过充电、过放电、过电流、短路详解

合集下载

锂电池组保护板均衡充电基本工作原理

锂电池组保护板均衡充电基本工作原理

成组锂电池串联充电时,应保证每节电池均衡充电,否则使用过程中会影响整组电池的性能和寿命。

常用的均衡充电技术有恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。

而现有的单节锂电池保护芯片均不含均衡充电控制功能;多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过和保护芯片的串行通讯(如I2C总线)来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。

本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。

仿真结果和工业生产应用证明,该保护板保护功能完善,工作稳定,性价比高,均衡充电误差小于50mV。

锂电池组保护板均衡充电基本工作原理采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。

其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;13为分流放电支路。

单节锂电池保护芯片数目依据锂电池组电池数目确定,串联使用,分别对所对应单节锂电池的充放电、过流、短路状态进行保护。

该系统在充电保护的同时,通过保护芯片控制分流放电支路开关器件的通断实现均衡充电,该方案有别于传统的在充电器端实现均衡充电的做法,降低了锂电池组充电器设计应用的成本。

R5460锂电保护 中文技术资料

R5460锂电保护 中文技术资料

R5460xxxxxx 系列概要R5460xxxxxx 系列是高耐压、CMOS 工艺的电池保护IC,用于2 节串联锂离子/锂聚合物可充电电池的过充电/过放电保护,还内置了负载短路保护电路以防止大的负载短路电流;内置了过电流保护电路以防止放电过电流和充电过电流。

该系列中的每款IC 均由六个电压检测器,一个基准单元,一个延时电路,一个负载短路保护电路,一个振荡器,一个计数器和一个逻辑模块构成。

当充电电压/充电电流由低变高,超过了对应检测器的阈值时,在一个内置固定延时后,引脚C OUT 的输出就会切换到低电平。

解除过充电保护的方法:检测到过充电或充电过电流之后,将电池与充电器断开,再接上负载,当电池电压低于过充电检测器阈值时,过充电检测器才可以被重置,C OUT 输出才会变回高电平。

如果充电器一直连接在电池上,当电池电压低于过充电解除电压时,过充电保护就会被解除。

当放电电压由高变低,小于过放电检测阈值V DET2 时,在一个内置固定延时后,引脚D OUT 的输出(和过放电检测器及过电流检测器的输出相关)将切换到低电平。

检测到过放电之后,解除过放电保护的条件如下:A/D 版本:给电池接上充电器,只要电池电压大于等于过放电检测电压;或者,不接充电器,只要电池电压高于过放电解除电压,过放电保护就会解除,D OUT 输出变回高电平。

C 版本:给电池接上充电器,只要电池电压大于等于过放电检测电压,过放电保护就会解除,D OUT输出变回高电平。

E 版本:不论电池是否接上充电器,只要电池电压大于等于过放电解除电压,过放电保护就会解除,D OUT 输出变回高电平。

F 版本:给电池接上充电器,只要电池电压大于等于过放电解除电压,过放电保护就会解除,D OUT输出变回高电平。

对于A/C/D 版本,在连接充电器的情况下,过放电检测器没有滞回功能。

对于E/F 版本,即使充电器连接在电池上,过放电检测器仍然存在滞回功能。

即使电池自放电到0V,仍然允许对其充电。

锂电池保护板基本知识

锂电池保护板基本知识





IC
P+
P-
P+和P-短路
4、均衡原理
为什么要加均衡:电芯在生产过程中由于工艺的差异不 可能做到让每一个电芯的电压内阻等做到完全一致,所 以在串联使用的过程中,内阻大的电芯先放完电,又先 充饱电,长期这样使用久了,各个串联电芯的容量和电 压的差异也越来越明显。容量小的那节电芯每次都滿充 滿放,而容量大的电芯都是浅充浅放,容量大的电芯不 能得到完全利用,从而影响整组电池的使用寿命。
由聚合物树酯基体及分布在里面的导电粒子组成,在正常
情况下,导电粒子在树酯中构成导电通路,器件表现为低
阻抗,电路中有过流发生时,流经PTC的大电流产生的热 量使聚合物树酯基体体积臌胀,因而切断导电粒子间的连 接,从而对电路的过流起保护作用。当故障解除后,方可
自动恢复到初始状态,保证电路正常工作。
通路
受热基体膨胀 故障解除基体恢复初始状态
•保护板上主要有控制IC、MOS及电阻、电 容,保险丝,PTC,NTC等。
•目前动力电池保护板常用的保护方案有: 精工、理光、美之美、凹凸、TI、凌特、 MCU等。
电阻 电容 PCB
保护IC
MOS管
保护板元器件简介
1、电阻:起限流、采样作用;
2、电容:对直流电而言电阻值“∞“,对交流电而言 阻 值接近零,电容两端电压不能突变,能起瞬间 稳压作用,滤波作用;
断路
5、NTC是Negative temperature coefficient的缩写,意即负温度系数,在环 境温度升高时,其阻值降低,使用电设备或充 电设备及时反应、控制内部中断而停止充放电。
6、 MOS管:保护板动作的开关器件,把它 想象成一个低内阻的可控开关就可以了。当电 池组发生异常时,MOS管关断,开关断开,停 止放电,电池组得到保护。

锂电池过充电、过放电、短路保护电路详解

锂电池过充电、过放电、短路保护电路详解

锂电池过充电、过放电、短路保护电路详解时间:2012-04-23 12:27:18来源:作者:该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N 沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。

充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。

在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。

放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。

二次锂电池的优势是什么?1. 高的能量密度2. 高的工作电压3. 无记忆效应4. 循环寿命长5. 无污染6. 重量轻7. 自放电小锂聚合物电池具有哪些优点?1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。

2. 可制成薄型电池:以3.6V400mAh的容量,其厚度可薄至0.5mm。

3. 电池可设计成多种形状4. 电池可弯曲变形:高分子电池最大可弯曲900左右5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。

7. 容量将比同样大小的锂离子电池高出一倍IEC规定锂电池标准循环寿命测试为:电池以0.2C放至3.0V/支后1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准).电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量什么是二次电池的自放电不同类型电池的自放电率是多少?自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。

锂离子电池的过充电和过放电产生的问题

锂离子电池的过充电和过放电产生的问题

针对锂离子电池过充电、过放电问题令狐采学过充电:锂离子电池过充时,电池电压随极化增大而迅速上升,会引起正极活性物质结构的不可逆变化及电解液的分解,产生大量气体,放出大量的热,使电池温度和内压急剧增加,存在爆炸、燃烧等隐患。

过放电:电池放完内部储存的电量,电压达到一定值后,继续放电就会造成过放电,电池过放电可能会给电池带来灾难性的后果,特别是大电流过放,或反复过放对电池影响更大。

一般而言,过放电会使电池内压升高,正负极活性物质可逆性受到破坏,电解液分解,负极锂沉积,电阻增大,即使充电也只能部分恢复,容量也会有明显衰减。

解决措施:1、改变正极材料:目前钴酸锂正极活性材料在小电芯方面是很成熟的体系,但是充满电后,仍旧有大量的锂离子留在正极,当过充时,残留在正极的锂离子将会涌向负极,在负极上形成枝晶(使其晶面的半高宽变大,导致某一方向的晶粒尺寸变小,晶体结构的改变导致碳材料出现裂纹,进而破坏负极表面的SEI 膜并促进SEI 膜的修复,SEI 膜的过度生长消耗活性锂,因此造成了电池的不可逆容量衰减。

如图1所示)这是采用钴酸锂材料的电池过充时必然的结果。

甚至在正常充放电过程中,也有可能会有的产生多余的锂离子游离到负极形成枝晶(由于石墨的嵌脱锂电位较低,接近锂的还原电位,因此在某些条件下负极容易出现锂沉积,锂沉积会消耗活性锂,产生不可逆容量损失)。

因此寻求高能量密度、高安全、环保和价格便宜的电极材料是动力电池发展的关键。

目前国家选择的安全正极材料有锰酸锂、磷酸铁锂等。

(锰酸锂LiMnO4分子结构上面可以保证在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。

同时锰酸锂稳固的结构使其氧化性能远远低于钻酸锂,分解温度超过钴酸锂10O℃,即使由于外力发生内部短路、外部短路、过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸的危险。

磷酸铁锂(LiFePO4)及其充电(脱锂)后形成FePO4的热稳定性非常好,其在210~410℃的温度范围内所放出的热量仅为210J/g:而普遍使用的LiCoO2的充电态(CoO2)开始分解产生氧气的温度为240°C,所放出的热量约为1000J/g。

3.7v锂电池充放电保护电路

3.7v锂电池充放电保护电路

3.7v锂电池充放电保护电路3.7V锂电池充放电保护电路是一个重要的电子电路,主要用于保护锂电池在充放电过程中的安全使用。

这种电路可以防止电池过度充电、过度放电和短路等情况,从而延长电池的使用寿命和防止电池热失控导致的安全问题。

一、电路组成3.7V锂电池充放电保护电路主要由锂电池、充电电路、放电电路和保护电路四部分组成。

其中,保护电路是核心部分,它由充电保护芯片、放电保护芯片和电压检测芯片等组成。

二、工作原理1.充电工作原理:当锂电池连接到充电电路时,充电保护芯片会检测电池的电压和电流。

如果电池电压或电流超过设定值,充电保护芯片会自动切断充电电路,以避免电池过度充电。

同时,电压检测芯片会检测电池的电压,当电池电压达到设定值时,充电保护芯片会自动关闭充电电路,以避免电池过充。

2.放电工作原理:当锂电池需要放电时,放电保护芯片会检测电池的电压和电流。

如果电池电压或电流超过设定值,放电保护芯片会自动切断放电电路,以避免电池过度放电。

同时,电压检测芯片会检测电池的电压,当电池电压低于设定值时,放电保护芯片会自动关闭放电电路,以避免电池过放。

3.短路保护:如果锂电池发生短路,电流会迅速增加,这时,放电保护芯片会自动切断放电电路,以避免电流过大损坏电池。

同时,充电保护芯片也会自动关闭充电电路,以避免电池过充而损坏。

三、电路特点1.具有充电、放电和短路保护功能:该电路具有全面的保护功能,可以有效地防止锂电池在充放电过程中出现过度充电、过度放电和短路等问题。

2.高精度控制:该电路采用先进的控制技术,可以实现对电池电压和电流的高精度检测和控制,确保电池在安全范围内使用。

3.可靠性高:该电路采用高品质的电子元件和先进的生产工艺,具有高可靠性和长寿命等特点,可以满足各种应用场景的需求。

4.体积小、重量轻:该电路体积小、重量轻,方便携带和使用,适用于各种移动设备和其他小型电子产品中。

5.安全可靠:该电路采用多重保护机制,确保电池在任何情况下都不会出现过充、过放和短路等现象,从而保证了电池的安全可靠。

DW01、8205A锂电池保护板工作原理及过放过充短路保护解析

DW01、8205A锂电池保护板工作原理及过放过充短路保护解析

锂电池保护板工作原理及过放过充短路保护解析锂电池保护板根据使用IC IC,电压等不同而电路及参数有所不同,下面以,电压等不同而电路及参数有所不同,下面以DW01 DW01 配配MOS 管8205A 进行讲解:进行讲解:锂电池保护板其正常工作过程为:锂电池保护板其正常工作过程为:当电芯电压在2.5V 至4.3V 之间时,之间时,DW01 DW01 DW01 的第的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V 0V。

此时。

此时DW01 DW01 的第的第1脚 、第3脚电压将分别加到8205A 的第5、4脚,脚,8205A 8205A 内的两个电子开关因其G 极接到来自DW01 DW01 的电压,故均处于导通状态,即两个的电压,故均处于导通状态,即两个电子开关均处于开状态。

此时电芯的负极与保护板的P-P-端相当于直接连通,保护板有电压端相当于直接连通,保护板有电压输出。

输出。

2.2.保护板过放电保护控制原理:保护板过放电保护控制原理:保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 DW01 内部将通过内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V 时DW01 DW01 将认为电芯电压已处于过放电将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V 0V,,8205A 内的开关管因第5脚无电压而关闭。

此时电芯的B-B-与保护板的与保护板的P-P-之间处于断开状态。

即电芯的放电回路被切之间处于断开状态。

即电芯的放电回路被切断,电芯将停止放电。

保护板处于过放电状态并一直保持。

等到保护板的P P 与与P-P-间接上充间接上充电电压后,DW01 DW01 经经B-B-检测到充电电压后便立即停止过放电状态,检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A 内的过放电控制管导通,即电芯的B-B-与保护板的与保护板的P-P-又重新接上,电芯经充电器直又重新接上,电芯经充电器直接充电。

阀控式全密封铅酸蓄电池常见故障、问题及原因

阀控式全密封铅酸蓄电池常见故障、问题及原因
大电流长期充电造成外壳变形,渗漏
极柱严重扭曲,撞击造成极柱渗漏
3、电池壳与盖封合处漏酸
热封或粘合壳盖不牢固
五、外观破损
极柱断裂或电池外表损伤严重
接线不当扭断或意外原因撞断极柱及造成电池外观破损
运输或搬运造成
六、气阀故障
1、电池中某单格外壳严重鼓胀甚至造成胀破了外壳。
阀帽与阀座在顶面的接触部位发生了异常的粘结造成电池不能向外排气。
2电池在存放一段时间26个月后某电池的开路电压或闭路电压明显比其他电池低2v电池低于2v6v电池低于55v12v电池低于11v将电池面上的盖片打开时其中的一个或两个阀帽的顶面中心部位无凹陷正常应有凹陷现出
阀控式全密封铅酸蓄电池常见故障、问题及原因
故障问题
现象
造成原因
一、过放电
1、2v电池电压低于1.8 v(通常只有0-1.5v)
2、电池在存放一段时间(2-6个月)后某电池的开路电压或闭路电压明显比其他电池低(2v电池低于2v,6v电池低于5.5v,12v电池低于11v)将电池面上的盖片打开时其中的一个或两个阀帽的顶面中心部位无凹陷(正常应有凹陷)现出。
1、阀帽与阀座配合太松,造成电池某单格未能密封好。
2、阀帽内壁或阀座外壁有杂物,造成某单路未能密封好,凡是气阀密封不良的单格都会使空气中的氧气可进入电池,造成负极氧化而自放电,同时该单格电池因失水也较快而丧失电池容量。
2、单格电池经均衡充电,电压仍达不到额定电压2v(如12v电池达不到12v以上;6vБайду номын сангаас池仍达不到6v以上,2v电池仍达不到2v以上)且短路的一个单格发热严重。
1、隔板破损或穿透。
2、有铅粒落入电池内部。
四、电池渗漏电液
1、池壳或池盖明显因撞击摔打而破裂。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1,过充电
锂电池芯过充到电压高于 4.2V 后,会开始产生副作用。

过充电压愈高,危险性也跟着愈高。

锂电芯电压高于4.2V 后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。

如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。

这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。

这些锂金属结晶会穿过隔膜纸,使正负极短路。

有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。

因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。

最理想的充电电压上限为4.2V。

2,过放电
锂电芯放电时也要有电压下限。

当电芯电压低于2.4V 时,部分材料会开始被破坏。

又由于电池会自放电,放愈久电压会愈低,因此,放电时最好不要放到2.4V 才停止。

锂电池从3.0V 放电到2.4V 这段期间,所释放的能量只占电池容量的3%左右。

因此,3.0V 是一个理想的放电截止电压。

与过充电是一个完全相反的过程。

3,过电流
过电流通常指带保护板的情况下会过电流,由于保护板对过电流值有明确的要求,当超过某一电流值后,正常情况下,保护板会切断电路。

如果保护板末能切断电路,则电芯会持续过电流,且产生剧烈的过热反应。

电流过大时,锂离子来不及进入储存格,会聚集于材料表面。

这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。

万一电池外壳破裂,就会爆炸。

4,短路
4.1.外部短路
外部短路是指电芯的外部,包含了电池组内部绝缘设计不良等所引起的短路。

当电芯外部发生短路,电子组件又未能切断回路时,电芯内部会产生高热,造成部分电解液汽化,将电池外壳撑大。

当电池内部温度高到135 ℃时,质量好的隔膜纸,会将细孔关闭,电化学反应终止或近乎终止,电流骤降,温度也慢慢下降,进而避免了爆炸发生。

但是,细孔关闭率太差,或是细孔根本不会关闭的隔膜纸,会让电池温度继续升高,更多的电解液汽化,最后将电池外壳撑破,甚至将电池温度提高到使材料燃烧并爆炸。

4.2.内部短路
内部短路主要是因为铜箔与铝箔的毛刺穿破隔膜,或是锂原子的树枝状结晶穿破膈膜所造成。

这些细小的针状金属,会造成微短路。

由于,针很细有一定的电阻值,因此,电流不见得会很大。

铜铝箔毛刺系在生产过程造成,可观察到的现象是电池漏电太快,多数可被电芯厂或是组装厂筛检出来。

而且,由于毛刺细小,有时会被烧断,使得电池又恢复正常。

因此,因毛刺微短路引发爆炸的机率不高。

(这样的说法,可以从各电芯厂内部都常有充电后不久,电压就偏低的不良电池,但是却鲜少发生爆炸事件,得到统计上的支持。

)因此,内部短路引发的爆炸,主要还是因为过充造成的。

因为,过充后极片上到处都是针状锂金属结晶,刺穿点到处都是,到处都在发生微短路。

因此,电池温度会逐渐升高,最后高温将电解液气体。

这种情形,不论是温度过高使材料燃烧爆炸,还是外壳先被撑破,使空气进去与锂金属发生激烈氧化,都是爆炸收场。

但是过充引发内部短路造成的这种爆炸,并不一定发生在充电的当时。

有可能电池温度还未高到让材料燃烧、产生的气体也未足以撑破电池外壳时,消费者就终止充电,带手机出门。

这时众多的微短路所产生的热,慢慢的将电池温度提高,经过一段时间后,才发生爆炸。

(消费者多数的描述都是拿起手机时发现手机很烫,扔掉后就爆炸。

)。

相关文档
最新文档