式的值;
(1)x 2-2xy+y 2 , (2)x 2-y 2;
22、先化简,再求值:
1
221214322+-+÷⎪⎭⎫ ⎝⎛---+x x x x x x ,其中x =
五、解答题:每小题9分,共27分
23、已知:的值。

求2,211881+++-+-=x y y x x x y
24、已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A=90°,△BCD 为等边三角形,且AD=2,AB=6 ,求梯形ABCD 的周长.
25.有这样一类题目:将2a b ±化简,如果你能找到两个数m 、n ,使22m n a +=并且mn b =,则将2a b ±变成()2222m n mn m n +±=±开方,从而使得2a b ±化简。

例如:化简322±
()()()222232212221222123221212
+=++=+
+=+∴+=+=+ 仿照上例化简下列各式:。

相关文档
最新文档