高速铁路路桥过渡段

合集下载

高速铁路路桥(涵)过渡段施工方案

高速铁路路桥(涵)过渡段施工方案

路基过渡段施工方案一、编制依据和主要技术标准1.1编制依据1、新建南京至安庆铁路正线路基施工图纸及路桥过渡段设计图;2、《客运专线铁路路基工程施工质量验收暂行标准》(铁建设[2005] 160号)3、《铁路工程土工试验规程》(TBJ102-96);4、建设单位、设计单位、监理单位的相关文件通知。

1.2编制范围新建南京至安庆铁路宁安正线内的路基过渡段填筑。

1.3主要技术标准铁路等级:Ⅰ级;正线数目:双线;最大坡度:20‰;路段旅客列车设计行车速度:宁安正线250km/h;二、工程概况正线路基共计共4605米,其中DK208+180~DK208+369.07、DK209+650.0~DK210+450.0、DK212+537.62~DK212+870.0、DK213+300.0~DK215+050.0段线路以填方通过,基床底层填筑A、B组土,基床以下路堤填筑A、B、C组填料;分别位于五星水库南京端、五星水库大桥至白沙铺特大桥间及站场段。

地形较为平坦,路堤最大填方8m;DK208+145.0~DK208+180.0、DK208+794.1~DK209+089.07、DK209+355.9~DK209+650、DK210+450.0~DK210+887.5、DK212+870.0~DK213+300段以挖方为主通过,主要位于白沙铺特大桥南京端及白沙铺特大桥安庆端。

DK208+145.0~DK208+180.0最大挖深达14米,DK217+684.22~DK217+734.30段为浸水路堤(长江倒灌)。

过渡段采用倒梯形结构形式进行台(涵)后过渡。

宁安正线桥路及隧路过渡段采用级配碎石掺5%普通硅酸盐水泥填料填筑,涵路及路堤与路堑过渡段基床底层及基床以下路堤采用级配碎石掺3%普通硅酸盐水泥填料填筑,基床表层采用级配碎石掺5%普通硅酸盐水泥填料填筑。

过渡段是路基工程与其他工程的衔接部位,作为与过渡段相连接的桥台、涵洞、隧道等结构物提前安排施工,当桥台、涵洞、隧道等结构物施工及地基处理完成后,立即进行过渡段的填筑,以便加长过渡段静置自稳的时间,进一步减小工后沉降量。

高速铁路路基与桥梁过渡段施工技术要点分析

高速铁路路基与桥梁过渡段施工技术要点分析

高速铁路路基与桥梁过渡段施工技术要点分析发布时间:2023-04-12T09:04:39.723Z 来源:《工程建设标准化》2023年38卷1期1月作者:郑凯旋[导读] 随着社会迅速发展,我国交通网络覆盖面积逐渐扩大,我国地理环境较为复杂,对高铁路路基与桥梁过渡段施工技术应用效果提出了更高的要求。

郑凯旋中铁北京工程局第二工程有限公司湖南省长沙市 410007摘要:随着社会迅速发展,我国交通网络覆盖面积逐渐扩大,我国地理环境较为复杂,对高铁路路基与桥梁过渡段施工技术应用效果提出了更高的要求。

本文将结合铁路建设需要,识别影响应用效果的因素,研究施工技术的应用方式,以保证施工质量。

关键词:高速铁路;路基施工;桥梁过渡段施工引言:高速铁路运行速度快,适应现代社会的发展需要,因此高速铁路建设,受到社会各界的重视。

为此,施工人员应认识到路桥过渡段施工的重要性,结合高速铁路施工质量控制需要,创新施工技术的应用效果,促进交通行业发展。

因此,研究此项课题,具有十分重要的意义。

一、影响高速铁路路基与桥梁过渡段施工技术因素(一)结构差异高速铁路中,路基与桥梁结构不同,路基为柔性结构,而桥梁为刚性结构,这种结构上的差异导致过渡段施工难度提升,即便施工中实现路桥的平整连接,投入使用后也会出现质量问题,影响交通运输的安全性。

结构的差异使路基与桥梁的沉降幅度不同,路桥过渡段施工也是高速铁路施工中难度最大的环节,如施工人员在施工中不考虑二者结构的差异,优化施工技术的应用方式,会造成施工技术难以发挥应有作用,无法为高速铁路运输创造安全环境。

(二)路桥连接意识薄弱现阶段高速铁路建设中,相关人员将桥梁设计作为工作重点,大量人力与资金被用于桥梁施工,导致参与路基施工人员技术水平参差不齐,路基与桥梁施工方案独立性强,增加路桥过渡段的施工难度,施工技术无法发布应有价值。

施工人员路桥连接意识的薄弱也使得施工技术应用方案科学性较差,尽管按照方案可顺利完成施工,但施工质量达不到标准,高速铁路投入运行后质量会出现问题,缩短高速公路的使用寿命,威胁人们的生命安全[1]。

浅谈高速铁路中的路桥过渡段

浅谈高速铁路中的路桥过渡段

图 1 路堤与桥梁过渡段纵断面示意图
道高低调整能力 , 客运专线无 砟轨道铁路设计指 南》 铁建设涵 《 ( 桥、 路隧连接处造成 的沉降差 异造成 的错 台不 大于 5
2 路堑与桥梁过渡段。桥 台台尾路基为软质岩、 ) 强风化的硬
[ 0 5 74号文 ) 20 ]5 规定 : 一般地段 路基工后沉降不 大于 1 m; 5m 路 质岩及 土质路 堑时 , 桥路过 渡段采用混 凝土与级 配碎 石渐变过 ; 桥、 渡 , 路 长度不小于 2 0m。在过渡段 以外 2 0m范 围内的基床表层级
Ke r y wo ds:a ph l p v me t v ra s at a e n ,o e ly, ca r u u p,c u e n lss,p r e bi t o fiin l mo o s p l a s s a ay i e m a l y c efce t i
平均值为 55 , .% 高于设计值 约 1 个百分点 ; 路段 Ⅱ两个 芯样上面 [ ] J G 1 020 , 2 T 4 -0 4 公路 沥青混凝 土路 面施工技 术规 范[ ] 7 s. 层实测空隙率 为 6 2 , . % 高于设计值约 17个百分点 。 . [ ] J J 5 -0 0 公路 工程 沥青与 沥青混合料试验规 程[ ] 3 T 220 , 0 s.
台与土工结构的柔性路基 的结合部 位 , 在其强 度、 存 刚度 、 变形 、 10MP/ E 9 am, ≥10M a ≥5 an<1 %; 2 P , OMP , 8 基床底层应满 材料等方面的差异 , 在结构上是塑性变形和刚度 的突变体。为 了 足: ≥10 M am, ≥10MP , ≥5 a l<2 %。其 5 P / 0 aE 0MP ,, 8 t l 保证列车安全 , 舒适 , 高效运行 , 必须在路基 和桥梁之 间设置一定 中, 为地基 系数 , P/ 为变形模量 , P ; M am; M a 层 为动 态变 形 路桥过渡段 的沉降差及其产生 的轨面弯折 。

专题三:高速铁路路基与桥梁过渡段

专题三:高速铁路路基与桥梁过渡段

高速铁路路基与桥梁过渡段一、设置过渡段的原因铁路线路是由不同特点、性质迥异但又相互作用、相互依存、相互补充的构筑物(桥、隧、路基等)和轨道构成的。

由于组成线路的结构物强度、刚度、变形、材料等方面的巨大差异,因此必然会引起轨道的不平顺。

为了满足列车平稳舒适且不间断地运行,必须将其不平顺控制在一定范围之内。

轨道的不平顺有静不平顺和动不平顺之分。

静不平顺是指轮轨接触面不平顺,如钢轨轨面不平顺、不连续(接头、道岔)、车轮不圆顺等;动不平顺是指轨下基础弹性不均匀,如扣件失效、枕下支承失效、路基不均匀以及桥台与路基、路堤与路堑、路基与隧道等过渡段的弹性不均匀等。

在路基与桥梁连接处,由于路基与桥梁刚度差别很大,一方面引起轨道刚度的变化,另一方面,路基与桥台的沉降也不一致,在桥路过渡点附近极易产生沉降差,导致轨面发生弯折。

当列车高速通过时,必然会增加列车与线路的振动,引起列车与线路结构的相互作用力的增加(图3-17),影响线路结构的稳定,甚至危及行车安全。

在路基与桥梁之间设置一定长度的过渡段,可使轨道的刚度逐渐变化,并最大限度地减少路基与桥梁之间的沉降差,达到降低列车与线路的振动,减缓线路结构的变形,保证列车安全、平稳、舒适运行的目的。

二、路桥过渡段变形不一致的原因路桥过渡段受到高速运行车辆动荷载的作用时,在桥头处往往会出现振动较大的跳车现象,这种现象在高速铁路或高速公路的路桥过渡区段都有可能出现。

产生这种现象的主要原因有以下几个方面:1. 路基与桥梁结构的差异 道碴路基桥台 PPPxxvv(A)(B)图3-17 轮轨作用力在路桥过渡段的分布由于路基与桥台本身所用材料的不同,决定了它们的竖向位移、塑性变形以及对外部环境改变的相应差异,桥台要比路堤小的多。

路桥过渡段作为柔性路堤与刚性桥台的结合部位,在结构上是塑性变形和刚度的突变体(图3-18)。

只有当柔性路堤的塑性变形相对为零或其值的大小所引起的轨面弯折(轨道不平顺)满足高速行车的要求时,才不会出现如图3-17所示的情况。

高速铁路路基过渡段施工技术

高速铁路路基过渡段施工技术

高速铁路路基过渡段施工技术高速铁路路基过渡段施工技术我国近些年铁路建设飞速开展,高速铁路建设进入了快车道,而铁路的路桥建设必须本着平安、可靠为前提。

由于路基与桥梁、横向结构物等刚度的差异较大而引起轨道刚度的突变,同时二者的沉降不一致,而导致轨面不平顺,引起列车与线路结构的相互作用叠加,影响线路的稳定,影响列车的高速、平安、舒适运行。

在这种形势下,高速铁路需要优化配电网络,提高运行管理水平。

一、高速铁路路桥过渡段存在的问题及原因1、路基变形导致路基沉降高速铁路过渡段一半情况下是采用填土作为填料,在施工的过程中,因为填料颗粒间的孔隙无法完全消除,在自重和外载的共同作用下,隙率会继续降低,填料逐渐被压缩,从而产生压缩下沉。

路基施工的质量问题被很多建筑企业重视,都在通过各种途径去提高自身建筑产品的质量,但并没有解决实际的问题。

1.2地基工后沉降地基工后沉降是造成桥头跳车的成因。

高速铁路和高速铁路路桥过渡段设计环节出现问题将会影响后面的施工进程,比方设计伸缩缝地基压顶时安排不当,地基沉降设计中,到地基沉降的屋面存在局部泛水檐高度不够的问题等等。

1.3设计不合理之前的高速铁路路桥过渡段没有较为合理的设计要求,设计过程中并不是作为一种结构物进行考虑的。

同时,在施工进度上,如果不能保证足够的资金,就很难招到施工队伍和高素质的施工人员,那么会阻碍施工进度导致工期不流畅甚至延长。

二、高速铁路路基过渡段地基处理方法2.1浅层处理开挖换填是指全部或局部挖除软土,换填以砂、砾、卵石、片石等渗水性材料或强度较高的牯性土。

要解决这些工程质量通病只能靠技术攻关。

施工单位以及各方面技术人员要不断的举行攻关会或者相关活动,找出解决方法,不断改善工程质量。

2.2排水固结法排水固结法是指地基在荷载作用下,通过布置竖向排水井,使土中的孔隙水被慢慢排出,地基发生同结变形,以增强地基土强度的方法。

建筑施工质量的上下能否达标是由多个层面影响因素决定的,而建筑施工的质量好坏与施工操作人员的技术技能水平具有直接的影响。

高铁路桥过渡段施工技术及质量控制措施

高铁路桥过渡段施工技术及质量控制措施

高铁路桥过渡段施工技术及质量控制措施摘要:路桥过渡段是高速铁路施工的重点和难点,处理不当会对高铁安全运营带来严重影响,因此本文对高铁路桥过渡段施工技术及质量控制措施进行了探讨。

关键词:高速铁路;路桥过渡段;施工技术;质量控制在路基与桥梁连接处存在刚度差异,即桥台刚性大,路基刚性小。

随着列车行驶产生的动载荷作用,路基与桥台变形不一致,即路基变形大,桥台变形小,由此产生的沉降差会使轨面波折,进而引起列车和线路振动,甚至导致“桥头跳车”[1]。

为此,在路基与桥台之间设置过渡段,使轨道刚度平缓变化,可减少两者沉降差,降低列车与线路振动,保证列车行驶平稳、安全、舒适[2]。

可见,路桥过渡段的施工与质量对高铁安全运营具有关键性的影响,因此本文对高铁路桥过渡段施工技术及质量控制措施进行了探讨。

1高铁路桥过渡段施工技术分析1.1路桥过渡段结构型式图1 路桥过渡段示意图目前,高速铁路路桥过渡段主要采用倒梯形、正梯形和二次型三种结构型式,倒梯形是其中最常见的一种型式(如图1所示),采用该型式可以先施工路基,再施工桥台,最后施工过渡段。

在施工桥台时可预留出过渡段位置,待桥台施工完,再全断面一次性分层填筑过渡段[3]。

图1中,掺水泥级配碎石层为过滤层,坡度1:n中n取2~5,a取3~5m,h为基床表层厚度,过渡段长度L=a+(H-h)×n。

1.2路桥过渡段处理方法路桥过渡段要解决的核心问题是路基与桥梁的沉降差,而产生这种沉降差的原因是多方面的,既有地基方面的原因,例如在软土地基上建桥,桥台下部多采用刚性极大的钢筋混凝土桩基础,而路基基础处理相对简单,两者沉降规律不一致就形成沉降差;当然,也有桥台后路基填筑方面的原因,例如填料碾压达不到要求。

按照《高速铁路设计规范》(TB 10621-2014)第6.4.2条规定,无砟轨道路基与桥梁交界处工后差异沉降不应大于5mm,这个要求非常高,即使填筑时达到设计要求,运营后路基也会因为荷载作用而进一步压缩变形,从而增加沉降差异。

高速铁路路桥过渡段及施工技术探讨

高速铁路路桥过渡段及施工技术探讨

高速铁路路桥过渡段及施工技术探讨纵观现今高速铁路的发展一直都是以安全、高速、舒适等为前提,而这主要取决于构成高速铁路系统的安全性和可靠性。

由于组成线路的各结构物在强度、刚度、材料等方面存在巨大差异,并随着运量、时间、速度、气候环境等因素而变化,以及车辆荷载的随机性和重复性、轨道结构的组合性和松散性、养护维修的经常性和周期性等特点决定了轨道的变形和刚度在线路纵向是不断变化和不均匀的,这些将导致行车的不平稳和不安全。

为解决这些问题,在路基与桥梁之间设置过渡段,以减少路桥间的不均匀沉降,同时还能控制轨道刚度的变化范围,保证列车能够高速、安全、舒适的行驶。

标签:高速铁路;过渡段;施工技术引言:随着我国经济的发展,作为基础建设投资重点的全国高速铁路建设项目大幅增加,高速铁路路桥过渡段的施工也随之增多。

由于路桥结合处是柔性路堤和刚性桥台的结合部位,因此极易发生不均匀沉降,导致钢轨轨面弯折,行车不平顺,影响行车舒适和安全。

我国高速铁路大多未对路桥过渡段进行专门的设计,导致路桥连接处问题严重,需要依靠高速铁路部门经常进行线路维修、养护来保持线路的平顺性,维修改善费用同时增加。

因此,为了减少高速铁路运行的不平顺,高速铁路路基和桥梁需要设置一定长度的过渡段。

一、路桥过渡段问题的主要原因1、路基与桥梁结构的差异过渡段之间的沉降差不但影响线路的平稳和舒适,而且还会出现桥头跳车现象,这将危机行车安全和乘客的舒适度。

当列车高速通过时对线路产生附加动力,加快过渡段的破坏速度;过渡段结构发生破坏;路基排水不畅,积水下渗降低过渡段土体强度,使沉降差加剧。

2、地基条件的差异过渡段若在填土前不处理或处理不当,在路堤土及上部结构的自重下和列车产生的动力荷载作用下将产生较大变形。

桥梁多采用桩基础,其沉降量很小,出现桥不沉而路沉的不均匀沉降现象,且在车辆动荷载作用下沉降差继续发展。

3、桥台后路堤填料过渡段一般采用级配碎石并掺入适量水泥,首先由于颗粒间的空隙是无法完全消除的,路基填料在自重和外部荷载的共同作用下,缝隙会逐渐缩小,填料不断被压密实,将产生压缩下沉。

高速铁路路桥过渡段不均匀沉降控制措施探讨

高速铁路路桥过渡段不均匀沉降控制措施探讨

高速铁路路桥过渡段不均匀沉降控制措施探讨高速铁高速铁路的发展离不开安全。

高速铁路过渡段的不均匀沉降直接导致路桥结合部位轨道变形甚至断裂,因此应更加重视高速铁路路基和桥梁过渡段的不均匀沉降,以确保铁路火车的平稳和安全运行。

当前我国经济水平的不断发展,同时也推动了高铁领域的发展,其的存在为人们的出行提供了极大的便利,推动到我国经济的发展,有着十分重要的作用。

为此文章对如何有效解决到高铁铁路路基和桥梁过渡段中存在的工后不均匀沉降问题展开了研究和探讨,并提出见解。

一、高速铁路路基与桥梁过渡段概述高速铁路的发展离不开安全。

因此,有关人员应更加重视向高速铁路路基和桥梁的过渡,以确保铁路火车的平稳运行。

所以,相关人员应做好路基与桥梁结合部分的连接,因为两边的刚度相差非常的大。

由于无缝轨道受温度和支撑层沉降影响较大,很容易发生弯曲,因此如果该变形影响了列车的平稳运行,就会影响高速铁路列车行驶的平稳性和乘坐的舒适性,甚至造成严重的铁路安全事故。

相关人员必须更加关注铁路路基和桥梁过渡部分,减少很多列车上不必要的隐患,结合工程实践,以及钢轨刚度的变化,科学设计最后实现线路的平滑度。

在这方面,改善轨道刚度的具体措施如下:1.调整增加卧铺长度,以确保轨道刚度相对一致,因此应特别注意轨道刚度,以确保火车的平稳运行;2.增加路基底的垂直刚度,不仅可以保证火车的安全性,还可以防止火车受到线路振动的干扰,并有效保证线路的线性平顺。

它可以加强路基基床表层厚度,确保足够的路基刚度。

这要求施工人员严格控制足够的路基厚度并设置过渡。

路基过渡段在德国和日本具有广泛的应用。

与其他国家相比,中国的过渡部分开始较迟。

这种技术尚不完美。

因此,我们应该加强转型,加强桥梁过渡部分的技术,才能够避免到路基和桥梁的沉降。

二、结构变形不一致的原因在修建高铁之前,建设者应提前检查施工条件和位置,并预测可能出现的问题,做好现场的地质核查和地质确认。

做好路基的排水,如果相关负责人没有调查,由于忽视排水,高速铁路的设计会像低速铁路一样,造成不合理的设计,路基与路基之间的地形也会受到影响变的柔软。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速铁路路桥过渡段
路堤与桥台连接处应设置过渡段,可采用沿线路纵向倒梯形过渡形式。

过渡段路基的基床表层应掺入5%的水泥。

过渡段地基需要加固时应考虑与相邻地段协调渐变。

过渡段还应满足轨道特殊结构的要求。

过渡段路堤应与其连接的路堤同时施工,并按大致相同的高度分层填筑。

在距离台背2.0 m的范围内,应用小型机具碾压密实并适当减小分层填筑厚度。

过渡段的处理措施及施工工艺应结合工程实际,进行现场试验后确定。

路堤与横向结构物(框构、箱涵等)的连接处应设置过渡段,可采用沿线路纵向倒梯形过渡形式。

当横向结构物顶面填土厚度不大于1.0 m时,横向结构物及两侧20 m范围内基床表层的级配碎石中应掺加5%的水泥。

路堤与路堑的连接处应设置过渡段。

过渡段可采用下列设置方式:当路堤与路堑的连接处为硬质岩石路堑时,在路堑一侧顺原地面纵向开挖台阶,每级台阶自原坡面挖入的深度不应小于1.0 m,台阶高度为0.6 m左右,并应在路堤一侧设置过渡段;当路堤与路堑的连接处为软质岩石或土质路堑时,应顺原地面纵向开挖台阶,每级台阶的挖入深度不应小于1.0 m,台阶高度为0.6 m左右,其开挖部分的填筑要求应与路堤相应位置相同。

土质、软质岩路堑与隧道连接处应设置过渡段,并采用渐变厚度的混凝土或掺入5%水泥的级配碎石进行填筑。

无砟轨道与有砟轨道连接处的路基应设置过渡段,并符合轨道形式的过渡要求。

桥梁、涵洞及隧道等工程之间的短路基长度不应小于40 m,当短路基长度在特殊情况下不满足上述要求时,应对短路基进行特殊处理。

相关文档
最新文档