行列式与矩阵幂迹代数关系

合集下载

线性代数中行列式与矩阵的比较

线性代数中行列式与矩阵的比较

线性代数中行列式与矩阵的比较作者:王振尤兰来源:《课程教育研究·新教师教学》2015年第35期【基金项目】盐城工学院人才引进项目(XKR2011022)。

【中图分类号】O151.22-4 【文献标识码】B 【文章编号】2095-3089(2015)35-0003-02行列式和矩阵是线性代数中最先介绍的两个基本概念,贯穿整个线性代数课程。

但部分同学在学完了线性代数之后,对它们的符号、性质及应用却依然没有搞清楚,往往混淆。

多年来已有一些作者对这一对概念进行分析,但由于这两个概念在线性代数的每个部分都需要用到,所以详细地、多角度地分清这两个基本概念,对学好、用好线性代数这门课程非常必要。

文献[1,2]对这行列式与矩阵从概念与性质角度已做了部分辨析,下面笔者拟从概念、运算、化简、应用四个方面对这两个概念进行剖析,给出它们之间的区别与联系,串起线性代数中大部分内容,希望能对线性代数的教与学提供一个参考。

1.概念的比较1.1行列式与矩阵概念的区别由行列式和矩阵的定义可知,虽然行列式与矩阵表面上都是将一些数按行按列排成数表,再在两边加上一个符号的形式,但这两个概念是完全不同的。

首先,两边所加的符号不同:行列式两边用竖线“||”,而矩阵两边用圆括弧“()”或方括弧“”[ ]。

其次,形状不同:行列式的行数与列数必须相等,但矩阵的行数与列数可以不相等。

再次,意义不同:n阶行列式是由n个数a(1≤i,j≤n)按规定的运算法则所确定的一个数,而m行n列矩阵是由m×n个数aij(1≤i≤m,1≤j≤n)按行按列排成的一个数表。

故两个表面不一样的行列式,它们的值却可能相等;而两个矩阵相等则要求必须是同型矩阵且相同位置元素相等,所以两个不同型的零矩阵是不相等的。

1.2与行列式、矩阵相关的一些概念当A是方阵(行数=列數)时,有对应的行列式|A|,称为方阵A阵的行列式;当A不是方阵时,没有对应的行列式。

在一般m×n矩阵A中,任取k行与k列(k≤m,k≤n),位于这些行列交叉处的k个元素,不改变它们在A中所处的位置次序而得到的k阶行列式,称为A的一个k阶子式。

线性代数知识点总结

线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。

矩阵相乘 行列式-概述说明以及解释

矩阵相乘 行列式-概述说明以及解释

矩阵相乘行列式-概述说明以及解释1.引言1.1 概述概述矩阵相乘和行列式是线性代数中非常重要的概念。

矩阵相乘是将两个矩阵按照一定顺序相乘得到一个新的矩阵的运算,而行列式则是一个矩阵的一个标量值,用于判断矩阵是否可逆以及计算矩阵的性质。

本文将深入探讨矩阵相乘和行列式的定义、性质以及它们之间的关系,旨在帮助读者更深入理解和应用这两个重要的概念。

1.2 文章结构本文将分为三个主要部分:引言、正文和结论。

在引言部分中,我们将介绍矩阵相乘和行列式的基本概念,并阐述本文的目的和意义。

在正文部分,我们将详细讨论矩阵相乘和行列式的原理和计算方法,以及它们之间的关系。

我们将介绍如何进行矩阵相乘运算,以及如何计算一个矩阵的行列式。

我们还将讨论矩阵相乘和行列式在数学和其他领域中的重要性。

最后,在结论部分,我们将总结矩阵相乘和行列式的重要性,并探讨它们在不同应用领域中的作用。

我们还将展望未来,在哪些领域矩阵相乘和行列式可能会有更广泛的应用。

1.3 目的:本文的目的在于探讨矩阵相乘和行列式的概念和性质,通过深入理解这两个数学概念之间的关系,帮助读者更好地理解和运用矩阵运算以及行列式计算。

具体来说,我们的目的包括但不限于以下几点:- 解释矩阵相乘和行列式的定义和计算方法;- 探讨矩阵相乘和行列式在数学和实际应用中的重要性;- 分析矩阵相乘和行列式之间的关系,包括它们的性质和特点;- 提供矩阵相乘和行列式在实际问题中的具体应用案例;- 展望未来矩阵相乘和行列式研究的发展方向和可能应用领域。

通过本文的阐述,读者将能够更深入地理解矩阵相乘和行列式的概念和重要性,以及它们在数学理论和实际应用中的价值和意义,从而为进一步学习和研究提供基础和启发。

2.正文2.1 矩阵相乘矩阵相乘是线性代数中非常重要的运算之一。

在进行矩阵相乘时,我们需要满足两个矩阵的维度匹配规则,即第一个矩阵的列数必须等于第二个矩阵的行数。

如果我们有一个m×n的矩阵A和一个n×p的矩阵B相乘,那么它们的乘积将会是一个m×p的矩阵。

线性代数下的行列式和矩阵

线性代数下的行列式和矩阵

线性代数下的行列式和矩阵线性方程组一般有 m 个常数项,n 个未知数,m * n 个系数。

若常数项全为 0 ,则为齐次线性方程组;若未知数全为0 ,则称为零解。

于是我们考虑的问题是:齐次方程组:1.是否存在非零解,以及存在的条件2.通解的结构与性质3.解法非齐次方程组:1.是否有解,以及有解的条件是什么2.有多少解以及对应解数量的条件是什么3.多解的结构与性质4.解法行列式二,三阶行列式行列式的初始作用是解线性方程组!例如:最简单的二元线性方程组\left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{aligned} \right.\Rightarrow 消元 \Rightarrow \left\{ \begin{aligned}x_1 = \frac{b_1a_{22} - b_2a_{12}}{a_{11}a_{22} -a_{12}a_{21}} \\ x_1 = \frac{b_2a_{21} -b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}} \end{aligned} \right.可以得出结论,答案是由方程的四个系数和常数决定的。

所以记住四个系数作为行列式,指定行列式的值是上式的分母:\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22}\end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}于是有了这么一个行列式之后,我们就可以得到:D = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \ D_1 = \begin{bmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{bmatrix} \ D_2 = \begin{bmatrix}a_{21} & b_1 \\ a_{21} & b_2 \end{bmatrix} \\Rightarrow \\ x_1 = \frac{D_1}D, x_2 = \frac{D_2}D同理可以推广到三元线性方程组,定义三阶行列式。

线性代数中行列式与矩阵的比较

线性代数中行列式与矩阵的比较

行列式和矩阵是线性代数中最先介绍的两个基本概念,贯穿整个线性代数课程。

但部分同学在学完了线性代数之后,对它们的符号、性质及应用却依然没有搞清楚,往往混淆。

多年来已有一些作者对这一对概念进行分析,但由于这两个概念在线性代数的每个部分都需要用到,所以详细地、多角度地分清这两个基本概念,对学好、用好线性代数这门课程非常必要。

文献[1,2]对这行列式与矩阵从概念与性质角度已做了部分辨析,下面笔者拟从概念、运算、化简、应用四个方面对这两个概念进行剖析,给出它们之间的区别与联系,串起线性代数中大部分内容,希望能对线性代数的教与学提供一个参考。

1.概念的比较1.1行列式与矩阵概念的区别由行列式和矩阵的定义可知,虽然行列式与矩阵表面上都是将一些数按行按列排成数表,再在两边加上一个符号的形式,但这两个概念是完全不同的。

首先,两边所加的符号不同:行列式两边用竖线“||”,而矩阵两边用圆括弧“()”或方括弧“”[]。

其次,形状不同:行列式的行数与列数必须相等,但矩阵的行数与列数可以不相等。

再次,意义不同:n 阶行列式是由n 2个数a ij(1≤i,j ≤n)按规定的运算法则所确定的一个数,而m 行n 列矩阵是由m×n 个数a ij (1≤i ≤m ,1≤j ≤n)按行按列排成的一个数表。

故两个表面不一样的行列式,它们的值却可能相等;而两个矩阵相等则要求必须是同型矩阵且相同位置元素相等,所以两个不同型的零矩阵是不相等的。

1.2与行列式、矩阵相关的一些概念当A 是方阵(行数=列数)时,有对应的行列式|A|,称为方阵A 阵的行列式;当A 不是方阵时,没有对应的行列式。

在一般m×n 矩阵A 中,任取k 行与k 列(k ≤m,k ≤n),位于这些行列交叉处的k 2个元素,不改变它们在A 中所处的位置次序而得到的k 阶行列式,称为A 的一个k 阶子式。

当A 是方阵时,由A 的行列式|A|的各个元素的代数余子式所构成的矩阵称为矩阵A 的伴随矩阵,其中余子式M ij 均是将|A|中的第i 行,第j 列划去所得到的n-1阶行列式。

矩阵的秩与行列式

矩阵的秩与行列式

矩阵的秩与行列式矩阵是数学中的一个重要概念,它通过行与列组成的矩形区域来表示一组数。

在矩阵运算中,矩阵的秩与行列式是两个基本概念,它们在解决线性方程组、计算逆矩阵等问题中具有重要的作用。

本文将从理论和实际应用两个方面探讨矩阵的秩与行列式的关系。

一、矩阵的秩的定义与性质秩是矩阵的一个重要指标,用来描述矩阵线性无关的程度。

对于一个m×n的矩阵A,它的秩记作r(A),满足以下几个性质:1. 秩的定义:矩阵A的秩是指矩阵A的非零行数与非零列数中的较小值。

即r(A) = min{m, n}。

2. 行、列等价性:对于任意的矩阵A,它的行秩和列秩是相等的,即r(A) = r(A的转置)。

3. 矩阵的秩与行列式:矩阵的秩与其行列式之间存在一定的联系。

二、矩阵的行列式的定义与性质行列式是矩阵的一个标量值,在线性代数的课程中得到广泛的应用。

对于一个n阶方阵A,它的行列式记作det(A),行列式具有如下性质:1. 行列式的定义:对于n阶方阵A,行列式det(A)等于矩阵A所有元素的代数余子式按照特定规则组成的代数和。

2. 行、列互换:如果交换矩阵的两行或两列,它的行列式的值将变为相反数。

3. 行列式的性质:行列式具有多个性质,包括行列式与矩阵的行列互换、某一行或一列元素乘以一个常数、两行或两列相等等,行列式的值也将发生相应的变化。

三、矩阵秩与行列式的关系矩阵的秩与行列式在一定程度上存在一些关联关系,这一关系体现在以下两个方面:1. 矩阵的秩与行列式的关系:对于一个m×n的矩阵A,其秩r(A)等于它的行列式det(A)不等于零的最大阶数。

即r(A) = k,当且仅当A的k阶子式不等于零,而A的所有比k阶更大的子式均等于零。

2. 行列式的性质对秩的影响:若一个n阶矩阵A的行列式det(A)不等于零,那么该矩阵的秩r(A)等于其阶数n;若矩阵A的行列式det(A)等于零,那么该矩阵的秩r(A)小于n。

这是因为矩阵的秩与其行列式的零空间相关联,若行列式不为零,则矩阵的零空间只有零向量,从而秩等于阶数;若行列式为零,则矩阵的零空间存在非零向量,从而秩小于阶数。

线性代数中的行列式与向量组探索

线性代数中的行列式与向量组探索

线性代数中的行列式与向量组探索在线性代数中,行列式和向量组是两个重要的概念。

行列式是矩阵的一个标量值,它具有很多重要的性质和应用。

向量组则是由一组向量所生成的集合,它们之间存在着紧密的联系。

本文将探索行列式和向量组在线性代数中的重要性以及它们之间的关系。

一、行列式的定义和性质行列式是一个方阵所具有的一个标量值,它可以通过一定的计算规则来求解。

行列式的定义是通过递归的方式来定义的,对于一个2x2的矩阵而言,其行列式为ad-bc,其中a、b、c、d分别为矩阵中的元素。

对于更高阶的矩阵,行列式的计算规则稍微复杂一些。

行列式具有一些重要的性质。

首先,行列式的值可以告诉我们一个矩阵是否可逆。

如果一个矩阵的行列式为0,那么它是不可逆的;如果行列式不为0,那么它是可逆的。

其次,行列式的绝对值可以告诉我们一个矩阵对应的线性变换对空间的伸缩程度。

如果行列式的绝对值大于1,那么线性变换会对空间进行放大;如果行列式的绝对值小于1,那么线性变换会对空间进行缩小。

此外,行列式还具有交换性、线性性等重要的性质。

二、向量组的定义和线性相关性向量组是由一组向量所生成的集合。

向量组的定义是线性代数中的基本概念之一。

一个向量组可以包含任意多个向量,这些向量可以是行向量或者列向量。

向量组可以通过线性组合的方式生成新的向量。

向量组的线性相关性是指向量组中的向量之间是否存在一种线性关系。

如果向量组中的向量之间存在一种非平凡的线性关系,那么向量组是线性相关的;如果向量组中的向量之间不存在任何非平凡的线性关系,那么向量组是线性无关的。

线性相关性的判断可以通过求解向量组的线性方程组来进行。

三、行列式与向量组的关系行列式和向量组之间存在着紧密的关系。

首先,对于一个n维向量组,如果它是线性相关的,那么它所生成的行列式为0。

这是因为线性相关的向量组中存在非平凡的线性关系,因此它们所生成的矩阵的行列式为0。

其次,行列式可以用来判断向量组的线性相关性。

线性代数行列式算与性质

线性代数行列式算与性质

线性代数行列式算与性质————————————————————————————————作者:————————————————————————————————日期:2线性代数行列式的计算与性质行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。

或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式概念最早出现在解线性方程组的过程中。

十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。

十八世纪开始,行列式开始作为独立的数学概念被研究。

十九世纪以后,行列式理论进一步得到发展和完善。

矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。

行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。

矩阵 A 的行列式有时也记作 |A|。

绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。

不过矩阵范数通常以双垂直线来表示(如:),且可以使用下标。

此外,矩阵的绝对值是没有定义的。

因此,行列式经常使用垂直线记法(例如:克莱姆法则和子式)。

例如,一个矩阵:A=⎪⎪⎪⎭⎫⎝⎛ihgfedcba,行列式也写作,或明确的写作:A=ihgfedcba,即把矩阵的方括号以细长的垂直线取代行列式的概念最初是伴随着方程组的求解而发展起来的。

行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

3一、行列式的定义与计算一个n 阶方块矩阵 A 的行列式可直观地定义如下:其中,是集合{ 1, 2, ..., n }上置换的全体,即集合{ 1, 2, ..., n }到自身上的一一映射(双射)的全体;表示对全部元素的求和,即对于每个,在加法算式中出现一次;对于每一对满足的数对,是矩阵 A 的第i 行第j 列的元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行列式与矩阵幂迹的代数关系计算]det[xB A +的公式 (1)递归推导法:∑=+=ii i x C xB A w ]det[]det[...]det[)(]det[)(]det[]det[)()ln (]det[21)(ln )(ln w v v w w v w ww w w w w tr tr tr tr e tr e x x x tr x tr x x +∂=∂=∂=∂=∂=∂-001)](det[]det[)(!==+∂=∂=x i x x n x i tr i C v w w ...2)()()()()()(3111111111122111vww ww ww w w ww ww w w ww w w w w v v w w ww w w v -=∂∂∂-∂∂-∂=∂∂∂+∂∂∂=∂-=∂-∂=∂∂=∂-------------x x x x x x x x x x x x x x x x x x)()1)..(1)(()(n m mn x tr n m m m tr ++-----=∂v v ()mx m nm m n m n x x i x i iii tr tr tr n m m m tr m tr tr i C x C x )()()()1)..(1)(()()(1)(!det ]det[100B A v vv v v AB A -=+==+-----=-=∂+∂==+∑ (2)直接展开法∑∏∑∑∏∑∑∏∑∑∏∑∏∑∑∏∑∑∑∑∑=-+∞==+∞==∞===∞==∞=+=∞=+--∑-=+∑-=∑=∑==∑=≡-=-=+=++≡+=+=+njm m m i m i m i n nnjm m m i m i m i n nnjm m i m i n n m i m i jm m i im m i m m m m i im m i mi i i m m i i i i m i i i i jj i iiii jj i ii ii jj i iii i i jji i i i i i i i i i m tr xx i m tr xm P x m P x m x P m x P P x m i tr x m i tr x x tr x x x x x },{)1(0},{)1(0},{0}{}{0},{1011011!)))((()1(]det[]det[!))(()1(!!!!)(!1))()1((!1))()1(exp())ln(exp(]det[]det[det ]det[det ]det[det ]det[B A A B A D D D D δD δD δA B A δA B A δA B A 111按照分配....}!6/)()!42/()()!2!22/()()()!32/()()!33/()()23/()!23/()()!24/()()24/(5/6/{}!5/)()!32/()()!22/()()()!23/()()23/(4/5/{}!4/)()!22/()()!22/()(3/4/{})(32{6)}(){(21]det[614222223321331123223124112415166513222221231123141554122222131443233222++-+-+-+-++-+++++--++-++-++-+-++=+trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD x trD trD trD trD trD trD trD trD trD trD trD trD x trD trD trD trD trD trD trD x trD trD trD trD x D tr trD x xtrD x D δ可以在∞→x 极限下,寻找D det 的关系DC C x Cx Dx xD n ni nnii n det det )det(,n 0=→→+∑=δ有阶矩阵对于对1阶矩阵 D trD D ==det 对2阶矩阵)}(){(21detD 22D tr trD -=对3阶矩阵!3)(23detD 323trD trD trD trD +-= 对4阶矩阵!4/)()!22/()()!22/()(3/4/detD 41222221314trD trD trD trD trD trD trD +-++-=对5阶矩阵!5/)()!32/()()!22/()()()!23/()()23/(4/5/det 5132222212311231415trD trD trD trD trD trD trD trD trD trD trD trD D ++++--=对6阶矩阵!6/)()!42/()()!2!22/()()()!32/()()!33/()()23/()!23/()()!24/()()24/(5/6/det 61422222332133112322312411241516trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD D +-+-+-+-++-=由于n 阶矩阵展开式]det[xD +δ最高项是n 次项,因此n i C i >=,0,即对于1 阶矩阵)}(){(2122D tr trD -=0,03)(23323=+-!trD trD trD trD , 0!4/)()!22/()()!22/()(3/4/41222221314=+-++-trD trD trD trD trD trD trD ,!5/)()!32/()()!22/()()()!23/()()23/(4/5/5132222212311231415=++++--trD trD trD trD trD trD trD trD trD trD trD trD ,!6/)()!42/()()!2!22/()()()!32/()()!33/()()23/()!23/()()!24/()()24/(5/6/61422222332133112322312411241516=+-+-+-+-++-trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD ,等 由于mmD trD =也就是说,各系数和为0;对于2阶矩阵03)(23323=+-!trD trD trD trD ,0!4/)()!22/()()!22/()(3/4/41222221314=+-++-trD trD trD trD trD trD trD ,!5/)()!32/()()!22/()()()!23/()()23/(4/5/5132222212311231415=++++--trD trD trD trD trD trD trD trD trD trD trD trD ,!6/)()!42/()()!2!22/()()()!32/()()!33/()()23/()!23/()()!24/()()24/(5/6/61422222332133112322312411241516=+-+-+-+-++-trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD ,等等 对于3阶矩阵0!4/)()!22/()()!22/()(3/4/41222221314=+-++-trD trD trD trD trD trD trD ,!5/)()!32/()()!22/()()()!23/()()23/(4/5/5132222212311231415=++++--trD trD trD trD trD trD trD trD trD trD trD trD ,!6/)()!42/()()!2!22/()()()!32/()()!33/()()23/()!23/()()!24/()()24/(5/6/61422222332133112322312411241516=+-+-+-+-++-trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD 等等 对于4阶矩阵!5/)()!32/()()!22/()()()!23/()()23/(4/5/5132222212311231415=++++--trD trD trD trD trD trD trD trD trD trD trD trD ,!6/)()!42/()()!2!22/()()()!32/()()!33/()()23/()!23/()()!24/()()24/(5/6/61422222332133112322312411241516=+-+-+-+-++-trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD trD 等等。

相关文档
最新文档