微测辐射热计的应用
微波辐射计在现代大气探测中的应用

微波辐射计在现代大气探测中的应用作者:李丽王雪松来源:《吉林农业》2015年第04期摘要:微波辐射计是主要微波遥感仪器之一,在微波遥感系统中占有重要地位。
本文简单介绍了微波辐射计的概念、特点、种类及其应用。
通过了解微波辐射计有助于发挥其特长,使之更好地在各个方面发挥作用。
关键词:微波辐射计;特点;种类;应用中图分类号: P412 文献标识码: A DOI编号: 10.14025/ki.jlny.2015.07.0591 微波辐射与微波辐射计微波辐射通常指0.1~30厘米波长范围的辐射。
微波辐射本质也是一种“长波热辐射”。
自然界里许多物体都能吸收和发射微波辐射。
被动微波遥感不易被发现,具有良好的保密性,与雷达等主动微波遥感不同,属于被动接收。
被测目标自身所辐射的微波频段的电磁能量是极其微弱的信号,信号功率远远小于辐射计的噪声功率,信噪比微波辐射计由天线、数据记录装置、宽带接收机、数据存储装置组成。
它是一种高灵敏度的接收机,它的体积、功耗都很小,可以利用信号处理,获取更多的信息。
微波的穿透能力比较强,可以穿透云雾、雨雪,具有全天候的能力。
微波可以提供不同于红外遥感和可见光能提供的信息,因此优于可见光和红外。
微波辐射计常用的有全功率微波辐射计、Dicke型微波辐射计、数字增益自动补偿微波辐射计三种类型。
2 微波辐射计提供的大气信息微波辐射计可提供高精确度的大气综合参数,比如亮温、液态水的路径、可降水的水汽和大气低层的温度廓线;大气参数的低分辨率的垂直廓线,比如温度的垂直廓线、水汽强度廓线和液态水强度廓线;理想的测量值,比如资料同化、主动雷达或激光雷达观测资料的融合。
3 微波辐射计在气象学中的应用在气象学中的主要应用领域有大气微波遥感、陆地微波遥感、海洋微波遥感。
其中具体领域包括气象、地质、海洋、农林、军事、医疗、天文等方面。
微波辐射计的平台有地基、空基、星基。
例如地面、船载平台,飞机、导弹、气球平台,卫星、飞船、航天飞机平台。
微测量技术方法及应用

微测量技术方法及应用微测量技术是指对微观尺度下的特征和物理量进行测量的技术。
随着微电子技术和纳米技术的发展,微观领域的测量需求逐渐增加,因此微测量技术得到了广泛应用。
微测量技术主要依靠先进的仪器设备和精密的测量方法,可以对微观领域中的尺寸、形态、位置、应力、电磁场、温度、压力等多种物理量进行测量。
微测量技术的方法主要包括光学测量、力学测量、电学测量、热学测量和化学测量等。
光学测量是微测量技术中常用的一种方法,包括激光干涉测量、扫描电子显微镜、原子力显微镜等。
激光干涉测量是一种非接触式测量方法,可以实现对微观尺寸和形态的测量。
扫描电子显微镜能够扫描表面形貌,并能够对物体进行放大观察,可以用于微观形貌的测量。
原子力显微镜可以通过探针对样品表面进行扫描,探测器能够感知到样品表面的微弱力变化,从而实现对微观物体尺寸、形貌和电荷的测量。
力学测量方法主要包括纳米压痕、纳米力学探针等。
纳米压痕是一种采用纳米硬度计对材料进行压痕测试的方法,可以获得材料的硬度和弹性模量等力学性能参数。
纳米力学探针则通过控制探针对物体表面施加力,测量物体表面力-位移曲线,进而分析物体的弹性行为。
电学测量方法包括微电子器件的电性测量和量子点测量等。
微电子器件的电性测量可以通过测试器件的电学特性来评估器件的性能,包括电流、电压、电阻、电容、电感等参数。
在纳米尺度下,量子点测量能够实现对载流子的量子效应和电磁场等的测量。
热学测量方法主要包括纳米热电测量、纳米热断层显微镜等。
纳米热电测量是利用热电效应对样品进行测量的方法,通过测量样品产生的微小电压或电流来获得样品的温度或温度差。
纳米热断层显微镜则是一种通过红外辐射来观测样品热辐射分布的方法,可以实现对纳米尺度下样品温度的测量。
化学测量方法主要包括光谱学、电化学测量等。
光谱学通过测量物质对电磁波的吸收、散射、发射等来研究物质的性质和结构。
电化学测量则是利用物质在电极上的电化学反应来实现对物质成分和电化学参数的测量。
5在用微波辐射计测量降雨特性中的应用

在 程 () , 中 凡和b 根 辐 计 作 率 接 的 化 式由 考 献3 供的 方 4 可 据 射 工 频 和 收 极 形 参 文 [提 j
方法计算,T 可由统计模式计算得到,T 可由 , & 辐射计直接测量。当 , 由地面雨强雨量计测量 给出后,方程 () 4 中只有对应的辐射亮温 几一个物理量,因此就可以由方程 ()求出对应 4 降雨强度 万 时的辐射亮温 T b 。再将辐射亮温 T代入方程 ( 中,而方程 ( 中 T可由 b ) ] 扮 辐 射计直接测量, , T, h 也可直接测量,则方程 ()中 I 只有 R一个未知量,因此就可由方程 () I 求出对应辐射亮温 T时的功率反射系数R 根据大量的实际测量统计回归分析就可以得到mn b 。 ,
用。
由实验观侧研究表明.反射板上水层厚度虽然与降雨特性有关,但当雨强增大到一定值
时, 水层厚 度变化趋于平 缓.由 功率反 于 射系数直接影响天线 温度0的变化, 此, 来 因 反过
也可以由 辐射计所测里的天线温度 e来动态估算功率反射系数 R 平板反射器与犬项 .当 和辐 射计天线成 4 度角放置接收天顶方向的辐射时。不进行方位扫描, 5 这种情况下功率反射系 数R的统计模式可采用指数模式,即:
. , f E o d r
N wY rT nm l8, 1810 e . eu , 3 p -2. ok 9 p 1 m t d" 0- 6 e os p25 0 . h p 2
[ 1 2 CR cm edtn Rc 3 "p i aeutn rn u i p d tn 2 9 - I R o m naos . 8 e f tnao f a f s n ii ]9 C e i e 8 S ci c i o d y [ DCH g, .uad .. i rM.D ceadERWet trMi o ae im t ] ..og F G iu,BS d , .e rn .. s e" c w v r o er 」 . O r J ne T k , l o1 m aue et w t vpr i R v w o If r a d ii ee wa e V l , ..u o esr n o a r o" ei s nr e n m lm tr vs . K JB t n m f e a n e f a d
非制冷氧化钒微测辐射热计响应曲线

【非制冷氧化钒微测辐射热计响应曲线分析与应用】1. 概述非制冷氧化钒微测辐射热计是一种高精度、高灵敏度的热敏材料,在多个领域有着广泛的应用。
本文将围绕非制冷氧化钒微测辐射热计的响应曲线进行深度分析,探讨其原理以及在科学研究和工程应用中的重要性。
2. 非制冷氧化钒微测辐射热计的原理非制冷氧化钒微测辐射热计是一种基于辐射热测量原理的仪器,其核心部件是氧化钒热释电元件。
当元件受到外界热辐射时,产生温度变化,通过测量温度变化来确定辐射热量。
该原理的精密度和可靠性使得非制冷氧化钒微测辐射热计成为热辐射测量领域的重要工具。
3. 非制冷氧化钒微测辐射热计的响应曲线非制冷氧化钒微测辐射热计的响应曲线是指在不同辐射热量作用下,热计的输出响应曲线。
通过对其响应曲线的分析,可以了解热计在不同工作条件下的性能特点,进而指导实际应用。
4. 响应曲线的深入解析响应曲线的形状和特征反映了非制冷氧化钒微测辐射热计的灵敏度、线性度和稳定性。
通过对响应曲线的深入解析,可以研究影响热计性能的因素,为优化热计设计和改进应用提供理论依据。
5. 响应曲线的工程应用在工程领域,通过对非制冷氧化钒微测辐射热计的响应曲线进行实时监测和分析,可以实现对热工艺过程的精确控制,提高产品质量和生产效率。
在热辐射测量和热能利用领域,响应曲线的合理应用也能够推动新技术的发展和创新。
6. 总结与展望非制冷氧化钒微测辐射热计的响应曲线是其重要的性能参数,对其进行深入分析和应用有助于提高热辐射测量的准确度和可靠性。
随着科学技术的不断发展,相信非制冷氧化钒微测辐射热计的响应曲线在更多领域将发挥重要作用,为人类社会的发展和进步做出更大的贡献。
7. 个人观点作为文章写手,通过撰写本文,我更加深入地了解了非制冷氧化钒微测辐射热计的重要性和应用价值。
在未来的工作中,我将继续关注该领域的最新进展,努力为科学研究和工程实践提供更多有价值的信息和思路。
通过对非制冷氧化钒微测辐射热计的响应曲线进行深入分析和应用,可以更好地理解其工作原理和性能特点,为相关领域的热研究和工程实践提供重要支持。
微波辐射计应用场合与任务

目录1微波辐射计应用场合与任务 (2)2微波辐射计组成与关键技术 (3)3微波辐射计研究热点与趋势(星载微波辐射计) (7)4关于微波辐射计发展的思考建议 (9)参考文献 (10)微波辐射计(英语:microwave radiometer,缩写为“MWR”)也称为“微波辐射仪”,是一种用于测量亚毫米级到厘米级波长(频率约为1-1000GHz)的电磁波(微波)的辐射计。
微波辐射仪能接收大气中的某些成分在一定频率上强烈辐射的微波,经过一定的转换方法,得到大气在垂直和水平方向上的气象要素分布,并且还可以探测到云状、云高以及目力无法观测到的晴空湍流。
此仪器携带方便,可增加探空网在时间和空间上的密度,能观测到大气的连续变化,不致漏掉范围较小但变化剧烈的天气系统。
微波辐射计是一款被动式微波遥感设备,微波遥感起步晚于可见光和红外遥感。
但相对于可见光和红外遥感器而言,微波辐射计能全天候、全天时工作。
可见光遥感只能在白天工作,红外遥感虽可在夜晚工作,但不能穿透云雾。
微波辐射计主要用于中小尺度天气现象,如暴风雨、闪电、强降雨、雾、冰冻及边界层紊流。
对于短时间内生成或消散的中小尺度天气灾害,虽然只是地区性的,但部分事件危害性较大。
在目前中尺度天气现象监测过程中,探空气球和天气雷达是常用的手段。
探空气球会受到使用时间和空间的限制;天气雷达资料基本局限于降雨过程无降水时的欠缺;在离地面5公里范围内卫星遥感数据存在较大的误差。
被动式地基微波辐射计的出现,填补上述研究方法监测方面的空白,是其有效的补充手段。
微波辐射具有独立工作能力,能在几乎各种环境条件工作,非常适合于自动天气站。
用于反演完整的大气廓线,反演数据和原始数据全部保存。
提供完备的顾客定制或全球标准算法。
主要应用如下:对流层剖面的温度、湿度和液态水,天气和气候模型研究,卫星追踪(GPS,伽利略)湿/干延迟和湿度廓线,临近预报大气稳定性(灾害性天气检测),温度反演检测、雾、空气污染,绝对校准云雷达,湿/干延迟改正VLBI技术。
微测辐射热计的等效模型

微测辐射热计的等效模型王璐霞;吕坚;蒋亚东【摘要】微测辐射热计是一种应用前景广阔的非致冷型红外焦平面器件.这里用热平衡理论和噪声理论详细分析了微测辐射热计探测单元的热学、电学和噪声特性.建立了较为全面的微测辐射热计探测单元Spice模型,并对该模型进行了热学行为和噪声特性的仿真,由仿真结果对探测单元的工作方式和特性建立了具体、直观的认识,为下一步的设计工作打下了坚实的基础.【期刊名称】《现代电子技术》【年(卷),期】2009(032)006【总页数】4页(P154-157)【关键词】微测辐射热计;Spice模型;热学行为;噪声特性【作者】王璐霞;吕坚;蒋亚东【作者单位】电子科技大学,电子薄膜与集成器件国家重点实验室,四川,成都,610054;电子科技大学,电子薄膜与集成器件国家重点实验室,四川,成都,610054;电子科技大学,电子薄膜与集成器件国家重点实验室,四川,成都,610054【正文语种】中文【中图分类】TN215微测辐射热计用作红外辐射探测器,具有无需致冷,成本低,可靠性高等优点。
它的基本原理是:微测辐射热计的敏感材料吸收红外辐射,改变自身的电阻值,电阻值的改变可以通过电压或电流信号的改变读出[1]。
目前研究报导的微测辐射热计的热敏薄膜材料有VO、多晶硅、多晶锗硅和Ti等材料。
目前,非致冷红外探测器的研究主要致力于越来越低的噪声等效温差(NETD)[2],低噪声信号的读出电路设计将成为关键。
由于有大量的参数影响微测辐射热计和读出电路的特性,需要综合分析探测器的热学、电学和噪声性能,因此建模和分析工作非常重要,而且建模分析还能够减小前期投入,对器件进行优化设计。
这里建立了微测辐射热计的Spice模型,仿真并分析了探测单元的热学行为和噪声特性。
1 微测辐射热计探测单元的建模微测辐射热计探测单元的微桥结构由桥面(光敏面)、桥腿(支撑柱)和衬底3部份构成。
图1所示是一种比较典型的微测辐射热计探测单元结构[3]。
微测辐射热计的热响应时间测试方法

微测辐射热计的热响应时间测试方法微测辐射热计是一种用于测量辐射热流密度的仪器,其热响应时间是指仪器从接收到热流信号到输出稳定的时间。
热响应时间的测试方法对于评估仪器的性能至关重要。
下面介绍一种常用的微测辐射热计热响应时间测试方法。
首先,需要准备一个热源,可以使用一个恒温水浴或者一个恒温热板作为热源。
将热源放置在微测辐射热计的探头上方,使其与探头距离为一定的距离,通常为10-20cm。
接下来,将微测辐射热计的输出信号接入一个数据采集系统,如示波器或数据采集卡。
在数据采集系统中设置一个触发电平,当微测辐射热计输出信号达到该电平时,数据采集系统开始记录数据。
然后,将热源的温度调整到一个稳定的值,记录下该温度。
将热源移动到微测辐射热计的探头上方,使其与探头距离为预定的距离。
在热源移动到探头上方的瞬间,触发数据采集系统开始记录数据。
在记录数据的过程中,热源应该保持稳定的温度,并且不要移动。
记录的数据应该包括微测辐射热计的输出信号和时间。
当微测辐射热计的输出信号稳定时,记录下该时刻的时间。
最后,根据记录的数据,计算微测辐射热计的热响应时间。
热响应时间可以定义为微测辐射热计输出信号从触发电平到稳定输出的时间差。
可以使用数据采集系统中的计算功能或者手动计算来得到热响应时间。
需要注意的是,在测试热响应时间时,应该尽量避免外界干扰,如风、震动等。
此外,测试时应该多次重复,取平均值来提高测试结果的准确性。
总之,微测辐射热计的热响应时间测试方法是一种简单有效的方法,可以用于评估仪器的性能。
通过测试热响应时间,可以了解微测辐射热计的响应速度,为后续的实验和应用提供参考。
恒压偏置条件下的微测辐射热计电流响应率的理论分析

2 D pr e t f nom t nC u tr A rF reR d r cd m ,Wu a 3 0 0 C ia . e at n o f ai o ne , i oc a a a e y m I r o A h n4 0 0 , hn )
Ab ta t n t i p p r o c o b lmerc f c l p a e a r y , w on u h mp r ci n o o v n i n s r c :I h s a e ,fr mir - o o ti o a ln r a s e p it o t t e i ef t f c n e t a e o ol c re tr s o svt r c si g me n n e o sa tv l g i smeh d,s tu e p y ia ema d l f h u r n —e p n i i p e sn a s u d r c n tn o t e b a t o y o a e p t h s l t r lmo e e h c h o t
高精 度 的 电流 源 , 实 际 的成 像 系 统一 般 情 况 下其 而 体 积 和使 用 空 间有一 定 的限 制 ,所 以实 际 的成 像 系 统一 般都 是采 用 恒定 电压 偏 置方式 。传 统 的微测 辐
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Performance of 320x240 Uncooled Bolometer-typeInfrared Focal Plane ArraysYutaka Tanaka*a, Akio Tanaka c, Kiyoshi Iida b, Tokuhito Sasaki b, Shigeru Tohyama b,Akira Ajisawa b, Akihiro Kawahara b, Seiji Kurasina d Tsutomu Endoh a, Katsuya Kawano a, Kuniyuki Okuyama a, Kazuyuki Egashira b, Hideo Aoki b, Naoki Oda ba 1st Business Development Operations Unit, 1st Custom LSI Division, NEC Electronics1753 Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa211-8666, Japanb Guidance and Electro-Optics Division, NEC Corporation1-10 Nisshin-cho, Fuchu, Tokyo183-8501, Japanc Silicon Systems Research Laboratories, NEC Corporation1120 Shimokuzawa, Sagamihara, Kanagawa 229-1198, Japand 2nd Operations Division, NEC Glass Component7-8 Ebisu-cho, Kanagawa-ku, Yokohama, Kanagawa, JapanABSTRACTThe performance of a 320 x 240 bolometer-type uncooled infrared (IR) Focal Plane Array (FPA) is described.Vanadium oxide thin film is adopted for the bolometer material, having a sheet resistance of ~10 kohms /square. It is patterned such that the bolometer resistance is by a factor of 10 larger than the sheet resistance. On-chip readout integrated circuit(ROIC) is designed to reduce signal drift , extend dynamic range for object temperature and extend ambient temperature range in which operates non-uniformity correction is carried out with about 1/10 fewer frequency than the former ROIC.The 320 x 240 FPA consists of pixels sensitive to IR radiation and optical black (OB) pixels covered with plate which shuts out IR radiation. Drift is reduced by current mirror circuit, using the OB pixels and digital compensation circuit based on voltage change of OB pixels resulting from change in operation temperature. Both the dynamic range and the ambient temperature range are extended by decreasing integration gain and developing low-noise, low-power and large swing operational amplifier (OP-AMP).Since decrease in integration gain degrades noise equivalent temperature difference (NETD), bias voltage forbolometer is increased by factor of 2 and bandwidth is reduced by route half. Finally, IR image was obtained with prototype camera and NETD value was found to be smaller than 0.1K for F/1 optics at 60Hz frame rate and thermal time constant was measured to be 12msec.Keywords: uncooled, microbolometer, infrared, focal plane array, noise, readout1.INTRODUCTIONSince uncooled IR cameras have characteristics of low price and maintenance-free, the demand for the IR cameras has increased. The uncooled IR cameras have been applied to such fields as security, surveillance, thermography, driver’s vision enhancement, intelligent transport systems and so forth. IR markets require several improvements to achieve user * Correspondence: Email : y-tanaka@; Telephone:+81-44-435-1634; Fax:+81-44-435-1911414Infrared Technology and Applications XXIX, Bjørn F. Andresen, Gabor F. Fulop, Editors,Proceedings of SPIE Vol. 5074 (2003) © 2003 SPIE · 0277-786X/03/$15.00friendliness, for example, compactness, light weight, low price and no interruption due to shutter during IR image acquisition. Reduction in pixel size makes optics more compact, lighter and cheaper. However, there is a problem of decrease in output signal due to smaller amount of incident IR radiation on each pixel. Therefore, resposivity has tobe increased and low noise ROIC should be developed. Furthermore, it is a problem for surveillance camera that realtime IR images are often interrupted by shutter operations which are indispensable for non-uniformity correction (NUC). Although, there is a solution to use radiation shield and obstruction-free aperture, optics is more expensive due to increase in number of lenses.This paper describes the following improvements;(1) Low noise, low power and large swing OP-AMPs in ROIC are designed,(2) Responsivity of bolometer array is increased,(3) Low noise and low power circuit for signal processing in camera is developed,(4) Shutter operations for NUC are hardly required to obtain realtime imagery, even in the case of a large amount of background radiation change resulting from variation in ambient temperature (about a couple of tens degrees C) for a wide range of object temperature (a couple of hundreds degrees C), and there improvements make NETD smaller than 0.1K for F/1 optics at 60Hz frame rate.2. VO X MICROBOLOMETER ARRAY2.1 STRUCTURE AND FABRICATIONThermal detectors should be thermally isolated from the heat sink to increase their sensitivities. A thermal isolation structure, i.e., a suspended microbridge structure, achieves the sensitivity increase because it prevents the heat collected by areas sensitive to IR radiation from escaping to the heat sink.Figures 1 (a) and 1 (b) show schematic structure of the bolometer pixel. The pixel is divided into two parts (figure 1 (a)), a silicon (Si) readout integrated circuit in the lower part and a suspended microbridge structure in the upper part. The two parts are separated by a cavity. The microbridge structure is composed of a diaphragm and two beams (figure 1 (b)). The diaphragm is supported by the two beams and is therefore thermally well isolated from the SiROIC heat sink. Figures 2 (a) and 2 (b) show secondary electron micrograph (SEM) pictures. The pixel size is37×37micrometer and the fill factor is 72%. The IR radiation is partly absorbed by the SiN passivation layer in the diaphragm and partly transmitted. The transmitted radiation is perfectly reflected back to the diaphragm by the reflecting layer and is absorbed again by the SiN passivation layer. Thus, about 80% of the incident IR radiation in10micrometer wavelength region is absorbed. The absorbed IR radiation heats the diaphragm and changes the bolometer resistance. Supplying a bias current enables the resistance change to be read out as a voltage change.(b)Figures 1. (a) Schematic cross-sectional view of bolometer pixel along bias current path, and(b) Schematic plan view of bolometer pixel.Proc. of SPIE Vol. 5074 4152.2 CHARACTERISTICSThe properties of a 320×240 bolometer-type uncooled IRFPA were investigated form the viewpoint of uniformity. Figures 3 (a), 3 (b) and 3 (c) are histograms of bolometer resistance (Rb), the temperature coefficient of resistance (TCR) and thermal conductance (Gth), respectively. Data was acquired every sixteen pixels.The distributions of Rb, TCR and Gth have non-uniformity of 10~20% peak-to-peak, ~5% peak-to-peak and ~10% peak-to-peak, respectively, for more than 50 fabrication runs. The distribution of TCR/Gth value, which is a good indicator of voltage responsivity (see the equation (1) mentioned later), has non-uniformity of 10~20% peak-to-peak. The typical value of thermal conductance is 0.1µW/K. It should be mentioned that the mean TCR value of –1.64%/K measured at 40degrees C in the figure corresponds to -1.87%/K at 20degrees C.The voltage responsivity (R V ) is expressed by equation (1), which includes key parameters of the deviceperformance, such as the temperature coefficient of bolometer resistance (TCR), thermal conductance (Gth), IR absorbance (N) and thermal time constant (Ttc).Gth Cth Ttc W V Ttc f πGth N Vb TCR Rv =]/[)×2(+11××=2ޓޓޓޓ (1)Here, Vb, f and Cth are bias voltage, chopping frequency and thermal mass, respectively.The relative responsivity is measured as a function of the chopping frequency (see figure 4). By fitting the equation (1) with the measured curves, the thermal time constant is calculated to be 12 msec. This is an adequate response time for obtaining thermal images at a TV frame rate. From the measured ፧thermal time constant value of 12msec and the measured Gth value of 0.1micro-W/K, the thermal mass of the diaphragm is estimated to be 1.2 nJ/K. The performance characteristics of doped VO X microbolometer array are summarized in Table 1.020406080100120140160180767880828486889092949698100 (a)(b)of resistance (%/K) measured at 40degrees CResistance(Kohms)Figure 3 (a). Histogram for bolometer resistanceFigures 2. (a) SEM picture of 320 x 240 bolometer arrays, and (b) Magnified pictureDiaphragmBeamN u m be r of p i x e l s416 Proc. of SPIE Vol. 5074Figure 3 (c). Histogram for thermal conductance Figure 4. Frequency dependence of responsivityTable1.Summary of design and performance characteristics of doped VO X microbolometer3.FPA ARCHITECTURE AND FPA DESIGNA block diagram of FPA is shown in Figure 5(a) and circuit configuration of readout channel is shown in Figure 5(b) and the chip photograph of the FPA is shown in Figure 6. The FPA has 320 x 240 pixels with 37 x 37 micrometer pitch. The uncooled IR sensor LSI was fabricated with the 0.5-micrometer CMOS process. The on-chip ROIC፧is composed of FPA, band-gap reference circuit(BGR), bias generation circuit(BGC), integration circuits, sample and hold(SH) circuits, multiplexers, output OP-AMP and horizontal and vertical shift registers, the ROIC is driven by only external three clocks and 4bit data. The 4bit data is externally provided to data buses in ROIC and the data consists of sensor bias, resistance of bias cancel circuit, integration capacitor, NUC data and so forth.(see table2) The ROIC can be operated in NTSC mode or in PAL mode and each pixel is pulse-biased. The 183 readout channels are employed for the column of the bolometer array and each readout channel reads out the 2-columns of the array. The readout channel is composed of bolometer bias circuit that supplies the bolometer with bias voltage, bias cancel circuit that subtracts pedestal component from the bias current and integrator that integrates the residual bolometer current. In the final stage of the readout channel, one analog output voltage is selected by two SH circuits. Combination of the integration capacitor with resistance in the bias cancel circuit should be selected to keep NETD value smaller than 0.1K,because the FPA’s operation temperature ranges from -30degrees C to 60degrees C,which changes the resistance of the bolometer from ~20kohms to ~500 kohms.Proc. of SPIE Vol. 5074 417Figure 5(b) Circuit configuration of readout channel 418 Proc. of SPIE Vol. 5074320 x 240 PIXELSBOLOMETER ARRY183 READOUT CHANNELSS/H AND MUXThe bolometer has high temperature coefficient of resistance to realize high responsivity to the incident infrared. This means that the bolometer is extremely sensitive to the chip temperature. In order to reduce the influence of change in the chip temperature (CT), this ROIC has the configuration shown in figure7. This circuit automatically removes change in the pedestal component of the bias current due to change in the chip temperature, so that it mitigates the required stability of the thermoelectric cooler (TEC), which is stringent, especially in turning on the power supply. In this configuration, OB pixels covered with a plate which shuts out IR radiation, act as bolometers whose resistances are changed by the chip temperature. The current that flows in the OB pixels are transformed into voltage by diffusion resister, and the voltage is entered into background radiation correction (BRC) through a low pass filter (LPF). This means that the current in the OB pixels are mirrored to the current generated by bias cancel circuit. In this way, the influence of chip temperature change, which exerts to both OB pixels and bolometer, is canceled. The OP-AMPs in each readout channel, which cancel temperature dependence of V GS in MOSFET, are also effective for reducing drift current. Moreover, the resistance of bias cancel circuit shown in figure 5(b) is, indeed, composed of two resistances with reverse TCRs, which is also effective for reducing drift current. Shutter frequency resulting from the drift is reduced by about 1/10 fewer than the former FPA[1] owing to the temperature compensated configuration of the readout channel.Figure 7 Temperature compensation configurationProc. of SPIE Vol. 5074 419Dynamic range of output signal and noise has to be simultaneously considered to improve performance of IR camera. Requirement for IR camera is as follows; shutter operations for NUC are hardly required to obtain realtime imagery, even in the case of a large amount of background radiation change resulting from variation in ambient temperature (about a couple of tens degrees C) for a wide range of object temperature (from -30degrees C to +150degrees C). This requirement can be achieved without radiation shield nor obstruction-free to lower cost of IR camera.In order to satisfy both dynamic ranges of temperature, it is necessary to decrease an integration gain. However, there is a problem due to increase in input conversion noise. Therefore, bias voltage of bolometer has to be increased to improve responsivity and ROIC with low noise and large voltage swing should be developed.A bias voltage of bolometer is actually increased by a factor of 2, namely 4V. The ROIC mentioned above is realized by the followings;(1) Integration time is doubled by increasing the number of readout channel.(Bandwidth is reduced by route half), (2) OP-AMPs with low noise, low power, small size and large voltage swing is designed, (3) Resistance of bias cancel circuit is selected,(4) Resister of bias cancel circuit is designed to have as large size as possible to decrease the 1/f noise,(5) Integration capacitor of bias cancel circuit is selected to make integration time as long time as possible.The thermal noise of each OP-AMP is reduced by increasing bias current. The 1/f noise of each OP-AMP is reduced by using large size MOSFET. Figure 8 shows the measured waveform for the analog output (Vout) of the OP-AMP. The dynamic range of an output OP-AMP is found to be in the range from +2.5V to +7.5V,using signals of defective pixels. This voltage range corresponds to the object temperature range from -30degrees C to +150degrees C and the ambient temperature range of a couple of tens degrees C.As is shown in figure 9, dynamic range (5V) of Vout contains object signal voltage, background IR radiation signal Figure 8. Output waveform of large voltage swing OP-AMPFigure 10 shows the calculated results for thermal noise and 1/f noise in each part of ROIC and camera. All noise values are converted into the values at the bolometer node. Total noise at the bolometer node is measured to be 20micro voltage rms at 60Hz fame rate, which agrees with the calculation. Although this value is roughly twice as large as the noise value of the former sensor [1], the bias voltage of bolometer is increased by a factor of 2 in this ROIC, and then NETD value doesn’t change.Figure 10. The calculated results for thermal noise and 1/f noise in each part of ROIC and cameraThe ROIC thus developed has such advantage that dynamic ranges of both object and ambient temperatures enlarged without changing NETD value. The design and performance characteristics of FPA and ROIC are summarized in Table 2.Table2.Summary of design and performance characteristics of FPA and ROICProc. of SPIE Vol. 5074 4214. PROTOTYPE CAMERA4.1 DESIGNThe prototype camera is shown in Figure 11.The camera has characteristics, such as compactness, light weight, low cost and low power. The camera utilizes 25mm focal length F/1 Ge optics with anti-reflection coating adapted to the 10micrometer wavelength region. A 320×240 bolometer-type uncooled FPA chip is incorporated into a vacuum sealed package and is placed at focal plane of the IR camera. The performance characteristics of camera are summarized in Table 3.The camera has a power consumption smaller than 6W. The weight is 800g(except for optics).The size of the prototype camera is as small as 80mm(height) x 77mm(width) x 129mm(length).ᱳᱳᱳᱳᱳᱳᱳᱳᱳᱳᱳᱳᱳᱳᱳᱳᱳᱳᱳᱳThe block diagram of the prototype camera is illustrated in figure 12. The camera electronics consist of a power supply board (PSB), analog circuit board (ACB) and two digital signal processing boards(DSPB). One can adjust output level, offset, gain, digital zoom, polarity, NUC and selection of pseudo color or white/black, with user interface on the rear panel of camera. The camera operates at 60Hz (NTSC) or 50Hz (PAL) frame rates .The PSB is designed to use commercial Li-ion battery. Therefore, the input power supply voltage ranges from 5.5V to 12V. The switching power supply is adopted to reduce power consumption. The PSB provides +3.3Vdc (digital), +5Vdc(digital), +15Vdc(analog) and +8Vdc (analog).The ACB consists of the low-noise power supply for ROIC and the temperature stabilization control circuit for thermoelectric cooler(TEC). The analog signal voltage of the ROIC is digitized to 14bit data .The DSPB has a wide variety of functions, including generation of timing clocks for ROIC, correlated double sampling which is used with thermally shorted pixels (see figure 6), NUC, digital noise reduction, defective pixels substitution ,gain and offset adjustment, and look up table for pseudo color and IR radiation correction. DSPB outputs include NTSC or PAL as well as LVDS 16bit parallel digital data. The DSPB accepts RS-232C commands.Two point corrections are made for the digitized data by exposing the FPA to two black bodies with different temperatures. The data is, thus, corrected for non-uniformity of bolometer responsivity.After the power supply is turned on, first, TEC is stabilized and a shutter temperature which is close to an ambient temperature, is measured. The shutter temperature is memorized to memory of DSPB. Next, the background IR radiation correction is performed by digital processing of DSPB which is to search IR radiation correction data with binary search method. If the shutter temperature is changed by a certain amount of temperature, the correctionprocessing is iterated. The certain amount of temperature is changed by the ambient temperature which is measured as the shutter temperature, and then is controlled by CPU of DSPB. The certain amount of temperature is slightly larger than a couple of tens degrees C.Figure 11. The photograph of the prototype camera Table3 Summary of performance characteristics of prototype cameraArray Size 320x240Optics FOCAL LENGTH 25mm F=1 Camera Size 80(H) x 77(W) x 129(L) mmCamera Weight 800gFrame Rate NTSC/PAL Conformity Analog:NTSC/PAL Conformity Outputs Digital:LVDS 8-bit Parallel output portRemote control RS-232C SerialContrast/Brightness AutomaticPower Consumption <6W NETD <100mKOparation Temparature-10~+50 degrees C422 Proc. of SPIE Vol. 5074Figure 12. The block diagram of the prototype camera4.2 TEST RESULTSA thermal IR image is, thus, obtained for F/1 optics and at 60 Hz frame rate (see figure 13). NETD value is measured for the prototype camera, by introducing IR radiation of calibrated black body source to a certain part of FPA. Values of signal and noise are read out, using 16bit digital output data of all pixels, and standard deviation is calculated and is taken as the noise value. The NETD value is found to be smaller than 0.1K.Proc. of SPIE Vol. 5074 4235. CONCLUSIONThe authors design, fabricate and evaluate a 320x240 bolometer-type uncooled IR FPA, on-chip readout circuit and camera. A thermal image with an NETD value smaller than 0.1 K is obtained for F/1 optics and at 60Hz frame rate.The drift characteristics of the ROIC are improved by the temperature compensated configuration and therefore, shutter operation frequency is reduced by 1/10 fewer than the former camera.This performance is good enough for uncooled IRFPA to be used for surveillance camera, radiometric camera and so forth.ACKNOWLEDGMENTSThe authors would like to thank Messrs. S.Matsumoto, H.Murofushi, K.Katoh, M.Miyoshi and M.Hijikawa (NEC Corporation), Messrs. H.Gotoh, Y.Tsuruta, A.Nakazato and F.Nishio (NEC Glass Components) for their collaboration during development and fabrication of detectors and camera.REFERENCES[1] A. Tanaka, K. Chiba, T.Endoh, K.Okuyama, A. Kawahara, K. Iida, N. Tsukamoto, “Low-noise readout circuitfor uncooled infrared FPA”, SPIE, 4130, pp.160-167, 2000.424 Proc. of SPIE Vol. 5074。