2021年高二下学期暑假作业数学文试题(10) 含答案
2021高二数学暑假作业及答案

2021高二数学暑假作业及答案(2021最新版)作者:______编写日期:2021年__月__日【一】(一)选择题(每个题5分,共10小题,共50分)1、抛物线上一点的纵坐标为4,则点与抛物线焦点的距离为() A2B3C4D52、对于抛物线y2=2x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是()A(0,1)B(0,1)CD(-∞,0)3、抛物线y2=4ax的焦点坐标是()A(0,a)B(0,-a)C(a,0)D(-a,0)4、设A(x1,y1),B(x2,y2)是抛物线y2=2px(p>0)上的两点,并且满足OA⊥OB.则y1y2等于()A–4p2B4p2C–2p2D2p25、已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.(,-1)B.(,1)C.(1,2)D.(1,-2)6、已知抛物线的焦点为,准线与轴的交点为,点在上且,则的面积为()(A)(B)(C)(D)7、直线y=x-3与抛物线交于A、B两点,过A、B两点向抛物线的准线作垂线,垂足分别为P、Q,则梯形APQB的面积为()(A)48.(B)56(C)64(D)72.8、(2021年高考广东卷文科8)设圆C与圆外切,与直线相切.则C的圆心轨迹为()A.抛物线B.双曲线C.椭圆D.圆9、已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为(A)(B)(C)(D)10、(2021年高考山东卷文科9)设M(,)为抛物线C:上一点,F为抛物线C的焦点,以F为圆心、为半径的圆和抛物线C的准线相交,则的取值范围是(A)(0,2)(B)[0,2](C)(2,+∞)(D)[2,+∞)(二)填空题:(每个题5分,共4小题,共20分)11、已知点P是抛物线y2=4x上的动点,那么点P到点A(-1,1)的距离与点P到直线x=-1距离之和最小值是。
参考高二数学暑假作业答案

参考高二数学暑假作业答案自己整理的参考高二数学暑假作业答案相关文档,希望能对大家有所帮助,谢谢阅读![一]1?1变化率和导数1.1.1变化率1 . D2 . D3 . C4-3t-65 .x 26.3?317.(1)0?1(2)0?21(3)2?18.11m/s,10?1m/s 9.25 3t 10.128 a 64 a2 t 11 . f(x)-f(0)x=1x(x0),-1-x(x0)1?1?2导数的概念1 . D2 . C3 . C4-15 . x0,x;x06.67.a=18.a=2 9.-410.(1)2t-6(2)初速度为v0=-6,初位置为x0=1(3)运动开始3秒,在原点向左变化8m (4)x=1,v=611.水面上升速度为0?16m/min,表明 v= h75 15 h ( h) 23,那么 v t= h t 75 15 h ( h) 23,即limt0vt=limt0ht75 15h(h)23=limt0ht25,那就是v’(t)=25h’(t),那么h’(t)=1254=0?16(米/分钟)1?1?三阶导数的几何意义(一)1.C2切线的斜率。
B3。
B4。
f (x)在x0,y-f(x0)=f’(x0)(x-x0)5.36.1357.割线的斜率是3?31,正切的斜率为38.k=-1,x y 2=09.2x-y 4=010.k=14,切点坐标为12,1211.有两个交点,交点的坐标是(1,1),(-2,-8)1?1?3阶导数的几何意义(2)1.C2 a3 . B4 . y=x15。
16.37.y=4x-18.1039.1910.a=3,b=-11,c=9。
提示:首先找出a、b、c之间的关系,即c=3 2a。
B=-3a-2,然后求点(2,-1)处的斜率,得到k=a-2=1,即a=3 11.(1)y=-13x-229(2)125121?导数2的计算1?2?1几种常用函数的导数1.C2。
高二数学文科暑假作业答案

集合、简易逻辑与函数、导数参考答案一.选择题:1、B2、A3、C4、C5、D6、B7、B8、C9、D 10.C 11.B 12.C 二.填空题:13、(2,0)(2,5)- 14、②③ 15、0 16、155 三.解答题:17解:由于2x y =是增函数,()f x ≥3|1||1|2x x +--≥ ① (1) 当1x ≥时,|1||1|2x x +--=,∴①式恒成立。
(2) 当11x -<<时,|1||1|2x x x +--=,①式化为322x ≥,即314x ≤< (3) 当1x ≤-时,|1||1|2x x +--=-,①式无解综上x 的取值范围是3,4⎡⎫+∞⎪⎢⎣⎭18.解:(1)①若1,012±==-a a 即,1)当a =1时,6)(=x f ,定义域为R ,适合;2)当a =-1时,66)(+=x x f ,定义域不为R ,不合; ②若6)1(3)1()(,01222+-+-=≠-x a x a x g a 为二次函数,)(x f 定义域为R ,R x x g ∈≥∴对0)(恒成立,11150)511)(1(110)1(24)1(901222<≤-⇒⎩⎨⎧≤+-<<-⇒⎪⎩⎪⎨⎧≤---=∆>-∴a a a a a a a ; 综合①、②得a 的取值范围]1,115[-(2)命题等价于不等式06)1(3)1(22≥+-+-x a x a 的解集为[-2,1], 显然012≠-a20112-=<-∴x a 且、12=x 是方程06)1(3)1(22=+-+-x a x a 的两根,⎪⎩⎪⎨⎧==+->-<⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=⋅-=--=+>-<∴4023*******)1(31122221221a a a a a a x x a a x x a a 或或,解得a 的值为a =2. 19、解:由1|)(1='=x x f ,故直线l 的斜率为1,切点为))1(,1(f即(1,0) ∴1:-=x y l ① 又∵)21,1(,1)(a x x g +=='切点为∴1)21(:-=+-x a y l 即a x y +-=21②比较①和②的系数得21,121-=∴-=+-a a20、解:设函数()(1)x f x e x =-+()1x f x e '=-当0x >时, 01x e e >=,()10x f x e '∴=->故()f x 在[0,)+∞递增,∴当0x > 时,()(0)f x f >,又0(0)(10)0f e =-+=,()0f x ∴>,即(1)0x e x -+>,故1x e x >+ 21、解:(I )()()()()ln 0a F x f x g x x x x =+=+>,()()221'0a x aF x x x x x-=-=> ∵0a >,由()()'0,F x x a >⇒∈+∞,∴()F x 在(),a +∞上单调递增。
新课标高二数学暑假作业10

新课标2021年高二数学暑假作业10必修5—选修2-3一选择题〔本大题共8小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
〕1.复数〔i为虚数单位〕的共轭复数是〔〕A.--i B.-+i C.-i D.i2.服从正态分布的随机变量在区间,和内取值的概率分别为68.3%,95.4%和99.7%。
某校高一年级1000名学生的某次考试成绩服从正态分布,那么此次成绩在范围内的学生大约有人3.设随机变量,记,那么等于〔〕A.B.C.D.4. 的展开式中含项的系数A.30B.70C.90D.1505.如图:样本A和B分别取自两个不同的总体,他们的样本平均数分别为和,样本标准差分别为和,那么〔〕A. B.C. D.6.f(x)=xlnx,假设f′(x0)=2,那么x0等于().A.e2B.e C.D.ln2设X是一个离散型随机变量,其分布列为X-101P1-2q那么q的值为〔〕A.1B.C.D.8.过双曲线右焦点作一条直线,当直线斜率为时,直线与双曲线左、右两支各有一个交点;当直线斜率为时,直线与双曲线右支有两个不同交点,那么双曲线离心率的取值范围为〔〕A、B、C、D、二.填空题〔本大题共4小题,每题5分,共20分。
把答案填在题中横线上〕9.假设的展开式中项的系数为,那么函数与直线、及x轴围成的封闭图形的面积为---------------10.设那么处的切线方程为______.11.设常数.假设的二项展开式中项的系数为,那么.12.如图,在平面直角坐标系xOy中,点A为椭圆E:的左顶点,B、C在椭圆E上,假设四边形OABC为平行四边形,且∠OAB=30°,那么椭圆E的离心率等于___________三.解答题〔本大题共4小题,每题10分,解容许写出文字说明,证明过程或演算步骤〕13.关于的一元二次函数。
〔1〕设集合P={1,2,3},Q={-1,1,2,3,4},从集合P中随机取一个数作为a,从集合Q中随机取一个数作为b,求方程有两相等实根的概率;〔2〕设点〔a,b〕是区域内随机的一点,求函数在区间上是增函数的概率。
2021年高二下学期暑假作业数学文试题(11) 含答案

2021年高二下学期暑假作业数学文试题(11)含答案一、选择题:1.复数的共轭..复数是()A.B.C.D.2.函数在处切线的斜率为()A.1B. 2C. 4D.3.y与x之间的线性回归方程必定过( )A.(0,0)点 B.(x,y)点 C.(0,y)点 D.(x,0)点4.用反证法证明命题:“若整系数一元二次方程有有理根,那么中至少有一个是偶数”时,下列假设正确的是()A.假设都是偶数B.假设都不是偶数C.假设至多有一个是偶数D.假设至多有两个是偶数5.用反证法证明命题“”,其假设正确的是()A.、至少有一个为0 B.、至少有一个不为0C.、全不为0 D.、只有一个为0二、填空题6.由曲线,直线及轴所围成的图形的面积为.7.已知,经计算得,,,,,推测当时,有不等式成立.三、解答题:(共6小题,共70分。
解答应写出文字说明,演算步骤或证明过程。
)8.(本小题12分)已知复数,则当实数分别为何值时,复数是:(1)实数;(2)纯虚数;(3)对应的点位于复平面第三象限.9.(本小题满分12分)下表是某设备的使用年限和所支出的维修费用(万元)的几组对照数据(I)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(II)根据(I)求出的线性回归方程,预测该设备使用8年时,维修费用是多少? (参考数值:)10.(本小题12分)“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取名路人进行了问卷调查,得到了如下列联表:已知在这人中随机抽取人抽到反感“中国式过马路”的路人的概率是.(Ⅰ)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),(II)据此资料判断是否有的把握认为反感“中国式过马路”与性别有关?答案1. D 2. B 3.B 4. A 5. B6、;7、8、解:(1)∵复数是一个实数,∴ 故或(2)∵根据复数是一个纯虚数 ∴ 得. (3)∵z 所对应点在第三象限∴ 得. 9.(本小题满分12分) 解: (I ),()()7.05.4465435.35.445.4645345.23ˆ22222=⨯-+++⨯⨯-⨯+⨯+⨯+⨯=∴b所求线性回归方程为(II )将代入回归方程,得(万元).答:可预测该设备使用8年时,维修费用大约为万元. 10、解:(I )(II )由已知数据得:,所以,没有的把握认为反感“中国式过马路”与性别无关。
新高二暑期数学检测卷带解析

新高二暑期数学学习检测卷一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f (x )=cos2x +6cos ⎝⎛⎭⎫π2-x 的最大值为( )A .4B .5C .6D .7解:因为f (x )=1-2sin 2x +6sin x =-2⎝⎛⎭⎫sin x -322+112,而sin x ∈[-1,1],所以当sin x =1时,f (x )取最大值5.故选B .2.某三棱锥的三视图如图所示,该三棱锥的体积是( )A.43B.83C .4D .6+23 解:由三视图可知,该三棱锥底面是一个等腰直角三角形,直角边长为2,该棱锥的高为2,所以该三棱锥的体积为V =13×12×2×2×2=43.故选A .3.已知sin ⎝⎛⎭⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝⎛⎭⎫α+2π3=( ) A .-45 B .-35 C.45 D.35解:因为sin ⎝⎛⎭⎫α+π3+sin α=32sin α+32cos α=-435,所以32sin α+12cos α=-45.所以cos ⎝⎛⎭⎫α+2π3=cos αcos 2π3-sin αsin 2π3=-12cos α-32sin α=45.故选C .4.已知平面α⊥平面β,α∩β=l ,m ∥α,m ⊥l ,n ⊥α,则下列四种位置关系中,不一定成立的是( )A .m ⊥nB .m ⊥βC .n ⊥lD .n ∥β解:过直线m 作平面γ,与平面α交于直线m ′,则m ∥m ′.又m ⊥l ,所以m ′⊥l ,故m ⊥β.又n ⊥α,所以n ⊥l ,n ⊥m ′,故n ⊥m .所以A 、B 、C 一定成立,D 中亦有可能n ⊂β.故选D .5.给出下列命题:①直线a 与平面α不平行,则a 与平面α内的所有直线都不平行;②直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直; ③异面直线a ,b 不垂直,则过a 的任何平面与b 都不垂直; ④若直线a 和b 共面,直线b 和c 共面,则a 和c 共面. 其中错误命题的个数是( )A .1B .2C .3D .4解:直线a 在平面α内时,直线a 与平面α内某一方向上的无数条直线平行,所以①错误;直线a 与平面α不垂直,a 可以与平面α内的无数条直线垂直,所以②错误;若过a 的平面α与b 垂直,那么b 垂直于α内所有直线,所以b ⊥a ,这与a ,b 不垂直矛盾,所以③正确;若直线a 和b 共面,直线b 和c 共面,则a 和c 可能异面,所以④错误.故错误命题的个数是3.此题亦可用正方体模型直观的判断求解.故选C .6.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C .22πD .42π解:将等腰直角三角形绕其斜边所在直线旋转一周,可得到两个同底的圆锥,因此V =13π·(2)2·22=423π.故选B . 7.如图,在正方体ABCD A 1B 1C 1D 1中,E ,F 分别是棱BC ,C 1D 1的中点,则EF 与平面BB 1D 1D 的位置关系是( )A .EF ∥平面BB 1D 1D B .EF 与平面BB 1D 1D 相交C .EF 在平面BB 1D 1D 内D .EF 与平面BB 1D 1D 的位置关系无法判断解:正方体ABCD A 1B 1C 1D 1中,E ,F 分别是棱BC ,C 1D 1的中点,取B 1C 1的中点G ,连接GE ,GF ,则GE ∥BB 1,GF ∥B 1D 1,所以BB 1∥平面EFG ,B 1D 1∥平面EFG ,又因为BB 1∩B 1D 1=B 1,所以平面EFG ∥平面BB 1D 1D ,从而可得EF ∥平面BB 1D 1D .故选A .8.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为( )A .4B .6+4 2C .4+4 2D .2解:由三视图知,该几何体是底面为(斜边边长为2的)等腰直角三角形、高为2的直三棱柱,所以该几何体的表面积为2×2+22×2+2×12×2×2=6+4 2.故选B .9.直三棱柱ABC A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°解:延长CA 到D ,使得AD =AC ,连接A 1D ,BD ,则面ADA 1C 1为平行四边形,∠DA 1B 就是异面直线BA 1与AC 1所成的角,又△A 1DB 为等边三角形,所以∠DA 1B =60°.故选C . 10.已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192C .10D .12 解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B .二、填空题:本题共5小题,每小题4分,共20分.13.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =________.解:因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n ,两式相减得,a n +1=2a n +1,所以a n +1+1=2(a n +1),即a n +1+1a n +1=2.又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n , 所以a n =2n -1.故填2n -1.14.设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解:因为{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ② 显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.故填-8.15.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.解:因为半圆面的面积为12πl 2=2π,所以l 2=4,l =2,即圆锥的母线长l =2,底面圆的周长2πr =πl =2π,所以圆锥的底面圆的半径r =1,所以圆锥的高h =l 2-r 2=3,所以圆锥的体积为13πr 2h =13π×3=3π3.故填3π3.16.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于________.解:平面图形是上底长为1,下底长为1+2,高为2的直角梯形,计算面积为2+ 2.故填2+2.17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解:由题意,b sin B =c sin C ,即sin B =b sin C c =6×323=22,结合b <c ,可得B =45°,则A =180°-B -C =75°.故填75°.三、解答题:共5题,每题10分,共50分.解答应写出文字说明、证明过程或演算步骤.18.已知函数f (x )=sin(2ωx -π6)+2cos 2ωx -1(ω>0)的最小正周期为π.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤0,7π12上的最大值和最小值. 解:(1)因为f (x )=sin ⎝⎛⎭⎫2ωx -π6+(2cos 2ωx -1) =⎝⎛⎭⎫sin2ωx cos π6-cos2ωx sin π6+cos2ωx =32sin2ωx +12cos2ωx =sin ⎝⎛⎭⎫2ωx +π6, 所以f (x )的最小正周期T =2π2ω=π,解得ω=1.(2)由(1)得f (x )=sin ⎝⎛⎭⎫2x +π6. 因为0≤x ≤7π12,所以π6≤2x +π6≤4π3.所以,当2x +π6=π2,即x =π6时,f (x )取得最大值为1;当2x +π6=4π3,即x =7π12时,f (x )取得最小值为-32.19.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且B =60°,c =4,b =6. (1)求sin C ;(2)求△ABC 的面积.解:(1)B =60°,c =4,b =6,在△ABC 中,由正弦定理b sin B =c sin C ,得sin C =c sin B b =4×326=33. (2)由于b >c ,所以B >C ,则C 为锐角,所以cos C =63,则sin A =sin(B +C )=sin B cos C +cos B sin C =32×63+12×33=32+36,所以△ABC 的面积S =12bc sin A =12×32+36=62+2 3.20.如图,在三棱锥P ABC 中,P A ⊥底面ABC ,△ABC 为正三角形,D ,E 分别是BC ,CA 的中点.(1)证明:平面PBE ⊥平面P AC .(2)在BC 上是否存在一点F ,使AD ∥平面PEF ?说明理由. 解:(1)证明:因为P A ⊥底面ABC ,BE ⊂平面ABC , 所以P A ⊥BE .又△ABC 是正三角形,E 是AC 的中点, 所以BE ⊥AC ,又P A ∩AC =A . 所以BE ⊥平面P AC .又BE ⊂平面PBE ,所以平面PBE ⊥平面P AC . (2)存在满足条件的点F ,且F 是CD 的中点. 理由:因为E ,F 分别是AC ,CD 的中点,所以EF ∥AD .而EF ⊂平面PEF ,AD ⊄平面PEF ,所以AD ∥平面PEF .21.如图所示,在四棱锥P ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ; (2)PD ⊥平面ABE .证明:(1)因为P A ⊥底面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD . 因为AC ⊥CD ,P A ∩AC =A ,所以CD ⊥平面P AC .而AE ⊂平面P AC ,所以CD ⊥AE .(2)由P A =AB =BC ,∠ABC =60°,可得AC =P A .因为E 是PC 的中点,所以AE ⊥PC . 由(1)知AE ⊥CD ,且PC ∩CD =C ,所以AE ⊥平面PCD .而PD ⊂平面PCD ,所以AE ⊥PD .因为P A ⊥底面ABCD ,所以P A ⊥AB . 又因为AB ⊥AD 且P A ∩AD =A ,所以AB ⊥平面P AD ,而PD ⊂平面P AD ,所以AB ⊥PD .又因为AB ∩AE =A ,所以PD ⊥平面ABE .22.已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和T n .解:(1)设{a n }的公比为q .依题意,a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)依题意,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1.又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n .又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减,得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1=52-2n +52n +1.所以T n =5-2n +52n .。
2021年高二下学期期末考试数学(文)试卷 含答案

2021年高二下学期期末考试数学(文)试卷含答案考生注意:1、本试卷分选择题和非选择题两部分,共150分,共4页,考试时间120分钟,考试结束后,只交答题卡。
2、客观题请用2B铅笔填涂在答题卡上,主观题用黑色碳素笔写在答题卡上。
第Ⅰ卷(选择题,满分60分)一、选择题:本大题共小题,每小题分,共分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、复数()A.B.C.D.2、下面对相关系数描述正确的是()A.表明两个变量负相关B.表明两个变量正相关C.只能大于零D.越接近于,两个变量相关关系越弱3、下列推理正确的是()A.把与类比,则有B.把与类比,则有C.把与类比,则有D.把与类比,则有4、曲线在处的切线方程为()A.B.C.D.5、用反证法证明命题:“,,,且,则中至少有一个复数”时的假设为()A.中至少有一个正数B.全为正数C.全都大于等于零D.中至多有一个负数6、在如下的列联表中,若分类变量和有关系,比值相差大的应该是()A .与B . 与C . 与D . 与7、右边程序框图运行之后输出的值为 ( ) A .B .C .D .8、复数满足,则复数对应点的集合表示的图形是 ( ) A .直线 B .圆 C .椭圆 D .双曲线 9、已知,,猜想的表达式为 ( ) A . B . C . D .10、设,若函数有大于零的极值点,则 ( )A .B .C .D .11、已知,为的导函数,则的图象为 ( )A .B .C .D . 12、已知为上的连续可导函数,当时,,则函数的零点的个数为 ( )A .B .C .D .或第Ⅱ卷 (非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分。
将答案填在答题卡相应的位置上) 13、复数的共轭复数是__________。
14、右表是降耗技术改革后生产甲产品的过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对 应数据,根据表中数据,求出关于的线性回归方程 ,那么表中的值为_________。
2021年高二下学期数学(文)练习题(1) Word版含答案

2021年高二下学期数学(文)练习题(1) Word版含答案一、选择题:本大题共10小题,每小题5分,共计50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集U=R,集合A={x|1<x≤3},B={x|x>2},则等于( ) A.{x|1<x≤2} B.{x|1≤x<2} C.{x|1≤x≤2} D.{x|1≤x≤3}2、已知复数且,则复数等于( )A. B. C. D.3、如图给出的是计算的值的程序框图,其中判断框内应填入的是( )A. B.C. D.4、已知定义在R上的函数,则命题p:“”是命题q:“不是偶函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5、已知命题:,使得,则命题是( )A. ,使得B. ,都有C. ,都有或D. ,都有或6、一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为( )A.9 B.10 C.11 D.7、将函数的图象向左平移个单位,若所得的图象与原图象重合,则的值不可能等于( )A.4 B.6 C.8 D.128、已知A(3,0),B(0,4),若圆M:上有且仅有两点C使面积等于,则实数的取值范围是( )A. B. C. D.2 211正视图侧视图俯视图第6题图9、已知实数、满足条件:,则的取值范围是( )A. B. C. D.10、已知点P在以为圆心、半径为1的扇形区域AOB(含边界)内移动,,E、F分别是OA、OB 的中点,若其中,则的最大值是( )A. 4B. 2C.D. 8二、填空题:本大题共5小题,每小题5分,共计25分。
11、角终边上一点M(,),且,则= __ ;12、若抛物线的焦点坐标为(0, 1),则= __ ;13、已知函数的零点在区间上,,则 __ ;14、在中,,是内一点,且满足,则= __ ;15、给出下列四个命题:①函数的图象关于点对称;②若,则;③存在唯一的实数,使;④已知为双曲线上一点,、分别为双曲线的左右焦点,且,则或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高二下学期暑假作业数学文试题(10)含答案
一:选择题
1已知函数,那么=
A.1
B.1.5
C.
D.4
2.直线(t为参数)的倾斜角( )
A. B. C. D.
3.已知函数,,则的值为 .
( )
A. 1
B. 0
C. -1
D. -2
4.参数方程为参数)的普通方程为()
A. B.
C. D.
5..给出下列命题
(1)实数的共轭复数一定是实数;
(2)满足的复数的轨迹是椭圆;
(3)若,则
(4)若“a,b,c是不全相等的实数”,则;
(5) 若“a,b,c是不全相等的实数”, 不能同时成立
其中正确命题的序号是( )
A.(1)(2)(3)
B.(1)(3)(4)
C.(2)(3)(5)
D.(3)(4)(5)
二.填空题
6.从1,2,3,4,5,6,7中任取两个不同的数,事件A 为“取到的两个数的和为偶数”,事件B 为“取到的两个数均为偶数",则=__________.
7.在平面内,三角形的面积为S ,周长为C ,则它的内切圆的半径r=.在空间中,三棱锥的体
积为V ,表面积为S ,利用类比推理的方法,可得三棱锥的内切球(球面与三棱锥的各个面均相切)的半径R= .
三.解答题
8. 设平面直角坐标系原点与极坐标极点重合,x 轴正半轴与极轴重合,若已知曲线C 的极坐
标方程为,直线l 的参数方程为(t 为参数,t ∈R )
(1)求曲线C 的标准方程和直线l 的普通方程
(2)若点P 为曲线C 上的动点,求点P 到直线l 的最大距离.
(3)
9. 观察下题的解答过程:
已知正实数满足,求的最大值
解:2
322122122
2+=++≤⋅+a a a ,
相加得43)1212(2212212=++≤+++=⋅++
⋅+b a b a b a
,等号在时取得,
即的最大值为. 请类比上题解法,使用综合法证明下题:
已知正实数满足,求证:
10. 设函数,的定义域均为,且是奇函数,是偶函数,
,其中e 为自然对数的底数.
(1)求,的解析式,并证明:当时,,;
(2)设,,证明:当时,.
参考答案
1. C
2. C
3. B
4. C
5. B
6.
7.
8. (I )曲线C 的极坐标方程为ρ2= ,化为直角坐标方程:3x 2+4y 2=12,即 =1.(3分)
直线l 的参数方程为(t 为参数,t ∈R ),化为普通方程:x ﹣1﹣y=0(6分) (II )设P (2cos θ,sinθ),θ∈[0,2π),则点P 到直线l 的距离d==≤=
,其中α=arctan .
∴点P 到直线l 的最大距离是.(12分)
9.:3
523
712371222+=++≤⋅+x x x 3
523712371222+=++≤⋅
+y y y 相加得753
7)121212(=+++≤⋅+++++z y x z y x 即217
37121212=⋅
≤+++++z y x ,等号在时取得
10. (Ⅰ)由, 的奇偶性及,得: 联立①②解得,.(3分)
当时,,,故 又由基本不等式,有,即 (5分)
(Ⅱ)由(Ⅰ)得 2111e 1()(e )(e )(e e )()2e 2e 2
x x x x x x x f x g x -''=-=+=+=, ① 2111e 1()(e )(e )(e e )()2e 2e 2
x x x x x x x g x f x -''=+=-=-= , ② 当时,等价于, ③
等价于 ④
设函数 ,其中c 为常数且c ≤0或c ≥1
由①②,有
因为,则
若,由(1)问结论易得,故在上为增函数,从而,即,故③式成立.
若,由(1)问结论得,故在上为减函数,从而,即,故④成立.综合③④,得 . 36591 8EEF 軯?@29362 72B2 犲20517 5025 倥35613 8B1D 謝
h25344 6300 挀|32126 7D7E 絾25790 64BE 撾24620 602C 怬32041 7D29 紩。