名校调研系列卷吉林省长春市市命题2018届九年级数学第二次模拟测试试题扫描版2018050723

合集下载

2018年吉林省长春市名校调研中考数学一模试卷

2018年吉林省长春市名校调研中考数学一模试卷

2018年吉林省长春市名校调研中考数学一模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.比﹣1大2的数是()A.﹣3 B.﹣2 C.1 D.22.每年的6月14日,是世界献血日,据统计,某市义务献血达421000人,421000这个数用科学记数法表示为()A.4.21×105B.42.1×104C.4.21×10﹣5D.0.421×1063.不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.4.一元二次方程x2+2x+2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根5.由6个完全相同的小正方体组成的立体图形如图所示,则在以下视图中,与其它三个形状都不同的是()A.主视图B.俯视图C.左视图D.右视图6.如图,AB为⊙O的切线,A为切点,BO的延长线交⊙O于点C,∠OAC=35°,则∠B的度数是()A.15°B.20°C.25°D.35°7.如图,点P在反比例函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于()A.﹣4 B.﹣2 C.2 D.48.如图,在四边形ABCD中,E,F分别在AD和BC上,AB∥EF∥DC,且DE=3,DA=5,CF=4,则FB等于()A.B.C.5 D.6二、填空题(每小题3分,共18分)9.计算:=.10.不等式组的解集为.11.如图,在正五边形ABCDE中,以BC为一边,在形内作等边△BCF,连结AF.则∠AFB的大小是度.12.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是元.13.如图,AB为半圆O的直径,点C在AB的延长线上,CD与半圆O相切于点D,且AB=2CD=4,则图中阴影部分的面积为.14.在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c是常数,a>0)的部分图象如图所示,直线x=1是它的对称轴.若一元二次方程ax2+bx+c=0的一个根x1的取值范围是2<x1<3,则它的另一个根x2的取值范围是.三、解答题(本大题共10小题,共78分)15.计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].16.先化简,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.17.如图,按要求涂阴影:(1)将图形①平移到图形②;(2)将图形②沿图中虚线翻折到图形③;(3)将图形③绕其右下方的顶点旋转180°得到图形④.18.把大小完全相同的6个乒乓球分成两组,每组3个,每组乒乓球上面分别标有数字1,2,3,将这两组乒乓球分别放入两个盒子中搅匀,再从每个盒子中各随机取出1个乒乓球,请用画树状图(或列表)的方法,求取出的2个乒乓球上面数字之和为偶数的概率.19.已知:如图,在△ABC中,D,E分别是AB,AC上一点,且∠AED=∠B.若AE=5,AB=9,CB=6,求ED的长.20.某市开展一项自行车旅游活动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向,C 地在A地北偏东75°方向.且BC=CD=20km,问沿上述线路从A地到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,)21.某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)九年级(1)班共有名学生;(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是;(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.22.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2017年我市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年我市能否完成计划目标?23.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM 与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.24.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B.抛物线y=﹣+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.(1)n=(用含m的代数式表示),点C的纵坐标是(用含m的代数式表示).(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数表达式.(3)设矩形BCDE的周长为d(d>0),求d与m之间的函数表达式.(4)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.2018年吉林省长春市名校调研(市命题)中考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.比﹣1大2的数是()A.﹣3 B.﹣2 C.1 D.2【考点】有理数的加法.【分析】根据题意可得:比﹣1大2的数是﹣1+2=1.【解答】解:﹣1+2=1.故选C.2.每年的6月14日,是世界献血日,据统计,某市义务献血达421000人,421000这个数用科学记数法表示为()A.4.21×105B.42.1×104C.4.21×10﹣5D.0.421×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:421 000=4.21×105,故选:A.3.不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≥﹣1,由②得,x<2,故不等式组的解集为:﹣1≤x<2.在数轴上表示为:.故选D.4.一元二次方程x2+2x+2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根【考点】根的判别式.【分析】计算判别式的值,然后利用判别式的意义判断方程根的情况.【解答】解:△=22﹣4×2=﹣4<0,所以方程没有实数解.故选C.5.由6个完全相同的小正方体组成的立体图形如图所示,则在以下视图中,与其它三个形状都不同的是()A.主视图B.俯视图C.左视图D.右视图【考点】简单组合体的三视图.【分析】主视图、左视图、俯视图、右视图是分别从物体正面、左面、上面、右面看所得到的图形,选出即可.【解答】解:主视图、左视图、右视图都为:俯视图为:,故选B.6.如图,AB为⊙O的切线,A为切点,BO的延长线交⊙O于点C,∠OAC=35°,则∠B的度数是()A.15°B.20°C.25°D.35°【考点】切线的性质.【分析】根据切线的性质得∠BAO=90°,再利用等腰三角形的性质得∠C=∠OAC=35°,然后根据三角形内角和计算∠B的度数.【解答】解:∵AB为⊙O的切线,∴OA⊥AB,∴∠BAO=90°,∵OA=OC,∴∠C=∠OAC=35°,∴∠B=180°﹣∠C﹣∠BAC=180°﹣35°﹣35°﹣90°=20°.故选B.7.如图,点P在反比例函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于()A.﹣4 B.﹣2 C.2 D.4【考点】反比例函数系数k的几何意义.【分析】由反比例函数系数k的几何意义结合△APB的面积为2即可得出k=±4,再根据反比例函数在第二象限有图象即可得出k=﹣4,此题得解.【解答】解:∵点P在反比例函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,=|k|=2,∴S△APB∴k=±4.又∵反比例函数在第二象限有图象,∴k=﹣4.故选A.8.如图,在四边形ABCD中,E,F分别在AD和BC上,AB∥EF∥DC,且DE=3,DA=5,CF=4,则FB等于()A.B.C.5 D.6【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理列出比例式,代入数值即可求解.【解答】解:∵AB∥EF∥DC,∴=,∵DE=3,DA=5,CF=4,∴=,∴CB=,∴FB=CB﹣CF=﹣4=.故选B.二、填空题(每小题3分,共18分)9.计算:=﹣.【考点】二次根式的加减法.【分析】先化成最简二次根式,再合并即可.【解答】解:原式=﹣2=﹣,故答案为:.10.不等式组的解集为x≥3.【考点】解一元一次不等式组.【分析】先求出两个不等式的解集,然后求其公共部分.【解答】解:由①得,x≥2,由②得,x≥3,故不等式组的解集为x≥3.故答案为x≥3.11.如图,在正五边形ABCDE中,以BC为一边,在形内作等边△BCF,连结AF.则∠AFB的大小是66度.【考点】多边形内角与外角;等边三角形的性质.【分析】根据等边三角形的性质得到BF=BC,∠FBC=60°,由正五边形的性质得到AB=BC,∠ABC=108°,等量代换得到AB=BF,∠ABF=48°,根据三角形的内角和即可得到结论.【解答】解:∵△BCF是等边三角形,∴BF=BC,∠FBC=60°,∵在正五边形ABCDE中,AB=BC,∠ABC=108°,∴AB=BF,∠ABF=48°,∴∠AFB=∠BAF==66°,故答案为:66.12.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是140元.【考点】一元一次方程的应用.【分析】设这件夹克的成本是x元,则标价就为1.5x元,售价就为1.5x×0.8元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设这件衣服的成本是x元,根据题意得:x(1+50%)×80%﹣x=28,解得:x=140.答:这件衣服的成本是140元;故答案为:140.13.如图,AB为半圆O的直径,点C在AB的延长线上,CD与半圆O相切于点D,且AB=2CD=4,则图中阴影部分的面积为.【考点】切线的性质;扇形面积的计算.【分析】根据已知条件证得三角形ODC是等腰直角三角形,得到∠DOB=45°,然后根据扇形的面积公式计算即可.【解答】解:∵AB为半圆O的直径,∴AB=2OD,∵AB=2CD=4,∴OD=CD=2,∵CD与半圆O相切于点D,∴∠ODC=90°,∴∠DOB=45°,∴阴影部分的面积==,故答案为:.14.在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c是常数,a>0)的部分图象如图所示,直线x=1是它的对称轴.若一元二次方程ax2+bx+c=0的一个根x1的取值范围是2<x1<3,则它的另一个根x2的取值范围是﹣1<x2<0.【考点】图象法求一元二次方程的近似根;抛物线与x轴的交点.【分析】利用对称轴及二次函数的图象性质,可以把图象与x轴另一个交点的取值范围确定.【解答】解:由图象可知x=2时,y<0;x=3时,y>0;由于直线x=1是它的对称轴,则由二次函数图象的对称性可知:x=0时,y<0;x=﹣1时,y>0;所以另一个根x2的取值范围为﹣1<x2<0.故答案为:﹣1<x2<0.三、解答题(本大题共10小题,共78分)15.计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].【考点】有理数的混合运算.【分析】先算乘方和括号里面的,再算乘法,由此顺序计算即可.【解答】解:原式=﹣1﹣0.5××(2﹣9)=﹣1﹣(﹣)=.16.先化简,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.【考点】整式的加减—化简求值.【分析】先去小括号,再去中括号,合并同类项,最后代入求出即可.【解答】解:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2)=2x2﹣[﹣x2+2xy﹣2y2]﹣(2x2﹣2xy+4y2)=2x2+x2﹣2xy+2y2﹣2x2+2xy﹣4y2=x2﹣2y2,当x=,y=﹣1时,原式=﹣.17.如图,按要求涂阴影:(1)将图形①平移到图形②;(2)将图形②沿图中虚线翻折到图形③;(3)将图形③绕其右下方的顶点旋转180°得到图形④.【考点】利用旋转设计图案;利用轴对称设计图案;利用平移设计图案.【分析】(1)利用平移的性质直接得出平移后的图形;(2)利用轴对称图形的性质直接得出翻折后的图形;(3)利用中心对称图形的性质直接得出旋转后的图形.【解答】解:(1)如图②所示:(2)如图③所示:(3)如图④所示:18.把大小完全相同的6个乒乓球分成两组,每组3个,每组乒乓球上面分别标有数字1,2,3,将这两组乒乓球分别放入两个盒子中搅匀,再从每个盒子中各随机取出1个乒乓球,请用画树状图(或列表)的方法,求取出的2个乒乓球上面数字之和为偶数的概率.【考点】列表法与树状图法.【分析】先画树状图展示所有9种等可能的结果数,再找出取出的2个乒乓球上面数字之和为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中取出的2个乒乓球上面数字之和为偶数的结果数为5,所以取出的2个乒乓球上面数字之和为偶数的概率=.19.已知:如图,在△ABC中,D,E分别是AB,AC上一点,且∠AED=∠B.若AE=5,AB=9,CB=6,求ED的长.【考点】相似三角形的判定与性质.【分析】首先判定三角形ABC与三角形AED相似,然后利用相似三角形的性质得到比例式即可求得ED的长.【解答】解:∵∠AED=∠B,∠A=∠A,∴△AED∽△ABC,∴,∵AE=5,AB=9,CB=6,∴,解得:DE=.20.某市开展一项自行车旅游活动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向,C 地在A地北偏东75°方向.且BC=CD=20km,问沿上述线路从A地到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,)【考点】解直角三角形的应用﹣方向角问题.【分析】求出∠DCA的度数,再判断出BC=CD,据此即可判断出△BCD是等边三角形.过点B作BE⊥AD,垂足为E,求出∠DAC的度数,利用三角函数求出AB 的长,从而得到AB+BC+CD的长.【解答】解:由题意可知∠DCA=180°﹣75°﹣45°=60°,∵BC=CD,∴△BCD是等边三角形.过点B作BE⊥AD,垂足为E,如图所示:由题意可知∠DAC=75°﹣30°=45°,∵△BCD是等边三角形,∴∠DBC=60° BD=BC=CD=20km,∴∠ADB=∠DBC﹣∠DAC=15°,∴BE=sin15°BD≈0.25×20≈5m,∴AB==≈7m,∴AB+BC+CD≈7+20+20≈47m.答:从A地跑到D地的路程约为47m.21.某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)九年级(1)班共有50名学生;(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是57.6°;(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据“不得奖”人数及其百分比可得总人数;(2)总人数乘以一等奖所占百分比可得其人数,补全图形,根据各项目百分比之和等于1求得二等奖所占百分比,再乘以360°即可得;(3)用总人数乘以荣获一、二、三等奖的学生占总人数的百分比即可.【解答】解:(1)九年级(1)班共有=50(人),故答案为:50;(2)获一等奖人数为:50×10%=5(人),补全图形如下:∵获“二等奖”人数所长百分比为1﹣50%﹣10%﹣20%﹣4%=16%,“二等奖”对应的扇形的圆心角度数是360°×16%=57.6°,故答案为:57.6°;(3)1250×(10%+16%+20%)=575(名),答:估计荣获一、二、三等奖的学生共有575名.22.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2017年我市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年我市能否完成计划目标?【考点】一元二次方程的应用.【分析】(1)根据题意可以列出相应的方程从而可以求得这两年我市推行绿色建筑面积的年平均增长率;(2)根据(1)中的增长率可以求得实际到2017年绿色建筑的面积,然后与计划的作比较,即可解答本题.【解答】解:(1)设这两年我市推行绿色建筑面积的年平均增长率为x,950(1+x)2=1862,解得,x1=0.4,x2=﹣2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862(1+40%)=2606.8,∵2606.8>2400,∴2017年我市能完成计划目标,即如果2017年仍保持相同的年平均增长率,2017年我市能完成计划目标.23.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM 与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【考点】角的计算;角平分线的定义.【分析】(1)根据图形和题意得出∠AON+∠BOM=90°,∠CON+∠COM=90°,再根据∠AON=∠CON,即可得出OM平分∠BOC;(2)根据图形和题意得出∠AON+∠BOM=90°,∠CON=∠COM=45°,再根据转动速度从而得出答案;(3)分别根据转动速度关系和OC平分∠MOB画图即可.【解答】解:(1)①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC;(2)5秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒;(3)OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)=(90°﹣3t),解得:t=秒;如图:24.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B.抛物线y=﹣+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.(1)n=﹣m+4(用含m的代数式表示),点C的纵坐标是﹣m2﹣m+4(用含m的代数式表示).(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数表达式.(3)设矩形BCDE的周长为d(d>0),求d与m之间的函数表达式.(4)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.【考点】二次函数综合题.【分析】(1)根据二次函数的解析式写出顶点P的坐标(m,n),又因为点p在直线y=﹣x+4上,将p点坐标代入可求出n,将二次函数化成一般式后得出点C 的纵坐标,并将其化成含m的代数式;(2)当点P在矩形BCDE的边DE上,且在第一象限时,由CD=2可知,点P的横坐标为2,可求得纵坐标为2,则P(2,2),得出抛物线对应的函数表达式;(3)根据坐标表示出边BC的长,由矩形周长公式表示出d;(4)首先点B与C不能重合,因此点B不会在抛物线上,则分两类情况讨论:①点C、D在抛物线上时;②点C、E在抛物线上时;由(1)的结论计算出m的值.【解答】解:(1)y=﹣(x﹣m)2+n=﹣x2+mx﹣m2+n,∴P(m,n),∵点P在直线y=﹣x+4上,∴n=﹣m+4,当x=0时,y=﹣m2+n=﹣m2﹣m+4,即点C的纵坐标为:﹣m2﹣m+4,故答案为:﹣m+4,﹣m2﹣m+4;(2)∵四边形BCDE是矩形,∴DE∥y轴.∵CD=2,∴当x=2时,y=2.∴DE与AB的交点坐标为(2,2).∴当点P在矩形BCDE的边DE上时,抛物线的顶点P坐标为(2,2).∴抛物线对应的函数表达式为.(3)∵直线y=﹣x+4与y轴交于点B,∴点B的坐标是(0,4).当点B与点C重合时,.解得m1=0,m2=﹣3.i)当m<﹣3或m>0时,如图①、②,..ii)当﹣3<m<0时,如图③,..(4)如图④⑤,点C、D在抛物线上时,由CD=2可知对称轴为:x=±1,即m=±1;如图⑥⑦,点C、E在抛物线上时,由B(0,4)和CD=2得:E(﹣2,4)则4=﹣(﹣2﹣m)2+(﹣m+4),解得:、.综上所述:m=1、m=﹣1、、.。

2018年吉林省实验中学九年级第二次模拟考试测试题·数学

2018年吉林省实验中学九年级第二次模拟考试测试题·数学

2017—2018学年度下学期初三年级第二次模拟(数学)试卷满分120分,时间120分钟注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。

2. 答题时,考生务必按考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效。

一、选择题(本大题共8小题,每小题3分,共24分)1.在实数0215中,无理数是 (A)(B )0. (C(D )215. 2.在一次扶贫助残活动中,某市共筹得捐款5 280 000元.5 280 000这个数用科学记数法表示为 (A )70.52810⨯. (B )65.2810⨯. (C )75.2810⨯. (D )652.810⨯.3.下列四个图形中是正方体的平面展开图的是4.夹在两条平行线间的正方形ABCD 、等边三角形DEF 如图 所示,顶点A 、F 分别在两条平行线上.若A 、D 、F 在一条 直线上,则∠1与∠2的数量关系是 (A )∠1+∠2=60°. (B )∠2-∠1=30°.(C )∠1=2∠2.(D )∠1+2∠2=90°. (第4题图)5.将二次函数2y x =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式为(A )2(12)+y x =+. (B )2(1)2y x =-+.(C )2(1)2y x =+-.(D )2(1)2y x =--.6.如图,点A 、B 、C 在⊙O 上,∠ABC =31°,过点C 作⊙O 的切线交OA 的延长线于点D .则∠D 的大小为 (A )32°. (B )31°. (C )28°. (D )27°.7.如图,在△ABC 中,AB =6,BC =4,将△ABC 绕点A 逆时针旋转得到△AEF ,使得 AF ∥BC ,延长BC 交AE 于点D ,则线段CD 的长为 (A )4. (B )5. (C )6. (D )7.(第6题图) (第7题图) (第8题图)8.如图,点11(,)2A y 、2(2,)B y 在函数10)(y x x=>的图象上,点P 在x 轴上,当线段AP 与线段BP 之差达到最大时,点P 的坐标为 (A )1(,0)2.(B )(1,0).(C )3(,0)2.(D )5(,0)2.二、填空题(本大题共6小题,每小题3分,共18分)9.23m m ⋅= .10.不等式组213351x x +>⎧⎨-≤⎩的解集为 .11.一个滑轮起重装置如图所示,滑轮的半径是10cm ,当滑轮的一条半径OA 绕轴心O 按逆时针方向旋转的角度为120°时,重物上升 cm .(结果保留π)12.如图,在△ABC 中,∠ACB =90°,点D 、E 分别是边AB 、AC 的中点,点F 在BC 的延长线上,CF =12BC .若AB =12,则EF 的长为 .(第11题图) (第12题图) (第13题图)ABC D EFO13.如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 在x 轴正半轴上,顶点D 在反比例函数xky =的第一象限的图象上,CA 的延长线与y 轴负半轴交于点E .若△ABE 的面积为1.5,则k 的值为 .14.如图,平行于x 轴的直线AC 分别交抛物线21y x =(x ≥0)与223x y =(x ≥0)于B 、C 两点,过点C 作y 轴的平行线交1y 于点D ,直线DE ∥AC ,交2y 于点E ,则DEAB = .(第14题图)三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:222111x x xx x ++---,其中1x .16.(6分)某市举办中学生足球赛,初中男子组共有市直学校的A 、B 两队和县区学校的e 、f 、g 、h 四队报名参赛,六支球队分成甲、乙两组,甲组由A 、e 、f 三队组成,乙组由B 、g 、h三队组成,现要从甲、乙两组中各随机抽取一支球队进行首场比赛.请你用画树状图法或列表法,求首场比赛出场的两个队都是县区学校队的概率.17.(6分)某市大力推进义务教育均衡发展,加强学校标准化建设.计划用三年时间对全市学校的设施和设备进行全面改造.2018年市政府已投资5亿元人民币,若每年投资的增长率相同,预计2020年投资7.2亿元人民币.求每年投资的增长率.18.(6分)如图,在方格纸中,点A 、B 、P 都在格点上,按要求画出以AB 为边的格点四边形,使P 在四边形内部(不包括边界上),且P 到四边形的两个顶点的距离相等.(1)在图①中画出一个 ABCD .(2)在图②中画出一个四边形ABCD ,使∠D =90°,且∠A ≠90°.(第18题) 19.(7分)某商场门前的台阶横面积如图所示.已知每级台阶的宽度(图中CD )均为0.4m ,高度(图中的BE )均为0.3m .现将此台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角A ∠为12︒,计算从斜坡的起点A 到台阶前点B 的距离.(精确到0.1m )(参考数据:sin120.24︒≈,cos120.98︒≈,tan120.21︒≈)(第19题)20.(8分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 74537446 6754 7638 6834 7326 6830 8648 87539450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:请根据以上信息解答下列问题:(1)填空:m = ,n = ;(2)补全频数分布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在 组;(4)若该团队共有140人,请估计其中一天行走步数不少于7500步的人数.1y 2y21.(8分)某车间甲、乙两名工人加工相同数量的相同零件,甲先加工一段时间后机器出现故障进行维修,修好后按原来的工作效率继续加工.乙因迟到,到达车间后立刻以甲3倍的工作效率加工,直到任务结束.如图是他们分别加工零件的数量y个与加工时间x小时的函数图象.解读信息:(1)甲加工的效率是个/小时,维修机器用了小时;(2)乙迟到了小时,乙的工作效率是个/小时;问题解决:(3)甲加工多少小时后被乙追上?此时乙加工多少个零件?(4)若乙比甲提前10分钟完成任务,直接写出这批零件的总数.(第21题)22.(9分)已知△ABC是等边三角形,四边形ADEF是菱形,∠ADE=120°(AD>AB).(1)如图①,当AD与边BC相交,点D与点F在直线AC的两侧时,BD与CF的数量关系为.(2)将图①中的菱形ADEF绕点A旋转α(0°<α<180°),如图②.Ⅰ.判断(1)中的结论是否仍然成立,请利用图②证明你的结论.Ⅱ.若AC=4,AD=6,当△ACE为直角三角形时,直接写出CE的长度.(第22题)23.(10分)如图①,在△ABC中,∠ACB=90°,AC=6,BC=8,点D为边BC的中点,射线DE⊥BC交AB于点E.点P从点D出发,沿射线DE以每秒1个单位长度的速度运动.以PD为斜边,在射线DE的左侧作等腰直角△DPQ.设点P的运动时间为t(秒).(1)用含t的代数式表示线段EP的长.(2)求点Q落在边AC上时t的值.(3)当点Q在△ABC内部时,设△PDQ和△ABC重叠部分图形的面积为S(平方单位),求S与t之间的函数关系式.(4)在点P出发的同时,另有一动点M从点A出发,在线段AB上以每秒0.5个单位长度的速度向终点B运动,MN⊥AC交边AC于点N,如图②.当点M到达点B时,M、P两点同时停止运动.直接写出当△PDQ与△AMN重叠部分图形为四边形时t的取值范围.图①图②(第23题)24.(12分)给定一个函数,如果这个函数的图象上存在一个点,它的横、纵坐标相等,那么这个点叫做该函数的不变点.(1)一次函数32y x=-的不变点的坐标为.(2)二次函数231y x x=-+的两个不变点分别为点P、Q(P在Q的左侧),将点Q绕点P 顺时针旋转90°得到点R,求点R的坐标.(3)已知二次函数23y ax bx=+-的两个不变点的坐标为A(-1,-1)、B(3,3).①求a、b的值.②如图,设抛物线23y ax bx=+-与线段AB围成的封闭图形记作M.点C为一次函数13y x m=-+的不变点,以线段AC为边向下作正方形ACDE.当D、E两点中只有一个点在封闭图形M的内部(不包含边界)时,求出m的取值范围.(第24题)ABC DEPQABC DEPQMN第二次模拟数学答案一、选择题 1.C 2.B 3.B4.B 5.B6.C 7.B 8.D .二、填空题9.5m 10.12x <≤11.203π12.6 13.3 14.3.三、解答题 15.原式11=x -…………………………………………………4分当1x时,原式.…………………6分19.过点C 作CF ⊥AB 于点F依题得CF =0.3×4=1.2m ,BF =0.4×3=1.2m …………………2分 在Rt △ACF 中,∠AFC =90°tan12°=CFAF1.25.710.21A F m≈≈ …………………5分 5.71 1.2 4.5AB AF BF m =-=-≈ …………………6分∴从斜坡的起点A 到台阶前点B 的距离约为4.5m .…………………7分 20.(1)m=4,n=1; …………………2分 (2)补全图形略 …………………4分 (3)中位数落在B 组 …………………5分 (4)4311405620++⨯=(人) ∴估计其中一天行走步数不少于7500步的人数约为56人.…………8分 21.(1)20,0.5; …………………2分 (2)43,60; …………………4分(3)20(0.5)460()3y x y x =-⎧⎪⎨=-⎪⎩解得7425x y ⎧=⎪⎨⎪=⎩ …………………6分 (4)60 …………………8分 22.(1)BD CF = …………………1分 (2)(1)中的结论仍然成立 …………………2分证明:∵△ABC 是等边三角形∴AB =AC ,∠BAC =60° 在菱形ADEF 中∴AD =AF ,AF ∥DE∴∠DAE =180°-∠ADE =180°-120°=60° ∴∠BAC =∠DAE即∠BAC +∠CAD =∠DAF +∠CAD ∴∠BAD =∠CAF ∴△BAD ≌△CAF∴BD =CF …………………7分 (3)CE =…………………9分23.(1)当0≤t ≤3时FPE =3-t 当t >3时PE =t -3 …………………2分(2)当点Q 落在边AC 上时 PD =2CD =8∴t =8 …………………3分(3)当0≤t ≤3时 2111224=S t t t⨯= 当3<t <8时22211411218(34272877)=-S t t t t =-⨯-+- …………………6分 (4)1582t <≤或10t =或20t = …………………10分 24.(1)(1,1) …………………1分 (2)依题得231+x x x =-解得1222x x ==∴(2P -- (2,3)Q∴222(=Q y2Q y =-∴(2-R …………………5分 (3)①1,1a b ==- …………………8分 ②443-m <<-或2433m ≤< …………………12分。

2018-2019学年吉林省名校调研系列卷九年级(上)期中数学模拟试卷(含答案)

2018-2019学年吉林省名校调研系列卷九年级(上)期中数学模拟试卷(含答案)

2018-2019学年吉林省名校调研系列卷九年级(上)期中数学模拟试一.选择题(共8小题,满分24分)1)A B C D2.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上3.关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3B.x1=1,x2=﹣3C.x1=1,x2=3D.x1=﹣1,x2=﹣3 4.如图,在△ABC中,点E、F分别为AB、AC的中点.若△ABC的周长为6,则△AEF的周长为()A.12B.3C.4D.不能确定5.如图,△ABC的三个顶点分别在正方形网格的格点上,则tanC的值是()A B C D6.在2015﹣2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小7.如图,已知矩形ABCD中,AB=3,BE=2,EF⊥BC.若四边形EFDC与四边形BEFA相似而不全等,则CE=()A.3B.3.5C.4D.4.58.如图,在Rt△ABC中,∠ACB=90°,BC=3,,AB的垂直平分线DE交BC的延长线于点E,则DE的长为()A B C D.2二.填空题(共6小题,满分18分,每小题3分)9.在△ABC中,∠C=90°,若AC=m,∠A=θ,那么AB的长是(用含m 和θ的式子表示).10.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=.11.如图,在△ABC中,DE∥BC,若AD=1,DB=2的值为.12.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有个.13.如图,身高为1.7m的小明AB站在小河的一岸,利用树的倒影去测量河对岸一棵树CD的高度,CD在水中的倒影为C′D,A、E、C′在一条线上.如果小河BD的宽度为12m,BE=3m,那么这棵树CD的高为m.14.如图,海中有一个小岛A,它的周围15海里内有暗礁,今有货船由西向东航行,开始在A岛南偏西60°的B处,往东航行20海里后到达该岛南偏西30°的C处后,货船继续向东航行,你认为货船航行途中触礁的危险.(填写:“有”或“没有”)参考数据:sin60°=cos30°≈0.866.三.解答题(共10小题,满分78分)15.(616.(6分)已知关于x的方程kx2﹣4kx+k﹣5=0有两个相等的实数根,求k的值,并解这个方程.17.(6分)在下列三个正方形网格图中,△ABC的顶点和另两条线段的端点都在格点上,以给定的线段为一边,分别在图2和图3中各画出一个三角形,使所画的三角形都与△ABC相似,并说明所画三角形与△ABC的相似18.(7分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.19.(7分)“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有121人受到感染,(1)问每轮传染中平均一个人传染了几个人?(2)如果得不到控制,按如此的传播速度,经过三轮后将有多少人受到感染?20.(7分)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E是BC上的一点,AE=BE,AB=10,cos∠tan∠AEC的值.21.(8分)已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2,并写出点B2的坐标.22.(9分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).23.(10分)如图1,△ABC中,点D在线段AB上,点E在线段CB延长线上,且BE=CD,EP∥AC交直线CD于点P,交直线AB于点F,∠ADP=∠ACB.(1)图1中是否存在与AC相等的线段?若存在,请找出,并加以证明,若不存在,说明理由;(2)若将“点D在线段AB上,点E在线段CB延长线上”改为“点D在线段BA延长线上,点E在线段BC延长线上”,其他条件不变(如图2).当∠ABC=90°,∠BAC=60°,AB=2时,求线段PE的长.24.(12分)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接A P、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP 上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN 交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.参考答案一.选择题1.B.2.C.3.C.4.B.5.A.6.A.7.D.8.B.二.填空题910.﹣2.1112.15.13.5.1.14.没有.三.解答题15.解:原式=416.解:∵原方程有两个相等的实数根,∴k≠0且△=0,即16k2﹣4k(k﹣5)=0,k=0(舍),∴(x﹣2)2=0,∴x1=x2=2.17.解:如图所示:△ABC∽△A′B′C′,相似比为:1△ABC∽△DEF,相似比为:1:2.18.解:不公平,列表如下:由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,按照小亮的想法参加文明礼19.解:(1)设每轮传染中平均一个人传染了x个人,根据题意得:(x+1)2=121,解得:x1=10,x2=﹣12(不合题意,应舍去).答:每轮传染中平均一个人传染了10个人.(2)当x=10时,(x+1)3=(10+1)3=1331.答:经过三轮后将有1331人受到感染.20.解:∵CD⊥AB,∴∠ADC=∠ACB=90°,∴∠ACD+∠CAB=90°,∠B+∠CAB=90°,∴∠ACD=∠B,∴co s∠ACD=cos∠=AB=10,∴BC=8,,设BE=AE=x,在Rt△ACE中,x2=62+(8﹣x)2,解得∴∴tan∠21.解:(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求;B2(10,8)22.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.7(m),答:坡道口的限高DF的长是3.7m.23.解:(1)AC=BF.证明如下:如图1,∵∠ADP=∠ACD+∠A,∠ACB=∠ACD+∠BCD,∠ADP=∠ACB,∴∠BCD=∠A,又∵∠CBD=∠ABC,∴△CBD∽△ABC,∵FE∥AC,∵BE=CD,∴BF=AC;(2)如图2,∵∠ABC=90°,∠BAC=60°,∴∠ACB=30°=∠ADP,∴∠BCD=60°,∠ACD=60°﹣30°=30°,∵PE∥AC,∴∠E=∠ACB=30°,∠CPE=∠ACD=30°,∴CP=CE,∵BE=CD,∴BC=DP,∵∠ABC=90°,∠D=30°,∴,∴,即P为CD的中点,又∵PF∥AC,∴F是AD的中点,∴FP是△ADC的中位线,∴,∵∠ABC=90°,∠ACB=30°,∴,∴FP=AB=2,∵DP=CP=BC,CP=CE,∴BC=CE,即C为BE的中点,又∵EF∥AC,∴A为FB的中点,∴AC是△BEF的中位线,∴EF=2AC=4AB=8,∴PE=EF﹣FP=8﹣2=6.24.解:(1)①如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;②如图1,∵△OCP与△PDA的面积比为1:4,∴,设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边AB的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∴△MFQ≌△NFB(AAS).∴,∴EF=EQ+,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴∴∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为。

长春市名校调研中考数学二模试卷(1)含答案解析

长春市名校调研中考数学二模试卷(1)含答案解析

吉林省长春市名校调研中考数学二模试卷一、选择题:每小题3分,共24分.1.在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.32.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.3.如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.60°4.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.165.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.56.不等式组的解在数轴上表示为()A.B.C.D.7.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°8.如图,抛物线y=x2﹣2x﹣3与x轴交于点A、D,与y轴交于点C,四边形ABCD是平行四边形,则点B的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣3)C.(﹣3,﹣4)D.(﹣4,﹣4)二、填空题:每小题3分,共18分.9.﹣5的相反数是.10.我市参加中考的考生人数约为43400人,将43400用科学记数法表示为.11.如图,在△ABC中,已知DE∥BC,,则△ADE与△ABC的面积比为.12.如图,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BG,若S△ABC=6,则图中阴影部分面积是.13.如果将抛物线y=x2+2x﹣1沿y轴向上平移,使它经过点A(1,5),那么所得新抛物线的解析式是.14.如图,△ABC是等边三角形,AC=9,以点A为圆心,AB长为半径画,若∠1=∠2,则的长为(结果保留π).三、解答题:本大题共10小题,共78分.15.计算:.16.电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?17.已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根,求k的取值范围.18.在一个不透明的袋子里装有3个乒乓球,球上分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下数字后放回,再从袋子里随机摸出1个乒乓球记下数字.请用画树状图(或列表)的方法,求两次摸出的乒乓球数字之和是奇数的概率.19.如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.20.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE⊥PD,交PD的延长线于点C,连接AD并延长,交BE于点E,且BE=6cm,求AB的长.21.如图是某种货车自动卸货时的示意图,AC是水平汽车底盘,OB是液压举升杠杆,货车卸货时车厢AB与底盘AC的夹角为30°,举升杠杆OB与底盘AC的夹角为75°,已知O 与A的距离为4米,试求货车卸货时举升杠杆OB的长(,精确到0.01米).22.感知:如图1,已知正方形ABCD,以AD、CD为一边向外作等边△ADE和等边△CDF,连接BE、EF、FB,易证△BEF是等边三角形(不用证明);探究:将感知条件中的正方形ABCD改为矩形ABCD,如图2,其他条件不变,那么△BEF 是等边三角形吗?说明理由;应用:将感知条件中的正方形ABCD改为▱ABCD,如图3,其他条件不变,则∠BEF=度.23.如图1,抛物线y1=﹣x2+a与x轴交于A、D两点,与y轴交于点B,点C(2,﹣3)在抛物线y2的图象上.(1)求抛物线y1的函数表达式及点B的坐标;(2)如图2,将抛物线y1沿x轴向右平移后得抛物线y2,且抛物线y2的图象过点C,抛物线y2与x轴交于F、G两点,顶点为E.①请直接写出抛物线y2的函数表达式及点E的坐标;②在A、B、C、D、E、F、G中,连接任意三点,能构成等腰直角三角形的共有个,分别是.24.如图,在菱形ABCD中,AB=6,∠ABC=60°,动点E、F同时从点B出发,其中点E 从点B向点A以每秒1个单位的速度运动,点F从点B出发沿B﹣C﹣A的路线向终点以每秒2个单位的速度运动,以EF为边向上(或向右)作等边三角形EFG.AH是△ABC中BC边上的高,两点运动时间为t秒,△EFG和△AHC有重合部分时,重合部分图形的周长为L.(1)用含t的代数式表示线段CF的长;(2)求点G落在AC上时t的值;(3)求L关于t的函数关系式.吉林省长春市名校调研中考数学二模试卷参考答案与试题解析一、选择题:每小题3分,共24分.1.在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.3【考点】实数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<0<2<3,最小的实数是﹣2,故选:A.2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.3.如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.60°【考点】平行线的性质.【分析】先求出∠3的度数,根据平行线的性质得出∠2=∠3,代入求出即可.【解答】解:∵∠1=50°,∴∠3=90°﹣50≤=40°,∵直线a∥直线b,∴∠2=∠3=40°,故选B.4.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.16【考点】多边形内角与外角.【分析】由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.【解答】解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选:C.5.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.5【考点】一元一次方程的解.【分析】根据方程的解的定义,把x=2代入方程,解关于a的一元一次方程即可.【解答】解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.6.不等式组的解在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【解答】解:由不等式①,得3x>5﹣2,解得x>1,由不等式②,得﹣2x≥1﹣5,解得x≤2,∴数轴表示的正确方法为C.故选:C.7.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°【考点】圆周角定理;平行线的性质.【分析】连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B的度数即可.【解答】解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.8.如图,抛物线y=x2﹣2x﹣3与x轴交于点A、D,与y轴交于点C,四边形ABCD是平行四边形,则点B的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣3)C.(﹣3,﹣4)D.(﹣4,﹣4)【考点】抛物线与x轴的交点;平行四边形的性质.【分析】首先利用抛物线与坐标轴的交点坐标求出A、D、C的坐标,再利用平行四边形的性质得出B点坐标.【解答】解:令y=0,可得x=3或x=﹣1,∴A点坐标为(﹣1,0);D点坐标为(3,0);令x=0,则y=﹣3,∴C点坐标为(0,﹣3),∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AD=BC=4,∴B点的坐标为(﹣4,﹣3),故选A.二、填空题:每小题3分,共18分.9.﹣5的相反数是5.【考点】相反数.【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故答案为:5.10.我市参加中考的考生人数约为43400人,将43400用科学记数法表示为 4.34×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5100000有7位,所以可以确定n=7﹣1=6.【解答】解:43400=4.34×104.故答案为4.34×104.11.如图,在△ABC中,已知DE∥BC,,则△ADE与△ABC的面积比为4:25.【考点】相似三角形的判定与性质.【分析】根据题意可得△ADE∽△ABC,然后根据面积比为相似比的平方求解.【解答】解:在△ABC中,∵DE∥BC,∴△ADE∽△ABC,∵,∴S△ADE:S△ABC=4:25.故答案为:4:25.12.如图,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BG,若S△ABC=6,则图中阴影部分面积是2.【考点】三角形的面积.【分析】根据三角形的中线的性质进行解答即可.【解答】解:∵S△ABC=6,∴S△ABD=3,∵AG=2GD,∴S△ABG=2,故答案为:213.如果将抛物线y=x2+2x﹣1沿y轴向上平移,使它经过点A(1,5),那么所得新抛物线的解析式是y=x2+2x+2.【考点】二次函数图象与几何变换.【分析】先把解析式配成顶点式得到抛物线的顶点坐标为(﹣1,﹣2),再利用点平移的坐标规律,把点(﹣1,﹣2)向上平移m个单位所得对应点的坐标为(﹣1,﹣2+m),则根据顶点式写出平移的抛物线解析式为y=(x+1)2﹣2+m,然后把A点坐标代入求出m的值即可得到平移后得到的抛物线的解析式.【解答】解:因为y=y=x2+2x﹣1=(x+1)2﹣2,所以抛物线的顶点坐标为(﹣1,﹣2),点(﹣1,﹣2)向上平移m个单位所得对应点的坐标为(﹣1,﹣2+m),所以平移的抛物线解析式为y=(x+1)2﹣2+m,把A(1,5)代入得4﹣2+m=5,解得m=3,所以平移后的抛物线解析式为y=(x+1)2+1,即y=x2+2x+2.故答案为y=x2+2x+2.14.如图,△ABC是等边三角形,AC=9,以点A为圆心,AB长为半径画,若∠1=∠2,则的长为3π(结果保留π).【考点】弧长的计算.【分析】先由等边三角形的性质得出AB=AC=9,∠CAB=60°.再由∠1=∠2得到∠CAB=∠DAE=60°,然后根据弧长公式解答即可.【解答】解:∵△ABC是等边三角形,AC=9,∴AB=AC=9,∠CAB=60°.∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE=60°,∴弧DE的长为=3π,故答案为:3π.三、解答题:本大题共10小题,共78分.15.计算:.【考点】二次根式的混合运算.【分析】先进行乘法运算,然后把化简后合并即可.【解答】解:原式=2+2+5=4+5.16.电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【考点】二元一次方程组的应用.【分析】设茶壶的单价为x元,茶杯的单价为y元,根据题意可得,1个茶壶和10个茶杯共花去220元,茶壶的单价比茶杯的单价的4倍还多10元,据此列方程组求解.【解答】解:设茶壶的单价为x元,茶杯的单价为y元,由题意得,,解得:.答:茶壶的单价为70元,茶杯的单价为15元.17.已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根,求k的取值范围.【考点】根的判别式;解一元一次不等式.【分析】由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根,∴△=(﹣6)2﹣4(k+3)=24﹣4k>0,解得:k<6.18.在一个不透明的袋子里装有3个乒乓球,球上分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下数字后放回,再从袋子里随机摸出1个乒乓球记下数字.请用画树状图(或列表)的方法,求两次摸出的乒乓球数字之和是奇数的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号数字之和是奇数的情况,再利用概率公式即可求得答案即可.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的乒乓球标号数字之和是奇数有4种情况,∴两次摸出的乒乓球标号数字之和是奇数概率=.19.如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.【考点】等腰三角形的性质;三角形内角和定理.【分析】首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°﹣∠DBC﹣∠C=75°.20.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE⊥PD,交PD的延长线于点C,连接AD并延长,交BE于点E,且BE=6cm,求AB的长.【考点】切线的性质.【分析】连接OD,利用切线的性质解答即可.【解答】解:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴∠ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠E,∴AB=BE=6(cm).21.如图是某种货车自动卸货时的示意图,AC是水平汽车底盘,OB是液压举升杠杆,货车卸货时车厢AB与底盘AC的夹角为30°,举升杠杆OB与底盘AC的夹角为75°,已知O 与A的距离为4米,试求货车卸货时举升杠杆OB的长(,精确到0.01米).【考点】解直角三角形的应用.【分析】过点O作OE⊥AB于E,先在Rt△AEO中求出EO,再在Rt△EBO中求出OB即可解决问题.【解答】解:过点O作OE⊥AB于E,∵∠BOC=75°,∠A=30°,∴∠ABO=45°,在Rt△AEO中,OE=OA=2,在Rt△BEO中,∠ABO=∠BOE,∴BE=EO,∴OB=OE,∴OB=2×≈2.83(米),答:货车卸货时举升杠杆OB的长约为2.83米.22.感知:如图1,已知正方形ABCD,以AD、CD为一边向外作等边△ADE和等边△CDF,连接BE、EF、FB,易证△BEF是等边三角形(不用证明);探究:将感知条件中的正方形ABCD改为矩形ABCD,如图2,其他条件不变,那么△BEF 是等边三角形吗?说明理由;应用:将感知条件中的正方形ABCD改为▱ABCD,如图3,其他条件不变,则∠BEF=60度.【考点】四边形综合题.【分析】感知:利用SAS即可证明两三角形的全等,再证明△ABE≌△DFE,可得△BEF 是等边三角形;探究:求出∠BAE,∠EDF,∠FCB的度数,继而证明△ABE≌△CFB≌△DFE,即可得出结论;应用:证明方法与探究完全相同,证出结论即可.【解答】解:感知:证明:∠BAE=90°+60°=150°,∠FCB=90°+60°=150°,在△ABE和△CFB中,,∴△ABE≌△CFB(SAS).∠FDE=360°﹣60°﹣60°﹣90°=150°,在△ABE和△DFE中,,∴△ABE≌△DFE(SAS),∴BE=FE,又∵△ABE≌△CFB,∴BE=FB=FE,∴△BFE是等边三角形;探究:△BEF是等边三角形,理由如下:∠BAE=90°+60°=150°,∠FCB=90°+60°=150°,∠FDE=360°﹣60°﹣60°﹣90°=150°,在△ABE和△CFB中,,∴△ABE≌△CFB(SAS),在△ABE和△DFE中,,∴△ABE≌△DFE(SAS),∴△ABE≌△CFB≌△DFE,∴BE=EF=FB,∴△BEF是等边三角形;应用:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠BAD=∠BCD,∵△ADE和△CDF是等边三角形,∴AE=AD=BC,AB=DC=CF,在△ABE与△FCB中,,∴△ABE≌△FCB,∴BE=BF,∵∠BAE=∠BAD+∠EAD=∠BAD+60°,∠EDF=360°﹣∠ADC﹣∠ADE﹣∠CDF=∠BAD+60°,∴∠EDF=∠BAE,在△ABE与△EDF中,,∴△ABE≌△EDF,∴BE=EF,∠AEB=∠DEF,∴∠BEF=60.故答案为:60°.23.如图1,抛物线y1=﹣x2+a与x轴交于A、D两点,与y轴交于点B,点C(2,﹣3)在抛物线y2的图象上.(1)求抛物线y1的函数表达式及点B的坐标;(2)如图2,将抛物线y1沿x轴向右平移后得抛物线y2,且抛物线y2的图象过点C,抛物线y2与x轴交于F、G两点,顶点为E.①请直接写出抛物线y2的函数表达式及点E的坐标;②在A、B、C、D、E、F、G中,连接任意三点,能构成等腰直角三角形的共有5个,分别是△ABD、△EFG、△ACE、△BCF、△DCG.【考点】二次函数综合题.【分析】(1)根据抛物线y1=﹣x2+a与x轴交于A、D两点,与y轴交于点B,点C(2,﹣3)在抛物线y1的图象上,可以求得抛物线y1的函数表达式及点B的坐标;(2)①根据抛物线y1沿x轴向右平移后得抛物线y2,且抛物线y2的图象过点C,顶点为E,可以得到抛物线y2的函数表达式及点E的坐标;②先求出点A、B、C、D、E、F、G各点的坐标,然后即可得到能够成等腰直角三角形的个数,通过计算可以说明哪几个三角形是等腰直角三角形.【解答】解:(1)把点C(2,﹣3)代入y1=﹣x2+a,得﹣3=﹣22+a,解得,a=1,即y1=﹣x2+1,当x=0时,y1=1,即点B的坐标为(0,1);(2)①抛物线y2的函数表达式为:,点E的坐标为(4,1);理由:设,∵点C(2,﹣3)在抛物线y2的图象上,∴﹣3=﹣(2+b)2+1,解得,b=﹣4,即,∴点E的坐标为(4,1);(3)当y1=0代入y1=﹣x2+1,得x=﹣1或x=1,将x=0代入y1=﹣x2+1,得y1=1,∴点D为(﹣1,0),点A为(1,0),点B为(0,1),将y2=0代入,得x=3或x=5,将x=4代入,得y2=1,∴点F(3,0),G为(5,0),E为(4,1),∴BD=,AB=,AD=2,∵,∴△ABD是等腰直角三角形;∴EF=,EG=,FG=2,,∵,∴△EFG是等腰直角三角形;∵A为(1,0),C为(2,﹣3),E为(4,1),∴AC=,AE=,CE=,∵,∴△ACE是等腰直角三角形;∵点B为(0,1),C为(2,﹣3),点F(3,0),∴BC=,BF=,CF=,∵,∴△BCF是等腰直角三角形;∵点D为(﹣1,0),C为(2,﹣3),G为(5,0),∴DC=,DG=,CG=,∵,∴△CDG是等腰直角三角形;故答案为:5,△ABD、△EFG、△BFC、△ACE、△CDG.24.如图,在菱形ABCD中,AB=6,∠ABC=60°,动点E、F同时从点B出发,其中点E 从点B向点A以每秒1个单位的速度运动,点F从点B出发沿B﹣C﹣A的路线向终点以每秒2个单位的速度运动,以EF为边向上(或向右)作等边三角形EFG.AH是△ABC中BC边上的高,两点运动时间为t秒,△EFG和△AHC有重合部分时,重合部分图形的周长为L.(1)用含t的代数式表示线段CF的长;(2)求点G落在AC上时t的值;(3)求L关于t的函数关系式.【考点】四边形综合题.【分析】(1)由菱形的性质得出BC=AB=6得出CF=BC﹣BF=6﹣2t即可;(2)由菱形的性质和已知条件得出△ABC是等边三角形,得出∠ACB=60°,由等边三角形的性质和三角函数得出∠GEF=60°,GF=EF=BF•sin60°=t,证出∠GFC=90°,由三角函数求出CF==t,由BF+CF=BC得出方程,解方程即可;(3)分三种情况:①当<t≤2时,根据梯形的周长公式即可得出结果;②当2<t≤3时,由①的结果容易得出结论;③当3<t<6时,由①的结果容易得出结论.【解答】解:(1)根据题意得:BF=2t,∵四边形ABCD是菱形,∴BC=AB=6,∴CF=BC﹣BF=6﹣2t;故答案为:6﹣2t;(2)点G落在线段AC上时,如图1所示:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵△EFG是等边三角形,∴∠GFE=60°,GF=EF=BF•sin60°=t,∵EF⊥AB,∴∠BFE=90°﹣60°=30°,∴∠GFB=90°,∴∠GFC=90°,∴CF===t,∵BF+CF=BC,∴2t+t=6,解得:t=2;(3)当<t≤2时,如图2,L=2t+(2t﹣3)=﹣2,当2<t≤3时,如图3所示:L=t+(6﹣t)×+[6﹣(6﹣t)﹣2(6﹣2t)]+(6﹣2t)=+7﹣9,当3<t<6时,如图4,L=(6﹣t)+×(6﹣t)+(6﹣t)×=﹣+7+9.8月27日。

2018吉林省九年级质量调研题

2018吉林省九年级质量调研题

2018吉林省九年级质量调研题(数学)一、选择题(共8小题,每小题3分,满分24分)1.﹣3的绝对值等于()A.﹣3 B.3 C.±3 D.﹣2.长珲高铁于2015年9月20日全线开通,从吉林经图们至珲春线路的全长为360公里,360这个数用科学记数法表示为()A.0.36×102B.0.36×103C.3.6×102D.3.6×1033.由六个完全相同的正方体组成的几何体如图所示.这个几何体的主视图是()A.B.C. D.4.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.5.一元二次方程x2﹣4x+6=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根6.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°7.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°8.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0) B.(1,0)C.(,0) D.(,0)二、填空题(本大题共6小题,每小题3分,共18分)9.比较大小:3 2.(填“>”、“=”或“<”) 10.不等式2(3)4x +-≤0的解集为 .11.一元二次方程2530x x -+=根的判别式的值为 .12.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上.若40CAB ∠=︒,则D ∠的大小为 度.(第12题) (第13题) (第14题)13.如图,在平面直角坐标系中,点A 在函数ky x=(x >0) 的图象上,过点A 作AC ⊥y 轴于点C ,点B 在x 轴上,连结CB 、AB .若△ABC 的面积为4,则k 的值为 . 14.如图,在平面直角坐标系中,抛物线2(2)1y a x =-+(a 为常数)的顶点为A ,过点A 作y 轴的平行线与抛物线21433y x x =--交于点B ,抛物线21433y x x =--的顶点为C ,连结CA 、CB .则△ABC 的面积为 . 三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(4)(1)(1)a a a a -+-+,其中34a =.16.(6分)现有一副扑克牌中的3张牌,牌面数字分别为7、9、9,从中随机抽取一张然后放回,再随机抽取一张.用画树状图(或列表)的方法,求抽取的两张牌面数字相同的概率.17.(6分)某车间计划生产360个零件,由于改进了技术,该车间实际每天生产零件的个数是原计划的1.2倍,结果提前4天完成任务.求该车间原计划每天生产零件的个数.)xyCAB OC yxOBA ODCB A18.(7分)如图,在△ABC 中,AB =AC ,AD 平分BAC ∠交BC 于点D ,分别过点A 、D 作AE ∥BC 、DE ∥AB ,AE 与DE 相交于点E ,连结CE .求证:四边形ADCE 是矩形.(第18题)19.(7分)如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处.海轮沿正南方向航行一段时间后,到达位于灯塔P 的南偏东64°方向上的B 处.求海轮所在的B 处与灯塔P 的距离.(结果精确到0.1海里) 【参考数据:sin 640.90cos640.44tan 64 2.05︒=︒=︒=,,】(第19题)EDC BA64°30°北BAP20.(7分)在“世界粮食日”前夕,某校团委随机抽取了n 名本校学生,对某日午餐剩饭菜情况进行问卷调查.问卷中的剩饭菜情况包括: A .饭和菜全部吃完; B .饭有剩余但菜吃完; C .饭吃完但菜有剩余;D .饭和菜都有剩余.每位学生在问卷调查时都按要求只选择了其中一种情况,该校团委收回全部问卷后,将收集到的数据整理并绘制成如下的条形统计图. (1)求n 的值.(2)饭和菜全部吃完的学生人数占被调查的学生人数的百分比为 . (3)根据统计结果,估计该校2400名学生中菜有剩余的学生人数.(第20题)21.(8分)甲、乙两个工程队同时开始维修某一段路面,一段时间后,甲队被调往别处,乙队又用了2小时完成了剩余的维修任务.已知乙队每小时维修路面的长度保持不变,甲队每小时维修路面30米.甲、乙两队在此路段维修路面的总长度y (米)与维修时间x (时)之间的函数图象如图所示.(1)甲队调离时,甲、乙两队已维修路面的总长度为 米. (2)求此次维修路面的总长度a .(3)求甲队调离后y 与x 之间的函数关系式.(第21题)22.(9分)在菱形ABCD 中,60B ∠=︒,AC 为对角线.点E 、F 分别在边AB 、DA 或其延长线上,连结CE 、CF ,且60ECF ∠=︒.感知:如图①,当点E 、F 分别在边AB 、DA 上时,易证: AF BE =.(不要求证明) 探究:如图②,当点E 、F 分别在边AB 、DA 的延长线上时,CF 与边AB 交于点G .求证:AF BE =.应用:如图②,若12AB =,4AF =,求线段GE 的长.FEDCB AGF EDCBA40剩饭菜情况n 名学生午餐剩饭菜情况的人数条形统计图20人数6040201201008020120D CB A B Aa15053x (时)y (米)O图① 图②(第22题)23.(10分)如图,在△ABC 中,90C ∠=︒,6AC BC ==. 点P 在边AC 上运动,过点P作PD ⊥AB 于点D ,以AP 、AD 为邻边作□PADE . 设□PADE 与ABC △重叠部分图形的面积为y ,线段AP 的长为x (0<x ≤6). (1)求线段PE 的长(用含x 的代数式表示).(2)当点E 落在边BC 上时,求x 的值. (3)求y 与x 之间的函数关系式.(4)直接写出点E 到△ABC 任意两边所在直线距离相等时x 的值.(第23题)24.(12分)如图,在平面直角坐标系中,抛物线2+5y ax bx =+与x 轴交于(1,0)A 、(5,0)B 两点,点D 是抛物线上横坐标为6的点.点P 在这条抛物线上,且不与A 、D 两点重合,过点P 作y 轴的平行线与射线AD 交于点Q ,过点Q 作QF 垂直于y 轴,点F 在点Q 的右侧,且2QF =,以QF 、QP 为邻边作矩形QPEF .设矩形QPEF 的周长为d ,点P 的横坐标为m .(1)求这条抛物线所对应的函数表达式.(2)求这条抛物线的对称轴将矩形QPEF 的面积分为1:2两部分时m 的值.(3)求d 与m 之间的函数关系式及d 随m 的增大而减小时d 的取值范围. (4)当矩形QPEF 的对角线互相垂直时,直接写出其对称中心的横坐标.A BCPED O FE Q PDBAyx(第24题)九年级数学质量调研题参考答案及评分标准一一、选择题(共8小题,每小题3分,满分24分)1.﹣3的绝对值等于()A.﹣3 B.3 C.±3 D.﹣【考点】绝对值.【专题】计算题.【分析】根据绝对值的性质解答即可.【解答】解:|﹣3|=3.故选:B.【点评】此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.长珲高铁于2015年9月20日全线开通,从吉林经图们至珲春线路的全长为360公里,360这个数用科学记数法表示为()A.0.36×102B.0.36×103C.3.6×102D.3.6×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:360=3.6×102,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.由六个完全相同的正方体组成的几何体如图所示.这个几何体的主视图是()A.B.C. D.【考点】简单组合体的三视图.【分析】根据从正面看是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边两个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】先移项再系数化1,然后从数轴上找出.【解答】解:2x﹣4≤02x≤4x≤2故选B.【点评】本题既考查了一元一次不等式的解法又考查了数轴的表示方法.5.一元二次方程x2﹣4x+6=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:△=(﹣4)2﹣4×1×6=﹣4<0,所以方程没有实数根.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.6.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°【考点】圆周角定理.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠ADB=90°,继而求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=90°﹣∠ABD=32°,∴∠BCD=∠A=32°.故选B.【点评】此题考查了圆周角定理与直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°【考点】作图—基本作图.【分析】根据角平分线的作法可得AG是∠CAB的角平分线,然后再根据角平分线的性质可得∠CAD=∠CAB=25°,然后再根据直角三角形的性质可得∠CDA=90°﹣25°=65°.【解答】解:根据作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选:C.【点评】此题主要考查了基本作图,关键是掌握角平分线的作法,以及直角三角形的性质.关键是掌握直角三角形两锐角互余.8.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0) B.(1,0)C.(,0) D.(,0)【考点】反比例函数综合题;待定系数法求一次函数解析式;三角形三边关系.【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP﹣BP|<AB,延长AB交x 轴于P′,当P在P′点时,PA﹣PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【解答】解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=﹣1,b=,∴直线AB的解析式是y=﹣x+,当y=0时,x=,即P(,0),故选:D.【点评】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.二、填空题(每小题3分,共18分)9.<10.x≤1-11.13 12.5013.8 14.10三、解答题(本大题共10小题,共78分)15.原式224114.a a a a=-+-=-(4分)当34a=时,原式=31414 2.4a-=-⨯=-(6分)16.(4分)或所以5(9P数字相同=(6分)17.设该车间原计划每天生产零件x个.根据题意,得36036041.2x x-=.(3分)解得15x=.(5分经检验,15x=是原方程的解,且符合题意.答:该车间原计划每天生产零件15个.(6分)(9,7)(9,9)(9,9)(9,9)99(9,9)(9,7)(7,7)(7,9)(7,9)7997结果第二张牌第一张牌第二张牌第一张牌79999779999718.∵AE ∥BC 、DE ∥AB , ∴四边形ABDE 是平行四边形. (3分)∴.AE BD =又∵AB AC =,AD 平分BAC ∠,∴BD DC =,AD ⊥BC .∴AE DC =,90.ADC ∠=︒ (5分) 又∵AE ∥BC ,∴四边形ADCE 是平行四边形.∴四边形ADCE 是矩形. (7分)19.过点P 作PC ⊥AB 于点C . 由题意可知,AB ∥PD , ∴30,64.A B ∠=︒∠=︒在Rt △APC 中,90,30,80.ACP A AP ∠=︒∠=︒=1sin3040.2PC AP AP =︒== (3分) 在Rt △PBC 中,90,64.BCP B ∠=︒∠=︒ 4044.44sin640.9PC PB ===︒≈44.4(海里). 答:海轮所在的B 处与灯塔P 的距离约为44.4海里. (7分) 20.(1)120402020200.n =+++= (2分) (2)60%. (4分) (3)20202400480200+⨯= (人).(7分) 21.(1)150. (2分)(2)甲队调离前,甲、乙两队每小时维修路面的总长度为1503=50÷(米).∴乙队每小时维修路面的长度为503020-=. (4分)15020219a =+⨯=(米). (5分)(3)设所求函数关系式为y kx b =+.将点(3,150),(5,190)代入,得3150,5190.k b k b +=⎧⎨+=⎩ 解得20,90.k b =⎧⎨=⎩(7分)∴2090y x =+(3<x ≤5). (8分) 22.探究:∵四边形ABCD 是菱形,60.ABC ∠=︒∴AC BC =. (1分) 60.ACB DAC ABC ∠=∠=∠=︒∴180120.FAC DAC ∠=︒-∠=︒180120.EBC ABC ∠=︒-∠=︒ ∴.FAC EBC ∠=∠ (3分) 又∵60ECF ∠=︒∴60.ACF ACB GCB GCB ∠=∠-∠=︒-∠60.BCE ECF GCB GCB ∠=∠-∠=︒-∠∴.ACF BCE ∠=∠ (5分)∴△ACF ≌△BCE .∴.AF BE = (6分) 应用:∵四边形ABCD 是菱形, ∴AD ∥CB . ∴△AFG ∽△BCG . ∴41.123GA AF GB BC === ∴3.GB GA = 又∵12.GA GB AB +== ∴312.GA GA +=∴ 3.GA = (8分)∴9.GB =又∵AF BE =,∴9413.GE GB BE =+=+= (9分)23.(1)2cos 452PE AD AP x ==︒=. (2分) (2)62xx +=. 4.x = (4分)D C北B AP64°30°(3)当0<x ≤4时,2221.222y x x x =⋅= 当4<x ≤6 时,16.2DG x =- 13(6) 6.22GE x DG x x x =-=--=- 2221135(6)918.2228y x x x x =--=-+- (7分)(注:两段自变量的取值范围1分,每个函数关系式各1分)(4)3,6,12(32).7- (10分)由116.22x x x =-- 得 3.x =由11(6).22x x x =-- 得 6.x =由26.22xx x =-- 得1212(32).732x ==-+ 24.(1)把(1,0)A 、(5,0)B 代入2+5y ax bx =+50,25550.a b a b ++=⎧⎨++=⎩ 解得1,6.a b =⎧⎨=-⎩(2分)∴26 5.y x x =-+ (2)对称轴为:63.22b x a -=-=-= 由3223m -=,得53m =. 由3123m -=,得73m =. (4分)(3)当6x =时,22656665 5.y x x =-+=-⨯+=∴点D 的坐标为(6,5).射线AD 所对应的函数表达式为1y x =-(x >1).∴2(,65)P m m m -+,(,1)Q m m -.当1<m <6时,222(762)2148.d m m m m =-+-+=-+- (6分)当m >6时,222(762)21416.d m m m m =-++=-+ (8分)又2273321482).22d m m m =-+-=--+( ∴d 随m 的增大而减小时d 的取值范围是0<m ≤332. (9分)(4)917917933,,.222+-+ 由2780.m m -+= 得12717717,.22m m +-== 由2740.m m -+= 得 12733733,22m m +-==(舍去) (12分)GA BCP ED。

吉林省长春市2018届九年级数学中考模拟试卷(一)及参考答案

吉林省长春市2018届九年级数学中考模拟试卷(一)及参考答案

A . 40° B . 45° C . 50° D . 60° 7. 将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋 转75°,则点A的对应点A′的坐标为( )
A . ( ,﹣1) B . (1,﹣ ) C . ( ,﹣ ) D . (﹣ , ) 8. 如图,在平面直角坐标系中,菱形OABC的顶点B在y轴正半轴上,顶点C在函数y= AC=6,OB=8,则k的值是( )
(1) 如图,对于抛物线y=﹣(x﹣1)2+3.
①该抛物线的顶点坐标为,关联直线为,该抛物线与其关联直线的交点坐标为和;
(2) 顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与其关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交 于点C,直线AB与x轴交于点D,连结AC、BC.
①求△BCD的面积(用含a的代数式表示). 参考答案
(1) 四边形ABEF是(填“矩形”、“菱形”、“正方形”或“无法确定”)(直接填写结果),并证明你的结论. (2) AE、NF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,∠ADC=°,(直接填写结果) 20. 在数学活动课上,九年级(1)班数学兴趣小组的同学们要测量某公园人工湖亭子A与它正东方向的亭子B之间的距 离,现测得亭子A位于点P北偏西30°方向,亭子B位于点P北偏东42°方向,测得点P与亭子A之间的距离为200米,求亭子A 与亭子B之间的距离.(结果精确到1米) 【参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90, =1.73】
从家到单位上班花费的时间.
18. 为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况, 随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一 幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题

2018年吉林省长春市德惠市中考数学二模试卷-普通用卷

2018年吉林省长春市德惠市中考数学二模试卷-普通用卷

2018年吉林省长春市德惠市中考数学二模试卷副标题题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.−5的相反数是()A. 15B. 5 C. −15D. −52.作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A. 6.7×105B. 6.7×106C. 0.67×107D. 67×1083.已知:如图,是一几何体的三视图,则该几何体的名称为()A. 长方体B. 正三棱柱C. 圆锥D. 圆柱4.不等式组{2x−1≤3−x<3的解集在数轴上表示正确的是()A. B.C. D.5.一元二次方程x2−x−1=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.如图所示,边长为a的正方形中阴影部分的面积为()A. a2−π(a2)2B. a2−πa2C. a2−πaD. a2−2πa7.如图,将Rt△ABC绕直角顶点C顺时针旋转90∘,得到△A′B′C,连接AA′,若∠1=25∘,则∠BAA′的度数是()A. 55∘B. 60∘C. 65∘D. 70∘8.在平面直角坐标系xOy中,将一块含有45∘角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为(),0)A. (32B. (2,0),0)C. (52D. (3,0)二、填空题(本大题共6小题,共18.0分)9.计算x7÷x4的结果等于______.10.化简√8−2sin30∘的结果是______.11.如图,∠A是⊙O的圆周角,∠OBC=55∘,则∠A=______.AB的长为半径画弧,两弧相交于M,12.在△ABC中,分别以点A和点B为圆心,大于12N,作直线MN,交BC于点D,连接AD.如果BC=5,CD=2,那么AD=______.13.如图,已知:圆锥的底面直径是10cm,高为12cm,则它的侧面展开图的面积是______cm2.14.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是______.三、计算题(本大题共2小题,共12.0分)15.先化简,再求值:(2x+1)2−2(x−1)(x+3)−2,其中x=√2.16.某学校为绿化环境,计划种植600棵树,实际劳动中每小时植树的数量比原计划多20%,结果提前2小时完成任务,求原计划每小时种植多少棵树?四、解答题(本大题共8小题,共66.0分)17.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.18.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.19.如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34∘,45∘,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).(参考数据:sin34∘=0.56,cos34∘=0.83,tan34∘=0.67.)20.为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)若规定居民生活用水收费标准为2.80元/立方米,请你估算小申家一个月(按30天计算)的水费是多少元?(1立方米=1000升)21.给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60∘得到△DBE,连接AD,DC,CE,已知∠DCB=30∘.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.22.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距______千米,慢车速度为______千米/小时.(2)求快车速度是多少?(3)求从两车相遇到快车到达甲地时y与x之间的函数关系式.(4)直接写出两车相距300千米时的x值.23.如图,在Rt△ABC中,∠ACB=90∘,∠A=45∘,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为______cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.24.在平面直角坐标系xOy中,对于点P(a,b)和点,给出如下定义:若,则称点Q为点P的限变点.例如:点(3,−2)的限变点的坐标是(3,−2),点(−1,5)的限变点的坐标是(−1,−5).(1)①点(−√3,1)的限变点的坐标是______;②在点A(−1,2),B(−2,−1)中有一个点是函数y=2图象上某一个点的限交点,这x个点是______;(2)若点P在函数y=−x+3的图象上,当−2≤x≤6时,求其限变点Q的纵坐标的取值范围;(3)若点P在关于x的二次函数y=x2−2tx+t2+t的图象上,其限变点Q的纵坐标的取值范围是或,其中m>n.令s=m−n,求s关于t的函数解析式及s的取值范围.答案和解析【答案】1. B2. B3. D4. A5. A6. A7. C8. C9. x310. 2√2−111. 35∘12. 313. 65π14. 2≤m≤815. 解:原式=4x2+4x+1−2x2−4x+6−2=2x2+5,当x=√2时,原式=4+5=9.16. 解:设原计划每小时种植x棵树.由题意可知:60x =6001.2x+2解得:x=50经检验:x=50是所列方程的解,且符合题意,答:原计划每小时种植50棵树.17. 证明:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,∴∠BAC=∠DCA,∴180∘−∠BAC=180∘−∠DCA,∴∠EAB=∠FCD,∵BE⊥AC,DF⊥AC,∴∠BEA=∠DFC=90∘,在△BEA和△DFC中,{∠BEA=∠DFC ∠EAB=∠FCD AB=CD ,∴△BEA≌△DFC(AAS),∴AE=CF.18. 解:(1)如图:;(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为46=23.19. 解:由题意可得:∠AOC=90∘,OC=5km.在Rt△AOC中,∵tan34∘=OAOC,∴OA=OC⋅tan34∘=5×0.67=3.35km,在Rt△BOC中,∠BCO=45∘,∴OB=OC=5km,∴AB=5−3.35=1.65≈1.7km,答:A,B两点间的距离约为1.7km.20. 解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+ 825+805)÷7=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)100×100%=12.5%,800答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;×30×2.80=67.20(元).(3)8001000答:小申家一个月(按30天计算)的水费是67.20元.21. 解:(1)正方形、矩形、直角梯形均可;证明:(2)①∵△ABC≌△DBE,∴BC=BE,∵∠CBE=60∘,∴△BCE是等边三角形;②∵△ABC≌△DBE,∴BE=BC,AC=ED;∴△BCE为等边三角形,∴BC=CE,∠BCE=60∘,∵∠DCB=30∘,∴∠DCE=90∘,在Rt△DCE中,DC2+CE2=DE2,∴DC2+BC2=AC2.22. 600;6023. x24. (−√3,−1);;A【解析】1. 解:−5的相反数是5,故选:B.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2. 解:6700000=6.7×106.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3. 解:主视图和左视图是长方形,那么该几何体为柱体,第三个视图为圆,那么这个柱体为圆柱.故选:D .根据2个相同的长方形视图可得到所求的几何体是柱体,锥体,还是球体,进而由第3个视图可得几何体的名称.考查由三视图判断几何体;用到的知识点为:若三视图里有两个是长方形,那么该几何体是柱体.4. 解:{2x −1≤3 ②−x<3 ①,由①得,x >−3, 由②得,x ≤2,故不等式组的解集为:−3<x ≤2, 在数轴上表示为:.故选:A .分别求出各不等式的解集,再在数轴上表示出来即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 5. 解:∵a =1,b =−1,c =−1,∴△=b 2−4ac =(−1)2−4×1×(−1)=5>0, ∴方程有两个不相等的实数根, 故选:A .先求出△的值,再判断出其符号即可.本题考查的是根的判别式,熟知一元二次方程ax 2+bx +c =0(a ≠0)的根与△的关系是解答此题的关键. 6. 解:由图可得,阴影部分的面积为:a 2−π⋅(a2)2,故选:A .根据图形可知阴影部分的面积是正方形的面积减去直径为a 的圆的面积,本题得以解决. 本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式. 7. 解:∵Rt △ABC 绕直角顶点C 顺时针旋转90∘得到△A′B′C , ∴AC =A′C ,∴△ACA′是等腰直角三角形,∴∠CA′A =45∘,∠CA′B′=20∘=∠BAC ∴∠BAA′=180∘−70∘−45∘=65∘, 故选:C .根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45∘,再根据三角形的内角和定理可得结果.本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键. 8. 解:过点B 作BD ⊥x 轴于点D , ∵∠ACO +∠BCD =90∘, ∠OAC +∠ACO =90∘, ∴∠OAC =∠BCD , 在△ACO 与△BCD 中,{∠OAC =∠BCD ∠AOC =∠BDC AC =BC∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=k,x,将B(3,1)代入y=kx∴k=3,∴y=3,x∴把y=2代入y=3,x∴x=3,2当顶点A恰好落在该双曲线上时,个单位长度,此时点A移动了32∴C也移动了3个单位长度,2,0)此时点C的对应点C′的坐标为(52故选:C.过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.9. 解:原式=x3,故答案为:x3根据同底数幂的除法即可求出答案.本题考查同底数幂的除法,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10. 解:原式=2√2−2×12=2√2−1.故答案为:2√2−1.直接利用特殊角的三角函数值、平方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.11. 解:∵OB=OC,∠OBC=55∘,∴∠OCB=55∘,∴∠BOC=180∘−55∘−55∘=70∘,∠BOC=35∘,由圆周角定理得,∠A=12故答案为:35∘.根据等腰三角形的性质和三角形内角和定理求出∠BOC的度数,根据圆周角定理计算即可.本题考查的是圆周角定理的应用和等腰三角形的性质的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.12. 解:由作图步骤可得:MN垂直平分AB,则AD=BD,∵BC=5,CD=2,∴BD=AD=BC−DC=5−2=3.故答案为:3.直接利用基本作图方法得出MN垂直平分AB,进而得出答案.此题主要考查了基本作图,正确得出MN垂直平分AB是解题关键.13. 解:∵圆锥的底面直径是10cm,高为12cm,∴勾股定理得圆锥的母线长为13cm,∴圆锥的侧面积=π×13×5=65πcm2.故答案为:65π.首先利用勾股定理求得圆锥的母线长,然后利用圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.本题考查圆锥侧面积公式的运用,掌握公式是关键.14. 解:设平移后的解析式为y=(x+1)2−m,将B点坐标代入,得4−m=2,解得m=2,将D点坐标代入,得9−m=1,解得m=8,y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是2≤m≤8,故答案为:2≤m≤8.根据向下平移横坐标不变,分别代入B的横坐标和D的横坐标求得对应的函数值,即可求得m的取值范围.本题考查了二次函数图象与几何变换,利用了矩形性质和二次函数图象上点的坐标特征,平移的性质的应用,把B,D的坐标代入是解题关键.15. 原式利用完全平方公式,多项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.16. 根据题意列出方程即可求出答案.本题考查分式方程的应用,解题的关键是正确理解题意列出方程,本题属于基础题型.17. 由平行四边形的性质得出AB//CD,AB=CD,由平行线的性质得出得出∠BAC=∠DCA,证出∠EAB=∠FCD,∠BEA=∠DFC=90∘,由AAS证明△BEA≌△DFC,即可得出结论.本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.18. (1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19. 在Rt△AOC中,求出OA、OC,在Rt△BOC中求出OB,即可解决问题.本题考查了解直角三角形的应用--仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.20. (1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据用样本估计总体得到一个月的用水量,再乘以单价即可求解.此题主要考查了统计图、平均数、中位数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数的计算方法.21. (1)根据定义和特殊四边形的性质,则有矩形或正方形或直角梯形;(2)①首先证明△ABC≌△DBE ,得出AC =DE ,BC =BE ,连接CE ,进一步得出△BCE 为等边三角形;②利用等边三角形的性质,进一步得出△DCE 是直角三角形,问题得解.此题主要考查勾股定理,三角形的判定与性质,等边三角形的判定与性质,是一道综合性很强的题目.22. 解:(1)∵当x =0时,y =600,∴甲乙两地相距600千米.600÷10=60(千米/小时).故答案为:600;60.(2)设快车的速度为a 千米/小时,根据题意得:4(60+a)=600,解得:a =90.答:快车速度是90千米/小时.(3)快车到达甲地的时间为600÷90=203(小时), 当x =203时,两车之间的距离为60×203=400(千米). 设当4≤x ≤203时,y 与x 之间的函数关系式为y =kx +b(k ≠0),∵该函数图象经过点(4,0)和(203,400),∴{4k +b =0203k +b =400,解得:{b =−600k=150, ∴从两车相遇到快车到达甲地时y 与x 之间的函数关系式为y =150x −600.(4)设当0≤x ≤4时,y 与x 之间的函数关系式为y =mx +n(m ≠0),∵该函数图象经过点(0,600)和(4,0),∴{4m +n =0n=600,解得:{n =600m=−150,∴y 与x 之间的函数关系式为y =−150x +600.当y =300时,有−150x +600=300或150x −600=300,解得:x =2或x =6.∴当x =2小时或x =6小时时,两车相距300千米.(1)由当x =0时y =600可得出甲乙两地间距,再利用速度=两地间距÷慢车行驶的时间,即可求出慢车的速度;(2)设快车的速度为a 千米/小时,根据两地间距=两车速度之和×相遇时间,即可得出关于a 的一元一次方程,解之即可得出结论;(3)分别求出快车到达甲地的时间及快车到达甲地时两车之间的间距,根据函数图象上点的坐标,利用待定系数法即可求出该函数关系式;(4)利用待定系数法求出当0≤x ≤4时y 与x 之间的函数关系式,将y =300分别代入0≤x ≤4时及4≤x ≤203时的函数关系式中求出x 值,此题得解.本题考查了待定系数法求一次函数解析式、一元一次方程的应用以及一次函数图象上点的坐标特征,解题的关键是:(1)利用速度=两地间距÷慢车行驶的时间,求出慢车的速度;(2)根据两地间距=两车速度之和×相遇时间,列出关于a 的一元一次方程;(3)根据点的坐标,利用待定系数法求出函数关系式;(4)利用一次函数图象上点的坐标特征求出当y =300时x 的值.23. 解:(1)∵∠ACB=90∘,∠A=45∘,PQ⊥AB,∴∠AQP=45∘,∴PQ=AP=2x,∵D为PQ中点,∴DQ=x,故答案为:x;(2)如图①,延长FE交AB于G,由题意得AP=2x,∵D为PQ中点,∴DQ=x,∴GP=x,∴2x+x+2x=4,∴x=45;(3)如图②,当0<x≤45时,y=S正方形DEFQ=DQ2=x2,∴y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,∵PQ=AP=2x,CK=2−2x,∴MQ=2CK=4−4x,FM=x−(4−4x)=5x−4,∴y=S正方形DEFQ −S△MNF=DQ2−12FM2,∴y=x2−12(5x−4)2=−232x2+20x−8,∴y=−232x2+20x−8;如图④,当1<x<2时,PQ=4−2x,∴DQ=2−x,∴y=S△DEQ=12DQ2,∴y=12(2−x)2,∴y=12x2−2x+2;(4)当Q与C重合时,E为BC的中点,即2x=2,∴x=1,当Q为BC的中点时,BQ=√2,PB=1,∴AP=3,∴2x=3,∴x=32,∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<32.(1)根据已知条件得到∠AQP=45∘,求得PQ=AP=2x,由于D为PQ中点,于是得到DQ=x;(2)如图①,延长FE交AB于G,由题意得AP=2x,由于D为PQ中点,得到DQ=x,求得GP =2x ,列方程于是得到结论;(3)如图②,当0<x ≤45时,根据正方形的面积公式得到y =x 2;如图③,当45<x ≤1时,过C 作CH ⊥AB 于H ,交FQ 于K ,则CH =12AB =2,根据正方形和三角形面积公式得到y =−232x 2+20x −8;如图④,当1<x <2时,PQ =4−2x ,根据三角形的面积公式得到结论;(4)当Q 与C 重合时,E 为BC 的中点,得到x =1,当Q 为BC 的中点时,BQ =√2,得到x =32,于是得到结论.本题考查了等腰直角三角形的性质,正方形的性质,图形面积的计算,正确的作出图形是解题的关键.24. 解:(1)①根据限变点的定义可知点点(−√3,1)的限变点的坐标为(−√3,−1);故答案是:(−√3,−1);②(−1,−2)限变点为(−1,2),即这个点是点A . 故答案是:A ;(2)依题意,y =−x +3(x ≥−2)图象上的点P 的限变点Q 必在函数y ={x −3,x <1−x+3,x≥1的图象上.当x =−2时,y =−2−3=−5,当x =1时,y =−1+3=2,当x =6时,y =−6+3=−3,∴当−2≤x ≤6时,−5≤b′≤2;(3)∵y =x 2−2tx +t 2+t =(x −t)2+t ,∴顶点坐标为(t,t).若t <1,b′的取值范围是b′≥m 或b′<n ,与题意不符.若t ≥1,当x ≥1时,y 的最小值为t ,即m =t ;当x <1时,y 的值小于−[(1−t)2+t],即n =−[(1−t)2+t].∴s =m −n =t +(1−t)2+t =t 2+1.∴s 关于t 的函数解析式为s =t 2+1(t ≥1),当t =1时,s 取最小值2,∴s 的取值范围是s ≥2.(1)①直接根据限变点的定义直接得出答案;②点(−1,−2)在反比例函数图象上,点(−1,−2)的限变点为(−1,2),据此得到答案;(2)根据题意可知y =−x +3(x ≥−2)图象上的点P 的限变点Q 必在函数y ={x −3,x <1−x+3,x≥1的图象上,结合图象即可得到答案;(3)首先求出y =x 2−2tx +t 2+t 顶点坐标,结合t 与1的关系确定y 的最值,进而用m 和n 表示出s ,根据t 的取值范围求出s 的取值范围.本题主要考查了二次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握二次函数的性质以及最值的求解,此题有一定的难度.。

吉林省长春市2018年中考数学二模试题含答案

吉林省长春市2018年中考数学二模试题含答案

2018 年中考第二次模拟考试数学试卷一、选择题(每题 4 分,共 40 分) 1.-2 的倒数是( )A .12-B .2C .2-D .122.如图,下列图形从正面看是三角形的是( )3.用反证法证明“若 a ⊥c ,b ⊥c ,则 a ∥b ”,第一步应假设( ) A.a ∥b B.a 与 b 垂直C.a 与 b 不平行D.a 与 b 相交4. 如图,在 Rt △ABC 中,∠C=90°,AB=13,BC=12,则下列 三角函数表示正确的是( ) A . sinA=1213 B . cosA=1213 C . tanA=512 D . tanB=1255. 用配方法解方程 x 2- 2x - 5 = 0 时,原方程应变形为( )A.(x+1) 2=6B.(x-1) 2=6C.(x+2) 2=9D.(x-2) 2=96. 已知扇形的面积为 4π,扇形的弧长是π,则该扇形半径为( ) A . 4 B . 8C . 6D . 8π7. 某汽车销售公司 2015 年盈利 1500 万元,2017 年盈利 2160 万元,且从 2015 年到 2017 年, 每年盈利的年增长率相同.设每年盈利的年增长率为 x ,根据题意,所列方程正确的是( )A.1500(1+ x)+1500(1+ x)2=2160B. 1500x+1500x 2=2160C.1500x 2=2160D.1500(1+ x)2=21608.在平面直角坐标系中,过点(-2,3)的直线 l 经过一、二、三象限。

若点 ( a ,-1),(-1,b ),(0,c )都在直线 l 上,则下列判断正确的是( ) A.c <b B.c <3 C.b <3 D.a <-29.折叠矩形 ABCD 使点 D 落在 BC 的边上点 E 处,并使折痕经过点 A 交 CD 于点F,若点 E 恰好为 BC 的中点,则 CE:CF 等于( ) A.1 B.5 :2 C.D. 2 :110.如图,直线1l :y=x-1 与直线2l :y=2x-1 交于点 P ,直线1l 与 x 轴交于 点 A.一动点 C 从点 A 出发,沿平行于 y 轴的方向向上运动,到达 直线2l 上的点 B 1,再沿平行于 x 轴的方向向右运动,到达直线1l 上的 点 A 1;再沿平行于 y 轴的方向向上运动,到达直线2l 上的点 B 2,再 沿平行于 x 轴的方向向右运动,到达直1l 上的点 A 2,…依此规律,则 动点 C 到达点 A2018 所经过的路径总长为( ) A.22018-1 B.22018-2 C.22019-1 D.22019-2 二、填空题(每题 5 分,共 30 分)11.分解因式: ma 2 + 2ma + m = .12. 点(1, y 1)、(2, y 2)在函数 y =4x-的图象上,则 y 1 y 2 (填“>”或“=”或“<”).13.如图,C ,D 是以线段 AB 为直径的⊙O 上的两点,若 CA=CD ,且∠ACD=40°,则∠CAB 的 度数为14.如图,面积为 24 的正方形 ABCD 中,有一个小正方形 EFGH ,其中 E 、F 、G 分别在 AB 、BC 、FD 上.若 BF =2,则小正方形的周长为 .15.七巧板是一种古老的中国传统智力游戏,小红利用七巧板(如图 1)拼出了一个平行四边形ABCD (如图 2),其内恰有一个空平行四边形 EFGH ,若□EFGH 的面积的为 4cm 2, 则□ABCD 的面积为 cm 2.16.如图,已知矩形 ABCD ,顶点 A,B 在反比例函数 y=kx(k>0,x>0) 的图像上,C 在 y 轴正半轴上,D 在 x 轴正半轴上,对角线 BD 交 反 比例函数图像于点 E ,连接 CE 并延长交 AB 边于点 F ,当 F 为AB 中点,k= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档