1-2凸集与凸函数

合集下载

12凸集及凸函数

12凸集及凸函数
(1) f x 是凸集 D 上的凸函数的充要条件是对x, y D ,一
元函数 t 在0,1 上为凸函数. (2) 设 x, y D, x y , 若 t 在 0,1 上 为 严 格 凸 函 数 , 则 f x 在 D 上为严格凸函数.
2020/8/4
16
该定理的几何意义是:凸函数上任意两点 之间的部分是一段向下凸的弧.
0,1表示连接 x1, f x1 , x2, f x2 的线段.
f x1 1 x2 表示在点 x1 1 x2 处的函数
值.
所以一元凸函数表示连接函数图形上任意两点的线段
总是位于曲线弧的上方.
2020/8/4
12
2020/8/4
13
凸函数的性质
(1)设 f x 是凸集 D Rn 上的凸函数,实数 k 0 ,则 kf x 也
f x 1 y f x 1 f y,
则称 f x 为凸集 D 上的凸函数。
定义1.5 严格凸函数
注:将上述定义中的不等式反向,可以得到凹函数的定义。
例: 设 f x x 12 ,试证明 f x 在 , 上是严格凸
函数.
2020/8/4
9
证明: 设 x, y R ,且 x y, 0,1 ,都有
§1.2 凸集与凸函数
2020/8/4
1
一、凸集
定义1.1 设集合 D Rn , 若对于任意两点
x , y D , 及实数 0 1, 都有:
x 1 y D
则称集合 D 为凸集.
注:常见的凸集:空集,整个欧氏空间 Rn
超平面:H x Rn a1x1 a2x2 an xn b
m
ai xi ,
称为 xi ,i 1, 2,
,m,

最优化方法(凸集与凸函数)

最优化方法(凸集与凸函数)

{ {
} }
{
}
+ D1 ⊂ H 0 = x ∈ R n | a T x > β
− D2 ⊂ H 0
{ = {x ∈ R
n
| aT
} x < β}
+ − 则称超平面 H 严格分离 D1 和 D2 ,其中 H 0 和 H 0 分别表示
H + 和 H − 的内部
7
点到凸集的投影
是凸集, 设 D ⊂ R n 是凸集, y ∈ R n 但是 y ∉ D ,则 的距离最小, (1)存在唯一的点 x ∈ D ,使得集合 D 到点 y 的距离最小,即 x − y = inf { x − y , x ∈ D} (2) x ∈ D 是点 y 到集合 D 的最短距离点的充分必要条件为
α 1 x (1) + α 2 x ( 2 ) ――― α 1 x (1) + α 2 x ( 2 ) + α 3 x ( 3 )
α 1 x (1) + α 2 x ( 2 ) ――― α 1 x (1) + α 2 x ( 2 ) + α 3 x ( 3 )
4
是凸集, 设 D ⊂ R n 是凸集,则任意 m 个点 x ( i ) ∈ D( i = 1,2,⋯ , m ) 的凸组合仍 即有: 属于 D , 即有:
( x − x )T ( x − y ) ≥ 0 , ∀x ∈ D
证明: (1) 证明: ) ( 令 S = x ∈ R n | x ≤ 1 则取充分大的 µ > 0 使得
Ds = D ∩ ( y + µS ) ≠ φ
因此连续函数 f ( x ) = x − y 在 D s 上必定可以取到极小点 存在性证明完毕

凸集与凸函数

凸集与凸函数

凸集与凸函数在数学中,凸集和凸函数是两个非常重要的概念。

它们在优化、几何、经济学等领域中都有广泛的应用。

本文将介绍凸集和凸函数的定义、性质和应用。

凸集凸集是指在一个向量空间中,如果对于任意两个点x和y,它们的线段上的所有点都在该集合内,那么这个集合就是凸集。

简单来说,凸集就是一个“凸起来”的集合,它的内部没有凹陷的部分。

凸集有很多重要的性质。

其中最重要的是:凸集的交集仍然是凸集。

这个性质在优化问题中非常有用,因为它可以帮助我们证明一些最优化问题的解是凸集。

凸函数凸函数是指在一个实数域上,如果对于任意两个点x和y,它们的线段上的所有点都在函数图像的上方,那么这个函数就是凸函数。

简单来说,凸函数就是一个“凸起来”的函数,它的图像没有凹陷的部分。

凸函数也有很多重要的性质。

其中最重要的是:凸函数的下凸壳是一个凸函数。

这个性质在优化问题中非常有用,因为它可以帮助我们求解一些最优化问题的解。

应用凸集和凸函数在优化、几何、经济学等领域中都有广泛的应用。

其中最常见的应用是在最优化问题中。

凸集和凸函数的性质可以帮助我们证明一些最优化问题的解是凸集或凸函数,从而简化问题的求解过程。

凸集和凸函数还可以用于解决一些几何问题。

例如,我们可以使用凸包算法来求解一个点集的凸包,从而得到一个凸集。

同样地,我们也可以使用凸函数来求解一些几何问题,例如最小二乘法。

在经济学中,凸集和凸函数也有广泛的应用。

例如,在市场经济中,供求关系可以被视为一个凸函数,从而帮助我们预测市场价格的变化。

总结凸集和凸函数是数学中非常重要的概念。

它们在优化、几何、经济学等领域中都有广泛的应用。

凸集和凸函数的性质可以帮助我们证明一些最优化问题的解是凸集或凸函数,从而简化问题的求解过程。

同时,它们也可以用于解决一些几何问题和经济学问题。

1-2凸集与凸函数

1-2凸集与凸函数
值.
所以一元凸函数表示连接函数图形上任意两点的线段
总是位于曲线弧的上方.
2020/3/1
12
2020/3/1
13
凸函数的性质
(1)设 f x 是凸集 D Rn 上的凸函数,实数 k 0 ,则 kf x 也
是 D 上的凸函数.
(2)设 f1 x , f2 x 是凸集 D Rn 上的凸函数,实数 , 0 , 则 f1 x f2 x 也是 D 上的凸函数.
则称 f x 为凸集 D 上的凸函数。
定义1.5 严格凸函数
注:将上述定义中的不等式反向,可以得到凹函数的定义。
例: 设 f x x 12 ,试证明 f x 在 , 上是严格凸
函数.
2020/3/1
9
证明: 设 x, y R ,且 x y, 0,1 ,都有
a2
不等式要取等号,必须 y z a ,
且 y, z y z , 容易证明 y z x ,
根据定义可知 x 为极点.
2020/3/1
8
三、凸函数
定义 1.4: 设函数 f x 定义在凸集 D Rn 上,若对任意的
x, y D, 0,1,都有:
f x 1 y f x 1 f y,
元函数 t 在0,1 上为凸函数. (2) 设 x, y D, x y , 若 t 在 0,1 上 为 严 格 凸 函 数 , 则 f x 在 D 上为严格凸函数.
2020/3/1
16
该定理的几何意义是:凸函数上任意两点 之间的部分是一段向下凸的弧.
2020/3/1
L

x2 xn

凸集与凸函数的性质与应用

凸集与凸函数的性质与应用

凸集与凸函数的性质与应用凸集与凸函数是数学中两个非常重要的概念,它们在各个领域都有广泛的应用。

本文将围绕凸集与凸函数的性质展开讨论,并探讨它们在实际问题中的应用。

一、凸集的定义及性质1. 凸集的定义在数学中,一个集合称为凸集,如果对于集合中的任意两点,连接这两点的线段上的所有点也在该集合内部。

2. 凸集的性质(1)凸集的交集仍然是凸集。

即若集合A和集合B都是凸集,则它们的交集A∩B也是凸集。

(2)凸集的闭包仍然是凸集。

即若集合A是凸集,则它的闭包A 也是凸集。

(3)凸集的仿射变换仍然是凸集。

即若集合A是凸集,线性变换T将A的元素变换到B,B上的任意两点通过T来自A的元素,B也是凸集。

二、凸函数的定义及性质1. 凸函数的定义在实数域上,如果一个函数的定义域是凸集,并且满足对于任意一对定义域内的点x₁和x₂以及任意的x∈ [0,1],都有凸函数性质:x(xx₁+(1−x)x₂) ≤ xx(x₁)+(1−x)x(x₂)则该函数被称为凸函数。

2. 凸函数的性质(1)凸函数上的割线位于函数图像的下方或与之切线重合。

(2)凸函数的上、下半级集都是凸集。

即对于凸函数x(x),有以下性质:- x∈ℝ且x∈ℝ,x(x) ≤ x≤ x(x) 成立,则对于该函数来说,有x(x) ≤ x,其中x∈ [x, x]。

- 若x(x) ≤ x,则x(x) ≤ x,其中x∈ℝ。

三、凸集与凸函数的应用1. 最优化问题凸集与凸函数在最优化问题中有着广泛的应用。

凸函数的性质保证了在一定条件下的最优解存在且唯一。

在优化问题中,我们可以将目标函数设为凸函数,将约束条件设为凸集,从而利用凸函数的性质来求解最优解,简化了问题的求解过程。

2. 经济学凸集与凸函数在经济学中也有重要的应用。

例如,生产函数、效用函数等都是凸函数,它们描述了在一定约束下的最优决策。

同时,凸集与凸函数也被应用在市场均衡理论、优化分配问题等经济学中的重要概念和工具中。

3. 机器学习凸集与凸函数在机器学习中也占据重要地位。

凸函数的几种定义

凸函数的几种定义

凸函数的几种定义凸函数在优化和数学分析中有广泛的应用,其有多种定义,本文将介绍凸函数的几种定义。

1. 凸函数的一阶定义凸函数的一阶定义是指,定义域上的任意两个点之间的割线上,函数值的下凸性。

即对于定义在区间[a,b]上的函数f(x),如果对于所有的x1,x2∈[a,b],且x1<x2,都有f((x1+x2)/2)≤(f(x1)+f(x2))/2,那么f(x)为凸函数。

2. 凸函数的二阶定义凸函数的二阶定义是指,定义域上的所有点都满足函数的二阶导数大于或等于零。

即对于定义在区间[a,b]上的函数f(x),如果f''(x)≥0,那么f(x)为凸函数。

3. 凸函数的三阶定义凸函数的三阶定义是指,定义域上的所有点的曲率大于或等于零。

即对于定义在区间[a,b]上的函数f(x),如果其曲率f'''(x)≥0,那么f(x)为凸函数。

4. 凸函数的凸集定义凸函数的凸集定义是指,函数图像的下方区间所形成的区间也是凸集。

即对于定义在区间[a,b]上的函数f(x),如果其图像下方区间S={(x,y)| y≤f(x)}是凸集,并且S 在[a,b]上是凸的,那么f(x)为凸函数。

综上所述,凸函数的几种定义都指向了函数图像呈现的下凸性,即直线割过函数图像后位于函数图像下方的性质,其不同的定义方式体现了不同的性质和求解方法。

无论采用哪种定义方式,都需要考虑实际问题的特征和函数的定义域,以得到准确可靠的结果。

凸函数的性质有很多,例如在区间[a,b]上凸函数f(x)上,对于任意的x1,x2∈[a,b]和0≤λ≤1,都有f(λx1+(1−λ)x2)≤λf(x1)+(1−λ)f(x2),即凸函数的凸组合仍为凸函数。

此外,凸函数也有一些应用,例如在最优化问题中,将问题转化为凸函数求解可以更优effective。

然而,有些函数仅在部分定义域内为凸函数,而在另一部分定义域内则不是,因此在实际应用中必须慎重选择凸函数进行求解。

1-2凸集与凸函数解析

1-2凸集与凸函数解析

2018/12/15
10
例:试证线性函数是 Rn 上的凸函数
f x cT x c1 x1 c2 x2
证明 :设 x , y R, 0,1 ,则
T f x 1 y c x 1 y
cn x n
x 1 y 1 x 1 1 y 1
2 2
f x 1 y f x 1 f y
2
2
1 x y 0
因此 f x 在 , 上是严格凸函数.
若 x 是 S 中的一个极点,且有 x x1 1 x2 , 0,1 , 注:
x1 , x2 S ,则必有 x x1 x2 .
例3:D x R n x aa 0 , 则 x a
上的点均为极点.
2018/12/15
7
证:设 x a , 若存在 y , z D 及 0,1 , 使得 x y 1 z , 则:
T
y R 表示 y 轴上的点.
则 D1 D2 表示两个轴的所有点, 它不是凸集; 而 D1 D2 R 2 凸集.
2018/12/15
5
推论: 设 Di , i 1, 2,
, m 是凸集, 则
D
i 1 i
m
i
也是凸集, 其中 i 是实数.
定义1.2:设 xi D , i 1, 2,
2018/12/15
8
三、凸函数
定义 1.4: 设函数 f x 定义在凸集 D Rn 上 , 若对任意的
x , y D, 0,1 ,都有 :

凸集和凸函数

凸集和凸函数

凸集和凸函数凸集和凸函数是数学中一些重要的概念。

它们的应用范围广泛,涉及到诸如优化、几何学、经济学、物理学等领域。

本文将分步骤阐述凸集和凸函数的定义、性质及应用。

一、凸集的定义和性质凸集是指在欧几里得空间中,对于其中的任意两点,它们之间的连线都落在该集合内。

换句话说,凸集中的任何一条线段都是完全落在凸集内的。

要说明集合是凸的,需要证明其满足如下两个条件:①对于其中的任意两点x和y,它们之间的任意一个点z,都应该满足z=λx+(1-λ)y(其中0≤λ≤1);②该集合是一个凸组合的闭包。

凸集有以下性质:1. 任意两个凸集的交集也是凸集;2. 凸集的闭包是凸集;3. 凸集的凸壳是凸集;4. 凸集的极小凸包是凸集;5. 凸集是连通的。

二、凸函数的定义和性质凸函数是指在函数图像下方的区域是凸集。

凸函数有以下几个特征:1. 任意两个点的线段都落在函数图像下方;2. 函数的一阶导数递增或数值非负;3. 函数的二阶导数数值非负。

凸函数具有以下性质:1. 任意两个凸函数的和是一个凸函数;2. 凸函数的下凸包是凸函数;3. 凸函数的上凸包是凸函数;4. 若函数f在定义域D内是凸的,那么其上任意一点的全体支撑线构成的集合是非空凸集。

在实际应用中,凸函数可用于优化问题、光学物理等方面。

因为凸函数有唯一的最小值和全局最小值,这种性质对于优化问题非常重要。

光学物理中,利用凸函数可对某些照明系统进行设计。

三、凸集和凸函数的应用凸集和凸函数的应用非常广泛。

它们在很多领域都得到了充分的应用,下面将简单介绍一些常见应用:1. 最优化问题。

凸函数有唯一的最小值和全局最小值,因此可以用于优化问题中,如线性规划、非线性规划等。

2. 几何形状分析。

凸集的定义是指一个区域内的两点连线都在该区域内,因此凸集可以用于分析几何形状。

3. 光学物理。

利用凸函数可以对光学系统进行设计,尤其是在非均匀照明下平均照度问题的解决中可以应用到凸函数。

4. 机器学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
二、极点
定义1.3 定义1.3 设 D为凸集, D, 若 D 中不存在 x∈ 为凸集,
两个相异的点 y, z 及某一实数 λ ∈( 0,1) 使得 x = λ y + (1 λ) z , 则称 x 为 D 的极点. 极点.
一个极点 极点,且有 注: x 是 S 中的一个极点 且有 x = λ x1 + ( 1 λ ) x2 , λ ∈ ( 0,1) , 若
2010-8-21
17
一阶判别条件
可微,则 定理 1.2: 设在凸集 D R n 上 f ( x ) 可微 则 : f ( x ) 在 D 上为 都有: 凸函数的充要条件是对 x , y ∈ D ,都有 都有
f ( y ) ≥ f ( x ) + f ( x )
T
( y x)
严格凸函数 充要条件) 凸函数(充要条件 定理 1.3: 严格凸函数 充要条件
则称 f ( x ) 为凸集 D 上的凸函数 。 上的凸函数 凸函数。
定义1.5 严格凸函数 定义
定义中 不等式反向 可以得到 函数的定义。 反向,可以得到凹 注:将上述定义中的不等式反向 可以得到凹函数的定义。 将上述定义
严格凸 例 : 设 f ( x ) = ( x 1) ,试 证明 f ( x ) 在 ( ∞ , +∞ ) 上 是 严格 凸 试
2 f x12 2 f 2 G ( x ) = f ( x ) = x2 x1 M 2 f x x n 1
2 f x1 x2 2 f 2 x 2 M 2 f x n x 2
2 f L x1 xn
2 f L x 2 x n M M 2 f L 2 x n
2010-8-21
11
凸函数的几何性质 对一元函数 f ( x ) ,在几何上 λ f ( x1 ) + ( 1 λ ) f ( x2 ) , 在几何上
λ ∈ [ 0,1] 表示连接 ( x1 , f ( x1 ) ) , ( x2 , f ( x2 ) ) 的线段 .
值.
f ( λ x1 + ( 1 λ ) x2 ) 表示在点 λ x1 + ( 1 λ ) x2 处的函数
(2) 设 D R n 为 凸集 f ( x ) 为 D 上 的 严格 凸函数 且 凸 规划 凸集, 严格凸函数 凸函数,且 全局极小点 极小点存在 全局极小点 唯一的 极小点是 问题 min f ( x ) 的全局极小点存在,则全局极小点是唯一的.
x∈D
2010-8-21
21
(2) 设 x , y ∈ D, x ≠ y , 若 ( t ) 在 [ 0,1] 上 为 严 格 凸 函 数 , 则
f ( x ) 在 D 上为严格凸函数. 严格凸函数
2010-8-21
16
该定理的几何意义是: 该定理的几何意义是:凸函数上任意两点 间的部分是一段向下凸的弧. 之间的部分是一段向下凸的弧
a = x
2 2
= λ y + (1 λ) z, λ y + (1 λ) z
y + (1 λ)
2 2
≤λ
2
z
2
+ 2λ (1 λ) y z
≤ a2
不等式要取等号, 不等式要取等号,必须 y = z = a, 且 y, z = y z , 容易证明 y = z = x , 为极点. 根据定义可知 x 为极点.
2010-8-21
18
二阶判别条件
二阶可微,则 定理 1.4: 设在开凸集 D R n 内 f ( x ) 二阶可微 则 (1) f ( x ) 是 D 内 凸 函 数 的 充 要 条 件 为 : 对 x ∈ D, f ( x ) 的
Hesse 矩阵半正定 其中 矩阵半正定.其中
2010-8-21
x1 , x2 ∈ S ,则必有 x = x1 = x2 .
例3:D = {x ∈Rn x ≤ a}(a > 0), 则 x = a 上的点均为极点. 上的点均为极点.
2010-8-21
7
证:设 x = a, 若存在 y, z ∈ D 及 λ ∈( 0,1) , 使得 x = λ y + (1 λ) z , 则:
所以一元凸函数表示连接函数图形上任意两点的线段 所以一元凸函数表示连接函数图形上任意两点 的线段 总是位于曲线弧的上方. 总是位于曲线弧的上方.
2010-8-21
12
2010-8-21
13
(1)设 f ( x ) 是凸集 D R n 上的凸函数 实数 k ≥ 0 ,则 kf ( x ) 也 设 凸函数,实数 则 凸函数. 是 D 上的凸函数
2
函数. 函数
2010-8-21
9
证明: 证明 设 x , y ∈ R ,且 x ≠ y , λ ∈ ( 0,1) ,都有 且 都有
= ( λ x + ( 1 λ ) y 1) λ ( x 1) ( 1 λ ) ( y 1)
2 2
f ( λ x + (1 λ ) y ) ( λ f ( x ) + (1 λ ) f ( y ) )
§1.2 凸集与凸函数
2010-8-21
1
一、凸集
定义1.1 定义1.1 设集合 D Rn , 若对于任意两点
x , y ∈ D, 及实数 λ ( 0 ≤ λ ≤ 1) , 都有: 都有:
λx + (1 λ) y ∈ D
凸集. 则称集合 D 为凸集. 注:常见的凸集:空集,整个欧氏空间 Rn 常见的凸集:空集, 常见的凸集 超平面: 超平面: = {x ∈Rn a1x1 + a2 x2 +L+ an xn = b} H
2010-8-21
半空间: 半空间: + = {x ∈Rn a1x1 + a2 x2 +L+ an xn ≥ b} H
2
为凸集. 例 1: 证明超球 x ≤ r 为凸集.
0 证明: 设 为超球中的任意两点, 证明: x, y 为超球中的任意两点, ≤ λ ≤ 1,
则有: 则有:
λx + (1 λ) y
2010-8-21
15
凸函数的判定
定 理 1.1: 设 f ( x ) 是 定 义 在 凸 集 D R n 上 , x , y ∈ D , 令
( t ) = f ( tx + ( 1 t ) y ) , t ∈ [ 0,1] , 则 :
(1) f ( x ) 是凸集 D 上的凸函数的充要条件是对 x , y ∈ D ,一 一 凸函数. 元函数 ( t ) 在 [ 0,1] 上为凸函数
i =1
m
,2, 定义1.2: 定义1.2:设 xi ∈ D, i = 1 L, m, 实数 ai ≥ 0,
∑a
i =1
m
i
= 1,
则 x = ∑ai xi , 称为 xi , i = 1,2,L, m,
i =1
m
凸组合. 的凸组合 注: 凸集中任意有限个点的凸组合仍然在该 凸集中. 凸集中.
2010-8-21
f λ x + ( 1 λ ) y = cT λ x + ( 1 λ ) y
= λ cT x + ( 1 λ ) cT y = λ f ( x ) + ( 1 λ ) f ( y )
凸函数. 所以 c T x 是凸函数
类似可以证明 cT x 是凹函数. 类似可以证明 函数 可以
19
(2)若在 D 内 G ( x ) 正定 则 f ( x ) 在 D 内是严格凸函数 若 正定,则 凸函数.
反之不成立. 注:反之不成立.
显然是 严格凸 但 不是正 例 : f ( x ) = x 4 显然 是 严格 凸 的 ,但 在 点 x = 0 处 G ( x ) 不是 正 定的.
二、凸规划
为凸集, 上的凸函数,则称规划 定义 1.6: 设 D R n 为凸集 f ( x ) 为 D 上的凸函数 则称规划 为凸规划问题. 问题 min f ( x ) 为凸规划问题
x∈D
2010-8-21
20
定 理 1.5: (1)凸规划问题的任一局部极小点 x 是全局极小点 凸规划问题的任一局部极小点 是全局极小点, 全体极小点组成凸集. 全体极小点组成凸集
凸函数的性质
S ( f , β ) = x x ∈ D , f ( x ) ≤ β 是凸 集.
{
}
2010-8-21
14
下面的 图形给出了 给出了凸函数 下面 的 图形 给出了 凸函数 f ( x , y ) = x 4 + 3 x 2 + y 4 + y 2 + xy 可以看出水平集是 的等值线的图形 可以看出水平集是凸集. 等值线的图形,可以看出水平集
≤ λ x + (1 λ) y
≤ λr + (1 λ) r = r 即点 λx + (1 λ) y 属于超球
所以超球为凸集. 所以超球为凸集.
2010-8-21
3
凸集的性质
有限个(可以改成无限) (1) 有限个(可以改成无限)凸集的交集 为凸集. 为凸集. β 是凸集, 是一实数, (2) 设 D 是凸集, 是一实数, 则下面的 集合是凸集: 集合是凸集: D = {y y = βx, x ∈D} β 是凸集, (3)设 D , D2 是凸集, D , D2 的和集 则 1 1
2010-8-21
8
三、凸函数
定义 1.4: 设函数 f ( x ) 定义在凸集 D R n 上 ,若对任意的 若对任意的 都有: 都有 x , y ∈ D , λ ∈ [ 0,1] ,都有
f ( λ x + (1 λ ) y ) ≤ λ f ( x ) + (1 λ ) f ( y ) ,
相关文档
最新文档