管道运输与订购优化模型

合集下载

数学建模案例分析管道运输与订购优化模型(cai)

数学建模案例分析管道运输与订购优化模型(cai)

钢管订购和运输优化模型要铺设一条1521A A A →→→ 的输送天然气的主管道, 如图1所示(见反面).经挑选后可以消费这种主管道钢管的钢厂有127,,,S S S .图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位:km).为方便计,1km 主管道钢管称为1单位钢管.一个钢厂假设承担制造这种钢管,至少需要消费500个单位.钢厂i S 在指定期限内能消费该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表:i1 2 3 4 5 6 7 i s800 800 1000 2000 2000 2000 3000 i p1601551551601551501601单位钢管的铁路运价如下表:里程(km) ≤300 301~350 351~400 401~450 451~500 运价(万元) 2023262932里程(km) 501~600 601~700 701~800 801~900 901~1000运价(万元) 37445055601000km 以上每增加1至100km 运价增加5万元.公路运输费用为1单位钢管每千米万元〔缺乏整千米部分按整千米计算〕. 钢管可由铁路、公路运往铺设地点〔不只是运到点1521,,,A A A ,而是管道全线〕.问题:〔1〕请制定一个主管道钢管的订购和运输方案,使总费用最小〔给出总费用).考虑题:〔2〕请就〔1〕的模型分析:哪个钢厂钢管的销价的变化对购运方案和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运方案和总费用的影响最大,并给出相应的数字结果.〔3〕假设要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决方法,并对图2按〔1〕的要求给出模型和结果.71一、 根本假设1. 沿铺设的主管道以有公路或者有施工公路. 2. 在主管道上,每千米卸1单位的钢管.3. 公路运输费用为1单位钢管每千米万元〔缺乏整千米部分按整千米计算〕 4. 在计算总费用时,只考虑运输费和购置钢管的费用,而不考虑其他费用. 5. 在计算钢厂的产量对购运方案影响时,只考虑钢厂的产量足够满足需要的情况,即钢厂的产量不受限制.6. 假设钢管在铁路运输路程超过1000km 时,铁路每增加1至100km ,1单位钢管17的运价增加5万元.二、符号说明:i S :第i 个钢厂; 7,,2,1 =i i s :第i 个钢厂的最大产量; 7,,2,1 =ij A :输送管道〔主管道〕上的第j 个点; 15,,2,1 =j i p :第i 个钢厂1单位钢管的销价; 7,,2,1 =iij x :钢厂i S 向点j A 运输的钢管量; 7,,2,1 =i 15,,2,1 =jj t :在点j A 与点1+j A 之间的公路上,运输点j A 向点1+j A 方向铺设的钢管量;14,,3,2,1 =j (01=t )ij a :1单位钢管从钢厂i S 运到结点j A 的最少总费用,即公路运费﹑铁路运费和钢管销价之和; 7,,2,1 =i 15,,2,1 =jj b :与点j A 相连的公路和铁路的相交点; 15,,3,2 =j1.+j j A :相邻点j A 与1+j A 之间的间隔 ; 14,,2,1 =j三、模型的建立与求解问题一:讨论如何调整主管道钢管的订购和运输方案使总费用最小由题意可知,钢管从钢厂i S 到运输结点j A 的费用ij a 包括钢管的销价﹑钢管的铁路运输费用和钢管的公路运输费用.在费用ij a 最小时,对钢管的订购和运输进展分配,可得出本问题的最正确方案.1. 求钢管从钢厂i S 运到运输点j A 的最小费用1〕将图1转换为一系列以单位钢管的运输费用为权的赋权图.由于钢管从钢厂i S 运到运输点j A 要通过铁路和公路运输,而铁路运输费用是分段函数,与全程运输总间隔 有关.又由于钢厂i S 直接与铁路相连,所以可先求出钢厂i S 到铁路与公路相交点j b 的最短途径.如图3图3 铁路网络图根据钢管的铁路运价表,算出钢厂i S 到铁路与公路相交点j b 的最小铁路运输费用,并把费用作为边权赋给从钢厂i S 到j b 的边.再将与j b 相连的公路、运输点i A 及其与之相连的要铺设管道的线路〔也是公路〕添加到图上,根据单位钢管在公路上的运价规定,得出每一段公路的运费,并把此费用作为边权赋给相应的边.以1S 为例得图4.图4 钢管从钢厂1S 运到各运输点j A 的铁路运输与公路运输费用权值图2〕计算单位钢管从1S 到j A 的最少运输费用根据图4,借助图论软件包中求最短路的方法求出单位钢管从1S 到j A 的最少运输费用依次为:170.7,160.3,140.2,98.6,38,20.5,3.1,21.2,64.2,92,96,106,121.2,128,142〔单位:万元〕.加上单位钢管的销售价i p ,得出从钢厂1S 购置单位钢管运输到点j A 的最小费用j a 1依次为:330.3,320.3,300.2,258.6,198,180.5,163.1,181.2,224.2,252,256,266,281.2,288,302〔单位:万元〕.同理,可用同样的方法求出钢厂2S ﹑3S ﹑4S ﹑5S ﹑6S ﹑7S 到点j A 的最小费用,从而得出钢厂到点的最小总费用〔单位:万元〕为:表1 i S 到点j A 最小费用A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12 A 13 A 14 A 15 S 1198 163 252 256 266 288 302 2S266 241 297 301 311 333 347 3S 276 251 237 241 251 273 287 4S316 291 222 211 221 243 257 5S 301 276 212 188 206 228 242 6S306281212 201 195161 1782. 建立模型运输总费用可分为两部分:运输总费用=钢厂到各点的运输费用+铺设费用.运输费用:假设运输点j A 向钢厂i S 订购ij x 单位钢管,那么钢管从钢厂i S 运到运输点j A 所需的费用为ij ij x a .由于钢管运到1A 必须经过2A ,所以可不考虑1A ,那么所有钢管从各钢厂运到各运输点上的总费用为:∑∑==15271j i ijij a x.铺设费用:当钢管从钢厂i S 运到点j A 后,钢管就要向运输点j A 的两边1+j j A A 段和j j A A 1-段运输〔铺设〕管道.设j A 向1+j j A A 段铺设的管道长度为j y ,那么j A 向1+j j A A 段的运输费用为()201)21(1.0+=+++⨯j j j t t y 〔万元〕;由于相邻运输点j A 与1+j A 之间的间隔 为1.+j j A ,那么1+j A 向1+j j A A 段铺设的管道长为j j j t A -+1.,所对应的铺设费用为()()2011.1.jj j j j j t A t A-+-++〔万元〕.所以,主管道上的铺设费用为:()()()∑=++⎪⎪⎭⎫⎝⎛-+-++1411.1.201201j j j j j j j j j t A t A t t总费用为:()()()∑∑∑===++⎪⎪⎭⎫⎝⎛-+-+++=711521411.1.201201i j j j j j j j j j j ij ij t A t A t t a x f又因为一个钢厂假设承担制造钢管任务,至少需要消费500个单位,钢厂i S 在指定期限内最大消费量为i s 个单位,故i j ijs x≤≤∑=152500 或0152=∑=j ij x 因此本问题可建立如下的非线性规划模型:14157.1.112171151522.1(1)()(1)min (2020j 2,3,,15500 0s.t. 0 1,,7,2,,150j j j j j j j j ij ijj j i ij j i ij i ij j j ij j j j t t A t A t f x a x n x s x x i j t A ++======++-+-=++⋅⎧==⎪⎪⎪⎪≤≤=⎨⎪⎪≥==⎪≤≤⎪⎩∑∑∑∑∑∑或3. 模型求解:由于MATLAB 不能直接处理约束条件:i j ijs x≤≤∑=152500或0152=∑=j ij x ,我们可先将此条件改为i j ijs x≤∑=152,得到如下模型:用MATLAB 求解,分析结果后发现购运方案中钢厂7S 的消费量缺乏500单位,下面我们采用不让钢厂7S 消费和要求钢厂7S 的产量不小于500个单位两种方法计算:1〕不让钢厂7S 消费计算结果:=1f 1278632〔万元〕〔此时每个钢厂的产量都满足条件〕. 2〕要求钢厂7S 的产量不小于500个单位计算结果:=2f 1279664 〔万元〕 〔此时每个钢厂的产量都满足条件〕. 比较这两种情况,得最优解为, 121),min(min f f f f ===1278632〔万元〕 详细的购运方案如表2:表2 问题一的订购和调运方案14157.1.112171152.1(1)()(1)min (2020j 2,3,,15 s.t. 0 1,,7,2,,150j j j j j j j j ij ijj j i ij j i ij ij ij j j j t t A t A t f x a x n x s x i j t A ++=====++-+-=++⋅⎧==⎪⎪⎪⎪≤⎨⎪⎪≥==⎪≤≤⎪⎩∑∑∑∑∑。

关于钢管订购和运输的优化模型

关于钢管订购和运输的优化模型

附件2《运筹学》最短路、最小费用最大流经典作品关于钢管订购和运输的优化模型队员:陈显健陈瑜斌陈振松2007年6月5日摘 要: 本文首先运用图论知识中的最短路算法求出i S 到j A 的最优路径。

然后将模型转化为最小费用最大流的网络优化问题,从而求出近似最优解。

在分析出求解该网络优化模型的解法后,运用Lingo 软件包求出了该问题的近似最优解。

对问题一而言,求出了较优的订购和运输计划(见表三),其最小费用为1291630万元。

对于第二个问题而言,可得出钢厂6S 的钢管销价的变化对购运计划和总费用的影响最大;钢管厂1S 的钢管产量的上限的变化对总费用的影响最大,钢管厂3S 的产量上限的变化对购运计划的影响最大。

对问题三,给出了一般解,求出了较优的订购和运输计划(见表四),其最小费用为1396099万元,最后对模型进行了综合评价并提出了改进方向。

关键词:网络流 最小费用最大流一、 问题重述要铺设一条1521A A A →→→ 的输送天然气的主管道,如图一所示,经筛选后可以生产这种主管道的钢厂有721,,,S S S 。

图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km )。

为了方便,1km 主管道称为1单位钢管。

一个钢厂如果承担制造这种钢管,至少需要生产500个单位。

钢厂i S 在指定期限内能生产该钢管的最大生产数量为i s 个单位,钢厂出厂销价为i p 万元,如下表:表一1单位钢管的铁路运价如下表:(表二)里程(km ) 501~600 601~700 701~800 801~900 901~1000 运价(万元) 37445055601000km 以上每增加1至100km 运价增加5万元。

公路运输费用为1单位管道每公里0.1万元(不足整公里的按整公里计算)。

管道可由铁路、公路运往铺设地点(不只是运到点1521A A A →→→ ,而是管道全线)。

数学建模钢管订购和运输

数学建模钢管订购和运输

数学建模钢管订购和运输(总32页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除钢管的订购和运输优化模型摘要本文建立的多元非线性优化模型。

问题一在保证天然气管道铺设可以顺利实施的情况下,给出了钢管的订购与运输总费用最小的方案。

在求钢管由钢厂运输到站点的费用和铺设钢管时产生的运输费,根据图一,我们通过深度优先遍历的方法对整个图一进行路径搜索,然后根据每条搜索到的路径上的铁路和公路上的不同权重,找到了各个钢厂到各个天然气管道上的站点的最佳路径。

对于整个优化过程我们给出了相关的算法,并用matlab软件编程,经过一系列计算之后,得出了最优的订购与运输方案。

对于问题 1,我们求得的最优解为S钢管销价的变化对购运计划和总费对于问题2我们经过计算比较得出:6S的生产上限的变化购运计划和总费用影响最大。

用影响最大。

1对于问题 3,当天然气管道呈现的是一个树状图的时候,我们得到的最优关键字:非线性优化深度优先遍历最佳路径一、问题重述要铺设一条1521A A A →→→ 的输送天然气的主管道, 如图一所示(见下页)。

经筛选后可以生产这种主管道钢管的钢厂有721,,S S S 。

图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。

为方便计,1km 主管道钢管称为1单位钢管。

一个钢厂如果承担制造这种钢管,至少需要生产500个单位。

钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p i 1 2 3 4 5 6 7 i s80080010002000 2000 2000 3000 i p160 155 155160 155150160 1里程(km) ≤300 301~350351~400 401~450 451~500 运价(万元) 2023262932里程(km) 501~600601~700 701~800 801~900 901~1000 运价(万元)37445055601000km 以上每增加1至100km 运价增加5万元。

数学建模 钢管订购和运输

数学建模 钢管订购和运输

钢管的订购和运输优化模型摘要本文建立的多元非线性优化模型。

问题一在保证天然气管道铺设可以顺利实施的情况下,给出了钢管的订购与运输总费用最小的方案。

在求钢管由钢厂运输到站点的费用和铺设钢管时产生的运输费,根据图一,我们通过深度优先遍历的方法对整个图一进行路径搜索,然后根据每条搜索到的路径上的铁路和公路上的不同权重,找到了各个钢厂到各个天然气管道上的站点的最佳路径。

对于整个优化过程我们给出了相关的算法,并用matlab 软件编程,经过一系列计算之后,得出了最优的订购与运输方案。

对于问题 1,我们求得的最优解为(具体方案见对于问题2我们经过计算比较得出:6S 钢管销价的变化对购运计划和总费用影响最大。

1S 的生产上限的变化购运计划和总费用影响最大。

对于问题 3,当天然气管道呈现的是一个树状图的时候,我们得到的最优解一、问题重述要铺设一条1521A A A →→→ 的输送天然气的主管道, 如图一所示(见下页)。

经筛选后可以生产这种主管道钢管的钢厂有721,,S S S 。

图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。

为方便计,1km 主管道钢管称为1单位钢管。

一个钢厂如果承担制造这种钢管,至少需要生产500个单位。

钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万1公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。

钢管可由铁路、公路运往铺设地点(不只是运到点1521,,,A A A ,而是管道全线)。

(1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。

(2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果。

钢管订购与运输的优化模型_张立

钢管订购与运输的优化模型_张立

第20卷第4期2006年7月常熟理工学院学报Journal of Changshu Institute of TechnologyVol.20No.4July.2006钢管订购与运输的优化模型张立(常熟理工学院数学系,江苏常熟215500)摘要:以2003年全国大学生数学建模竞赛题/钢管订购与运输问题0为研究对象,首先研究了所给图形的性质,得到将铁路运费与销价转换为公路运费的思想,然后通过Floyed算法,求得各钢厂到各个站点的最短路。

利用相关的理论构造一个规划问题,从而得到相应的优化模型,利用LINGO 软件求解。

特别地对于问题(2),用规划论中的灵敏度分析可得到所需之结论。

问题(3)中的树形图情形先解决其分支部分,再考虑它的主干部分,这样能使问题得到较好的解决。

关键词:非线性规划;最短路;Floyed算法中图分类号:O224文献标识码:A文章编号:1008-2794(2006)04-0037-041问题的重述要铺设一条A1y A2y,y A15的输送天然气的主管道。

经筛选后可以生产这种主管道钢管的钢厂有S1,S2,,,S7。

为方便计,1Km主管道称为1单位钢管。

一个钢厂如果承担制造这种钢管,至少需要生产500个单位。

钢厂S i在指定期限内能生产该钢管的最大数量为S i个单位,钢管出厂销价1单位钢管为P i万元,如下表:i1234567S i80080010002000200020002000P i160155155160155150160 1单位钢管的铁路运价如下表:里程(Km)F300301-350351-400401-450451-500501-600601-700701-800801-900901-1000运价(万元)20232629323744505560 1000Km以上每增加1至100Km运价增加5元。

公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。

钢管可由铁路、公路运往铺设地点(不只是运到点A1,A2,,,A15,而是管道全线)。

管道订购与运输模型

管道订购与运输模型

管道订购与运输模型信息学院 电子信息科学与技术专业摘要:本文针对主管道的订购和运输的实际问题,在详细分析的基础上,利用数学软件LINGO 的简单合理的算法,得出了快速制定并满足可行性和经济性的订购运输模型。

首先,对题中所给的一系列的数据进行了分析并提取得出从每个主管道钢管的钢厂i S 到各个运到点j A 的运输费用ij c (万元),而且从运输费用尽量小的原则出发,每个钢厂到运到点的运输路线也是唯一确定的(比如:从1S 到7A 直接通过公路即可)。

其次,模型认为将题中的“管道不只是运到点1521,,,A A A ,而是管道全线”可以这样理解:先将管道运到各点1521,,,A A A ,然后铺设的过程是各相邻两点之间实行双向铺设的方法,然后总费用可以认为是由钢管本身的价格、钢管的运费和铺设时的运费(1521,,,A A A 各铺设点之间按公路费用处理)三部分构成。

,也就不难得出总运输费用的计算关系式∑∑∑===+++=1412271151)(21.0)(k yk xk i ij i ij j p p c p xf ,由于仅我们目前的水平,只能将此问题当作是一个非线性规划问题求解,而且这样的算法符合简明性的要求,避免了要考虑图的出入度问题和博弈论提出的复杂的算法。

然后,根据钢管的供应和需求的双方的实际,不难发现该目标函数的约束条件有以下几个:①、1521,,,A A A (除了起始两点)中各点向左和向右铺设的钢管和应该等于721,,S S S 七个钢厂输送给该点钢管的总量;②、各点在铺设过程中所需要的运费(k b )是其向左和向右铺设所需要的运费之和;③、721,,S S S 每个钢厂向15个运到点所能供应的钢管总量应小于其生产总量i s 。

根据以上条件由LINGO 软件计算可以得出第一问的最小总费用为1326385万元;针对LINGO 的计算结果分析也可以得到第二问的答案,第一个钢厂产量的上限的变化对购运计划和总费用的影响最大,当其产量上限减少1单位时,总费用会增加171.0万元。

钢管的运输与订购问题(数学建模)

钢管的运输与订购问题(数学建模)

管道订购与运输问题摘要:本文通过研究了题目所给图并结合题目所给条件信息,理解到钢管的订购与运输问题可通过合理假并简化为单一的公路运输问题,构架了产量未定的单一运输优化模型。

运用运筹学原理求得钢管厂到铺设点的最小距离,通过线性规划的思想列出目标函数,在求得目标函数的同时,我们要考虑到目标最小费用函数中管道的铺设费用,在从铺设点向两边铺设的过程两端开始的1千米是不需要铺设费的,运用等差数列的思想构造一个子函数作为目标函数的一部分,从而得到优化的数学模型,运用lingo软件求得最小运费为1274296。

我们的数学模型是综合考虑运费与钢管单价及铺设费用问题,是整个钢管订购铺设总费用最小。

关键词:管道订购与运输;运筹学;LINGO软件;产量未定的运输模型;线性规划(一)问题重述:要铺设一条1521A A A →→→ 的输送天然气的主管道, 如图一所示(见附录一)筛选后可以生产这种主管道钢管的钢厂有721,,S S S 。

图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。

为方便计,1km 主管道钢管称为1单位钢管。

一个钢厂如果承担制造这种钢管,至少需要生产500个单位。

钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表:i1 2 3 4 5 6 7 i s800 800 1000 2000 2000 2000 3000 i p1601551551601551501601单位钢管的铁路运价如下表:里程(km) ≤300 301~350 351~400 401~450 451~500 运价(万元) 2023262932里程(km) 501~600 601~700 701~800 801~900 901~1000运价(万元)37445055601000km 以上每增加1至100km 运价增加5万元。

钢管的订购及运输优化方案

钢管的订购及运输优化方案

钢管的订购及运输优化方案摘要:从本题中可以看出我们要解决的问题是钢管怎样订购,怎样运输,才能使得总费用最少。

所以,我们从两个方面着手考虑这个问题,首先我们考虑怎样从钢厂订购货物,接下来我们考虑在订购好货物后我们怎样把货物运输到目的地。

对于这两个问题,从题目可知,订购和运输联系密切,所以,我们必须同时考虑考虑钢管的订购与运输。

再由题中给的钢厂与天然气管道路线分布图可以看出,该问题等同于把起点的信息通过最优路(即就是花费最少的路径)径送到目的地,在送往的途中可以有信息的流失,流失的信息即就是用于铺设道路的货物,但不管流失多少信息,到达目的地时,总还有剩余的信息。

所以,我们就把钢管的运输看成了最小费用最大流问题。

所以,我们通过对线路的标号,我们利用floyd算出最大流问题算出每一个钢厂到每个点的单位最优路径,然后,再算出在运送途中钢管用于铺设管道所花费的费用,我们把这两种费用相加,就得到了总的费用。

我们通过计算,得出应从哪些钢厂订购多少货物,以怎样的路径进行运送才能使总费用最小。

经过计算我们得出最优解:其最小费用为万元。

在第二问中,我们通过对问题一的精度分析可得:钢厂6S的钢管销价的变化对购运计划和总费用的影响最大;钢管厂1S的钢管产量的上限的变化对总费用的影响最大,钢管厂3S的产量上限的变化对购运计划的影响最大。

对于第三问,我们同样运用问题一的解决办法,先求出每一个钢厂到每段道路的最短路径,然后再求出每一钢厂运送的数量,还有运送途中铺路石所花费的单位费用,最后得出最优解:其最小费用为万元。

问题重述:(略)问题分析:本题看似复杂,但经过分析我们可以看出该问题是求在一个有权图中寻求最优路径的问题,然后再求各个钢厂的运送花费问题,对于运送费用问题,由于我们不知道在哪一个钢厂订货,也不知道定多少,也不知道走哪一条路最合适,所以我们我们利用线性规划中的方法,先利用0—1规划模型,当取0时,我们就认为不在该厂订货,或者说我们不选择某一条路径,这样我们就轻易的将这个复杂的问题分解为线性规划问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢管订购和运输优化模型
要铺设一条1521A A A →→→Λ的输送天然气的主管道, 如图一所示(见反面)。

经筛选后可以生产这种主管道钢管的钢厂有721,,S S S Λ。

图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。

为方便计,1km 主管道钢管称为1单位钢管。

一个钢厂如果承担制造这种钢管,至少需要生产500个单位。

钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表:
i
1 2 3 4 5 6 7 i s
800 800 1000 2000 2000 2000 3000 i p
160
155
155
160
155
150
160
1单位钢管的铁路运价如下表:
里程(km) ≤300 301~350 351~400 401~450 451~500 运价(万元) 20
23
26
29
32
里程(km) 501~600 601~700 701~800 801~900 901~1000
运价(万元) 37
44
50
55
60
1000km 以上每增加1至100km 运价增加5万元。

公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。

钢管可由铁路、公路运往铺设地点(不只是运到点1521,,,A A A Λ,而是管道全线)。

问题:
(1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。

思考题:
(2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用
影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并
给出相应的数字结果。

(3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构
成网络,请就这种更一般的情形给出一种解决办法,并对图二按(1)的要求给出
模型和结果。

7
一. 基本假设:
1. 沿铺设的主管道以有公路或者有施工公路。

2. 在主管道上,每公里卸1单位的钢管。

3. 公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算) 4. 在计算总费用时,只考虑运输费和购买钢管的费用,而不考虑其他费用。

5. 在计算钢厂的产量对购运计划影响时,只考虑钢厂的产量足够满足需要的情况,
即钢厂的产量不受限制。

6. 假设钢管在铁路运输路程超过1000km 时,铁路每增加1至100km ,1单位钢管
7
的运价增加5万元。

二.符号说明:
i S :第i 个钢厂; 7,,2,1Λ=i i s :第i 个钢厂的最大产量; 7,,2,1Λ=i j A :输送管道(主管道)上的第j 个点; 15,,2,1Λ=j
i p :第i 个钢厂1单位钢管的销价; 7,,2,1Λ=i
ij x :钢厂i S 向点j A 运输的钢管量; 7,,2,1Λ=i 15,,2,1Λ=j
j t :在点j A 与点1+j A 之间的公路上,运输点j A 向点1+j A 方向铺设的钢管量;
14,,3,2,1Λ=j (01=t )
ij a :1单位钢管从钢厂i S 运到结点j A 的最少总费用,即公路运费﹑铁路运费和
钢管销价之和; 7,,2,1Λ=i 15,,2,1Λ=j
j b :与点j A 相连的公路和铁路的相交点; 15,,3,2Λ=j
1.+j j A :相邻点j A 与1+j A 之间的距离; 14,,2,1Λ=j
三.模型的建立与求解
问题一:讨论如何调整主管道钢管的订购和运输方案使总费用最小
由题意可知,钢管从钢厂i S 到运输结点j A 的费用ij a 包括钢管的销价﹑钢管的铁路运输费用和钢管的公路运输费用。

在费用ij a 最小时,对钢管的订购和运输进行分配,可得出本问题的最佳方案。

1、 求钢管从钢厂i S 运到运输点j A 的最小费用
1)将图一转换为一系列以单位钢管的运输费用为权的赋权图。

由于钢管从钢厂i S 运到运输点j A 要通过铁路和公路运输,而铁路运输费用是分段函数,与全程运输总距离有关。

又由于钢厂i S 直接与铁路相连,所以可先求出钢厂i S 到铁路与公路相交点j b 的最短路径。

如图三
图三 铁路网络图
依据钢管的铁路运价表,算出钢厂i S 到铁路与公路相交点j b 的最小铁路运输费用,并把费用作为边权赋给从钢厂i S 到j b 的边。

再将与j b 相连的公路、运输点
i A 及其与之相连的要铺设管道的线路(也是公路)添加到图上,根据单位钢管在
公路上的运价规定,得出每一段公路的运费,并把此费用作为边权赋给相应的边。

以1S 为例得图四。

相关文档
最新文档