三向应力状态
合集下载
三向应力状态简介

2 1
m m
2 m
1 m
3
m
3 m
m
1
2
3
3
变 形3 比(1 能=2 体)积 改1 变 比能2+ 形状3改变比m 能
u E = uv 3+
uK f CL10TU41
u 2 1 E1 2 2 2 3 2 2 (12 23 31 )
uv
3(12)
2E
2m
1 6E 2(123)2
uf uuv
1 6 2E ( 1 1 2 ) 2 m(2 m 3 ) 2 (3 1 1 ) 2 m
变为 0,则外力偶m=?
m
CL10mTU60
解:(1)将应变片贴于与母线成45°角的外表面上
(2) 1 ,2 0 ,3
1E 11(23) max
min
1
E
1
E
m
d3
0
16
m d 3E 0 16(1 )
例:钢制封闭圆筒,在最大内压作用下测 得圆筒表面任一点的εx=1.5×10-4。已知 E=200GPa,μ=0.25,[σ]=160MPa,按第 三强度理论校核圆筒的强度。
y x
CL10TU61
解:y 2x
xE 1(xy)1.5104
由上两式可求得 x 6 0 M P a , y 1 2 0 M P a
故 1 1 2 0 M P a , 2 6 0 M P a , 3 0
r 3 1 3 1 2 0 M P a < [] y
1
至于与三个主方向都不平行的任意斜截面, 弹性力学中已证明,其应力σn和τn可由图中阴 影面内某点的坐标来表示。
3
2
1
应力状态概述二向和三向应力状态的实例二向

2.作应力圆 主应力为 1 , 3 ,并可 确定主平面的法线。
材料力学
第七章
应力和应变分析
3.分析 纯剪切应力状态的两个主应力绝对值相等, 但一为拉应力,另一为压应力。由于铸铁抗拉强度较 低,圆截面铸铁构件扭转时构件将沿倾角为 45º 的螺旋面因拉伸而发生断裂破坏。
材料力学
第七章
2 2
x y
xy
n
材料力学
y a xy
y On D( x , ) a a
a
第七章
n
应力和应变分析
二、应力圆的画法
建立应力坐标系,如下图所 示,(注意选好比例尺) 在坐标系内画出点A( x, xy)和B(y,yx)
x
C O
2a
AB与a 轴的交点C便是圆 A( x , xy) 心。
150°
第七章
应力和应变分析
x y 2 2 1 x y ( ) xy 2 2 2
解法2—解析法:分析——建立坐标系如图
95
60°
y 45MP a yx 25 3MP a xy
25 3
x ?
y O x
60 95MPa 60 25 3MPa
材料力学
第七章
应力和应变分析
应力表示——单元体:
①dx、dy、dz(微小的正六面体) ②单元体某斜截面上的应力就代表了构件内 对应点同方位截面上的应力。
B P
dz
dx
dy
A
C
பைடு நூலகம்
B
D
C
B、C——单向受力,τ =0 A——纯剪切, σ =0
D
D——既有 σ ,又有τ
应力状态与强度理论

理论理论能很好的解释石料或混凝土等脆性材 料受轴向压缩时的断裂破坏。
3、最大剪应力理论(第三强度理论):
理论认为最大剪应力是引起塑性屈服的主要 因素,只要最大剪应力τmax达到与材料性质 有关的某一极限值,材料就发生屈服。
单向拉伸下,当与轴线成45。的斜截面上的
τmax= s/2时
任意应力状态下
莫尔强度条件为:
1
Байду номын сангаас
t c
3
t
对于拉压强度不同的脆性材料,如铸铁、 岩石和土体等,在以压为主的应力状态下, 该理论与试验结果符合的较好。
综合以上强度理论所建立的强度条件, 可以写出统一的形式: σr≤[σ]
σr称为相当应力
r1 1
r2 1 2 3
r3 1 3
r4
1 2
理论理论能很好的解释石料或混凝土等脆性材 料受轴向压缩时,沿纵向发生的断裂破坏。
2、最大伸长线应变理论(第二强度理论):
理论认为最大伸长线应变是引起断裂的主要因素。
拉断时伸长线应变的极限值为
断裂准则为:
1
1 E
1
2
11
b
E
3
1 2 3 b
第二强度理论的强度条件:
1 2 3
max
1 3
2
屈服准则: 1 3 s
2
2
1 3 s
第三强度理论建立的强度条件为:
1 3
在机械和钢结构设计中常用此理论。
4、形状改变比能理论(第四强度理论):
第四强度理论认为: 形状改变比能是引起塑性屈服的主要因素。
单向拉伸时,
1
3E
s
2的形状改变比能。
三向应力状态简介

动力应力状态
动力应力状态是指岩体在受 到周期性或非周期性的外力 作用时,其内部应力不断发
生变化的状态。
动力应力状态通常由地震、 车辆振动、机器振动等动态 因素引起,其特点是各向应 力随时间变化,岩体可能发
生动态变形或破坏。
在动力应力状态下,岩体内 部应力的分布和大小均随时 间变化,需要采取相应的减 震、隔震措施以减小岩体的 动态响应。
发展多尺度、跨层次的理论模型
结合微观、细观和宏观尺度,研究三向应力状态下材料在不同尺度上的响应和演化规律。
探索复杂环境因素对三向应力状态的影响
考虑温度、湿度、化学环境等复杂因素,建立更为真实的理论模型,以模拟实际工程中 的复杂应力状态。
实验技术的发展
开发高精度、高分辨率的实验测试技术
发展新型传感器和测量方法,提高对三向应力状态的测量精度和可靠性。
03 三向应力状态的影响因素
地质构造
地质构造是影响三向应力状态的重要 因素之一。地壳中的板块运动、断层 活动、褶皱等地质构造过程会导致岩 层中应力的变化,从而影响三向应力 状态。
不同地区的地质构造特征不同,因此 三向应力状态也会存在差异。例如, 在板块边界、断裂带等地区,岩层中 的应力通常较高,而在盆地、平原等 地区则较低。
03
在地下工程中,三向应力状态可用于分析隧道、地下洞室等结构的稳定性,预 测结构变形和破坏的可能性。
石油工程
石油工程是研究石油和天然气的勘探 、开发和生产的科学,三向应力状态 在石油工程中具有重要应用。在石油 工程中,三向应力状态是指地层中的 岩石在三个方向的应力作用下处于平 衡状态。
在石油工程中,三向应力状态可用于 分析地层的稳定性、预测地层破裂的 可能性以及评估地层压力。例如,在 钻井工程中,三向应力状态可用于分 析井壁的稳定性,预测井壁坍塌的可 能性。
第九章三向应力状态(6,7,8)

1 2 2 2 1 2 2 3 3 1 2 这个理论比第三强度理论更符合已有的一些 平面应力状态下的试验结果,但在工程实践中多 半采用计算较为简便的第三强度理论。
(5) 强度理论的相当应力
上述四个强度理论所建立的强度条件可统一写 作如下形式:
影响材料的脆性和塑性的因素很多,例如低温能提 高脆性,高温一般能提高塑性; 在高速动载荷作用下 脆性提高,在低速静载荷作用下保持塑性。 无论是塑性材料或脆性材料:
在三向拉应力接近相等的情况下,都以断裂的形式破坏, 所以应采用最大拉应力理论;
在三向压应力接近相等的情况下,都可以引起塑性变形, 所以应该采用第三或第四强度理论。
于是,第四强度理论的屈服判据为 vd vdu
1 vd ( 1 2 ) 2 ( 2 3 ) 2 ( 3 1 ) 2 6E
对于由单轴拉伸试验可测定屈服极限s的材料,注 意到试验中1= s, 2=3=0,而相应的形状改 变能密度的极限值为 1 vdu 2 s2 6E 故屈服判据可写为
1 1 E 1 ( 2 3) 1 2 ( 3 1) 2 E 3 1 3 ( 1 2) E
1 2 2 2 v 1 2 3 2 ( 1 2 2 3 3 1 ) 2E
1 1 2 2 2 1 2 2 3 3 1 2 s2 62 1 2 2 3 3 1 s 2 此式中,1、2、3是构成危险点处的三个主应力, 相应的强度条件则为
§9-7 强度理论及其相当应力
一、强度理论的概念
(5) 强度理论的相当应力
上述四个强度理论所建立的强度条件可统一写 作如下形式:
影响材料的脆性和塑性的因素很多,例如低温能提 高脆性,高温一般能提高塑性; 在高速动载荷作用下 脆性提高,在低速静载荷作用下保持塑性。 无论是塑性材料或脆性材料:
在三向拉应力接近相等的情况下,都以断裂的形式破坏, 所以应采用最大拉应力理论;
在三向压应力接近相等的情况下,都可以引起塑性变形, 所以应该采用第三或第四强度理论。
于是,第四强度理论的屈服判据为 vd vdu
1 vd ( 1 2 ) 2 ( 2 3 ) 2 ( 3 1 ) 2 6E
对于由单轴拉伸试验可测定屈服极限s的材料,注 意到试验中1= s, 2=3=0,而相应的形状改 变能密度的极限值为 1 vdu 2 s2 6E 故屈服判据可写为
1 1 E 1 ( 2 3) 1 2 ( 3 1) 2 E 3 1 3 ( 1 2) E
1 2 2 2 v 1 2 3 2 ( 1 2 2 3 3 1 ) 2E
1 1 2 2 2 1 2 2 3 3 1 2 s2 62 1 2 2 3 3 1 s 2 此式中,1、2、3是构成危险点处的三个主应力, 相应的强度条件则为
§9-7 强度理论及其相当应力
一、强度理论的概念
三向应力

z
s z s 30 s 120 ) (
我们应该把X,Y,Z理解 成任意三个垂直的方向
特例(主单元体)
s
2
s3
s1
s
2
s1
1 2 3
1 E 1 E 1 E (s 1 s 2 ) (s s 1 )
s1
1 2 3
1 E 1 E 1 E (s 1 0 )
xy
2 xy
x y
例: 已知一点在某一平面内的 1、 2、 3、方向上的应变 1、
2、 3,三个线应变,求该面内的主应变。
解:由
x cos i y sin i
2 2
i
xy
sin i cos i
i =1,2,3这三个方程求出 x, y, x y;然后在求主应变。
2
co s 2
xy
2
sin 2
x y
2
sin 2
y
xy
2
co s 2
2 s x s t
2
s
s x s
s x s
2
y
cos 2 t xy sin 2
y
sin 2 t xy cos 2
二、应变分析图解法——应变圆( Strain Circle)
1) x1 方 向 的 线 应 变 ; .沿 2)x1 y 1角 的 剪 应 变 。 .
dx
f ( x , y , z , xy , ) g ( x , y , z , xy , )
y1
y
x1
dy
三向应力状态简介

变形比能: 1 u 2
2
1 1 1 u 1 1 2 2 3 3 2 2 2
1 3
变形比能: 1 1 1 u 1 1 2 2 3 3 2 2 2
1 2 2 1 2 2 3 2 ( 1 2 2 3 3 1 ) 2E 1
例:求图示应力状态的主应力和最大剪应力
(应力单位为MPa)。
解: 1 50MPa
2 50MPa 3 50MPa max 1 3
2 50MPa
CL10TU33
例:求图示应力状态的主应力和最大剪应力
(应力单位为MPa)。
CL10TU34
解:
120 40 2 2
3(1 2 ) 2 1 2 2 m ( 1 2 3 ) uv 2E 6E
u f u uv
12 2 2 2 m ( 1 2 ) ( 2 3 ) ( 3 1 ) 6E
m
1 2 3
3
3 ( 1 2 ) 1 2 3 m 变形比能 = 体积改变比能 + 形状改变比能 E 3 K u = u + u
v
f CL10TU41
1 2 2 u 1 2 2 3 2 ( 1 2 2 3 3 1 ) 2E
1 式中:
E 1 体积弹性模量 K 3 (12 2 ) 2 ( 3 1 ) E 1 2 3 m 1 3 3 ( 1 2 ) 3 E 当 05 . 时, 0
2
3 1
1 3
第九章应力状态(3,4,5)

s
3
e3
1 E
s
3
s 1
s 2
例 9-17
边长a =0.1 m的铜质立方体,置于刚性很大的 钢块中的凹坑内(图a),钢块与凹坑之间无间隙。 试求当铜块受均匀分布于顶面的竖向荷载F =300 kN时,铜块内的主应力,最大切应力,以及铜块 的体应变。已知铜的弹性模量E =100 GPa,泊松比
1 2
E
sx sy sz
思考: 各向同性材料制成的构件内一点处,
三个主应力为s1=30 MPa,s2=10 MPa,s3=-40
MPa。现从该点处以平行于主应力的截面取出边 长均为a的单元体,试问:(1) 变形后该单元体的 体积有无变化?(2) 变形后该单元体的三个边长之 比有无变化?
弹性,小变形条件下可以
应用叠加原理,故知x方 向的线应变与正应力之
间的关系为
e x
sx
E
sy
E
sz
E
1 E
sx
sy
sz
同理有
e y
1 E
s
y
s x
s z ,e z
1 E
sz
sx
s
最一般表现形式的空间应力状态中有9个应力
分量,但根据切应力互等定理有txy=tyx,tyz=tzy , txz=tzx,因而独立的应力分量为6个,即sx、sy、sz、 tyx、tzy、tzx。
当空间应力状态的三个主应
力s1、s2、s3已知时(图a),与
任何一个主平面垂直的那些斜截
面(即平行于该主平面上主应力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
min
例7-1 试求中所示单元体的主应力和最大剪应力。 (1)求主应力
x 10MPa, y 30MPa, x 20MPa max x + y x - y 2 + x 2 2 min
10 + 30 10 - 30 + 202 2 2 + 42.4MPa( 拉 应 力 ) - 2.4MPa( 压 应 力 )
2 2
a 0对应 max
x + y
2
a 0 + 90 对应 min
x + y
2
三、最大和最小剪应力
d a 0 da
2
x - y
2
cos 2a - 2 xy sin 2a 0
x - y tg 2a 2 xy
max
x - y 2 + + xy 2 x - y 2 - 2 + xy
3
a 0 12143'
3
(2)求最大剪应力
1 42.4 2 0 MPa - 2.4 3
1
(a)
max
1 - 3
2
22 .4 MPa
3、 纯剪切应力状态
- 2 x tg 2a 0 - x - y
a0 135
五、不等于零的情况。
二向应力状态:三对主应力中有两对主应力不等
于零的情况。
三向应力状态:三对主应力皆不等于零的情况。
7-2 平面应力状态分析—解析法
一、斜截面上的应力
已知:单元体 x,y,xyyx, a 研究与z轴平行的任一斜截面c e上的应力。 符号规则: q 角:从x轴正方向反时针转至斜截面的 外法线方向为正,反之为负。 正应力:拉为正,压为负。 剪应力:使微元体或其局部产生顺时针方 向转动趋势者为正,反之为负。
力状态,相应强度条件为:
max max
实际问题:杆件的危险点处于更复杂的
受力状态
薄壁圆筒承受内压
t
x
破坏现象
脆性材料受压 和受扭破坏
钢筋混凝土梁
二、一点的应力状态
在受力构件内,在通过 同一点各个不同方位的 截面上,应力的大小和 方向是随截面的方位不 同而按照一定的规律变 化 通过构件内某一点的各 个不同方位的截面上的 应力及其相互关系,称 为点的应力状态
第十章 应力状态 分析
● 应力状态的概念 ● 平面应力状态分析的解析法
7- 1 应力状态的概念 一、问题的提出
杆件在基本变形时横截面上应力的 分布规律
轴向拉压:
N A
圆轴扭转:
M
n
p
I
平面弯曲:
My Iz
QS z bI z
危险点处于单向应力状态或处于纯剪应
0
45 a0
0
1
2
135
3 -
max x + y x - y 2 + x 2 2 min
x
max 1 x min 3 - x
此现象称为纯剪切
7-3 空间应力状态
N0 a dA+( xy dAcosa)sina-(x dAcosa)cosa +( yx dAsina)cosa-(y dAsina)sina0 T=0 a dA-(xy dAcosa)cosa-(x dAcosa)sina +(yx dAsina)sina+(y dAsina)cosa0
三、研究方法:取单元体
单元体:微小的正六面体
原始单元体:单元体各侧面上应力均已知
纯剪单元体:单元体各侧面上只有剪应力 ,没有正应力。
主单元体:单元 体各侧面上只有正应力, 没有剪应力。
四、主平面 主应力 主方向
主平面:单元体中剪应力等于零的平面 主应力:主平面上的正应力
主方向:主平面的法线方向
-
sin 2a - xy cos 2a
a + x + y C
结论:两个相互垂直的截面正应力之和为常数 2、比较a 、 : a = - 结论:在相互垂直的两截面上的剪应力数值相 等,它们的方向是共同指向或背离这个 平面的交线(剪应力互等定理)
二、主应力
1、空间应力状态的概念
三个主应力均不为零
2、最大正应力和最大剪应力
max 1 1 - 3 max
2
3、广义虎克定律
单向应力状态下有
由 1引 起 的 应 变 1
1
E
纵向应变 E 横 向 应 变 - - E
- 由 2引 起 的 应 变 1
a a
x + y 2 x - y 2
+
x - y 2
cos 2a - xy sin 2a
sin 2a + xy cos 2a
讨论
1 、90o + a
x + y 2 x - y 2 x - y 2 cos 2a + xy sin 2a
2 2
(a)
1 42.4 2 0 MPa - 2.4 3
确定主平面的位置
- 2 x - 2 20 tg 2a 0 2 x - y 10 - 30
2a 0
在第三象限
2a0 180 + 63 26
最大主应力位置
1
a0
d a 0 da
-2
x - y
2
sin 2a - 2 xy cos 2a 0
2 xy
a 0
主方向tg 2a -
x - y
tg 2a 0
- 2 xy
x - y
x - y 2 + + xy 2 x - y 2 - + xy 2
2
min
例7-1 试求中所示单元体的主应力和最大剪应力。 (1)求主应力
x 10MPa, y 30MPa, x 20MPa max x + y x - y 2 + x 2 2 min
10 + 30 10 - 30 + 202 2 2 + 42.4MPa( 拉 应 力 ) - 2.4MPa( 压 应 力 )
2 2
a 0对应 max
x + y
2
a 0 + 90 对应 min
x + y
2
三、最大和最小剪应力
d a 0 da
2
x - y
2
cos 2a - 2 xy sin 2a 0
x - y tg 2a 2 xy
max
x - y 2 + + xy 2 x - y 2 - 2 + xy
3
a 0 12143'
3
(2)求最大剪应力
1 42.4 2 0 MPa - 2.4 3
1
(a)
max
1 - 3
2
22 .4 MPa
3、 纯剪切应力状态
- 2 x tg 2a 0 - x - y
a0 135
五、不等于零的情况。
二向应力状态:三对主应力中有两对主应力不等
于零的情况。
三向应力状态:三对主应力皆不等于零的情况。
7-2 平面应力状态分析—解析法
一、斜截面上的应力
已知:单元体 x,y,xyyx, a 研究与z轴平行的任一斜截面c e上的应力。 符号规则: q 角:从x轴正方向反时针转至斜截面的 外法线方向为正,反之为负。 正应力:拉为正,压为负。 剪应力:使微元体或其局部产生顺时针方 向转动趋势者为正,反之为负。
力状态,相应强度条件为:
max max
实际问题:杆件的危险点处于更复杂的
受力状态
薄壁圆筒承受内压
t
x
破坏现象
脆性材料受压 和受扭破坏
钢筋混凝土梁
二、一点的应力状态
在受力构件内,在通过 同一点各个不同方位的 截面上,应力的大小和 方向是随截面的方位不 同而按照一定的规律变 化 通过构件内某一点的各 个不同方位的截面上的 应力及其相互关系,称 为点的应力状态
第十章 应力状态 分析
● 应力状态的概念 ● 平面应力状态分析的解析法
7- 1 应力状态的概念 一、问题的提出
杆件在基本变形时横截面上应力的 分布规律
轴向拉压:
N A
圆轴扭转:
M
n
p
I
平面弯曲:
My Iz
QS z bI z
危险点处于单向应力状态或处于纯剪应
0
45 a0
0
1
2
135
3 -
max x + y x - y 2 + x 2 2 min
x
max 1 x min 3 - x
此现象称为纯剪切
7-3 空间应力状态
N0 a dA+( xy dAcosa)sina-(x dAcosa)cosa +( yx dAsina)cosa-(y dAsina)sina0 T=0 a dA-(xy dAcosa)cosa-(x dAcosa)sina +(yx dAsina)sina+(y dAsina)cosa0
三、研究方法:取单元体
单元体:微小的正六面体
原始单元体:单元体各侧面上应力均已知
纯剪单元体:单元体各侧面上只有剪应力 ,没有正应力。
主单元体:单元 体各侧面上只有正应力, 没有剪应力。
四、主平面 主应力 主方向
主平面:单元体中剪应力等于零的平面 主应力:主平面上的正应力
主方向:主平面的法线方向
-
sin 2a - xy cos 2a
a + x + y C
结论:两个相互垂直的截面正应力之和为常数 2、比较a 、 : a = - 结论:在相互垂直的两截面上的剪应力数值相 等,它们的方向是共同指向或背离这个 平面的交线(剪应力互等定理)
二、主应力
1、空间应力状态的概念
三个主应力均不为零
2、最大正应力和最大剪应力
max 1 1 - 3 max
2
3、广义虎克定律
单向应力状态下有
由 1引 起 的 应 变 1
1
E
纵向应变 E 横 向 应 变 - - E
- 由 2引 起 的 应 变 1
a a
x + y 2 x - y 2
+
x - y 2
cos 2a - xy sin 2a
sin 2a + xy cos 2a
讨论
1 、90o + a
x + y 2 x - y 2 x - y 2 cos 2a + xy sin 2a
2 2
(a)
1 42.4 2 0 MPa - 2.4 3
确定主平面的位置
- 2 x - 2 20 tg 2a 0 2 x - y 10 - 30
2a 0
在第三象限
2a0 180 + 63 26
最大主应力位置
1
a0
d a 0 da
-2
x - y
2
sin 2a - 2 xy cos 2a 0
2 xy
a 0
主方向tg 2a -
x - y
tg 2a 0
- 2 xy
x - y
x - y 2 + + xy 2 x - y 2 - + xy 2