三向应力状态简介

合集下载

应力状态概述二向和三向应力状态的实例二向

应力状态概述二向和三向应力状态的实例二向

2.作应力圆 主应力为 1 , 3 ,并可 确定主平面的法线。
材料力学
第七章
应力和应变分析
3.分析 纯剪切应力状态的两个主应力绝对值相等, 但一为拉应力,另一为压应力。由于铸铁抗拉强度较 低,圆截面铸铁构件扭转时构件将沿倾角为 45º 的螺旋面因拉伸而发生断裂破坏。
材料力学
第七章
2 2
x y
xy

n

材料力学
y a xy
y On D( x , ) a a
a
第七章
n
应力和应变分析
二、应力圆的画法
建立应力坐标系,如下图所 示,(注意选好比例尺) 在坐标系内画出点A( x, xy)和B(y,yx)

x
C O
2a
AB与a 轴的交点C便是圆 A( x , xy) 心。
150°
第七章
应力和应变分析
x y 2 2 1 x y ( ) xy 2 2 2
解法2—解析法:分析——建立坐标系如图
95
60°
y 45MP a yx 25 3MP a xy
25 3
x ?
y O x
60 95MPa 60 25 3MPa
材料力学
第七章
应力和应变分析
应力表示——单元体:
①dx、dy、dz(微小的正六面体) ②单元体某斜截面上的应力就代表了构件内 对应点同方位截面上的应力。
B P
dz
dx
dy
A
C
பைடு நூலகம்
B
D
C
B、C——单向受力,τ =0 A——纯剪切, σ =0
D
D——既有 σ ,又有τ

三向应力状态

三向应力状态
2
2
min
例7-1 试求中所示单元体的主应力和最大剪应力。 (1)求主应力
x 10MPa, y 30MPa, x 20MPa max x + y x - y 2 + x 2 2 min
10 + 30 10 - 30 + 202 2 2 + 42.4MPa( 拉 应 力 ) - 2.4MPa( 压 应 力 )
2 2
a 0对应 max
x + y
2
a 0 + 90 对应 min

x + y
2
三、最大和最小剪应力
d a 0 da
2
x - y
2
cos 2a - 2 xy sin 2a 0
x - y tg 2a 2 xy
max
x - y 2 + + xy 2 x - y 2 - 2 + xy
3
a 0 12143'
3
(2)求最大剪应力
1 42.4 2 0 MPa - 2.4 3
1
(a)
max
1 - 3
2
22 .4 MPa
3、 纯剪切应力状态
- 2 x tg 2a 0 - x - y
a0 135
五、不等于零的情况。
二向应力状态:三对主应力中有两对主应力不等
于零的情况。
三向应力状态:三对主应力皆不等于零的情况。
7-2 平面应力状态分析—解析法
一、斜截面上的应力
已知:单元体 x,y,xyyx, a 研究与z轴平行的任一斜截面c e上的应力。 符号规则: q 角:从x轴正方向反时针转至斜截面的 外法线方向为正,反之为负。 正应力:拉为正,压为负。 剪应力:使微元体或其局部产生顺时针方 向转动趋势者为正,反之为负。

8-1三向应力

8-1三向应力

n
0
x
A x ( A cos ) cos
+ xy ( A cos ) sin + yx ( A sin ) cos y ( A sin ) sin 0


n
xy

dA
yx
y
F 0
t
A + x ( A cos ) sin + xy ( A cos ) cos yx ( A sin ) sin
3
Mz x Wz
3
圆杆受扭转和拉伸共同作用
m
P P m


N 4P 2 A pd T 16 m 3 Wt p d
§8-2
平面应力状态下的应力分析
y y
y
yx xy
y y
x
x
x
x x
一、解析法
y
y
x
x
y
n

x
x x
y
y
x

x
平面,分别作用着最大和最小剪应力
max min
x y 2 + x 2
2
2 x tan 2 0 x y
由:
x y tan 2 1 2 x
1 tan 2 1 ctg 2 0 tan 2 0
2 1 2 0 + 90 即 1 0 + 45
(刚好是剪应力为零 的截面)
max
min
x + y x y 2 2
y
2 + xy
2
2 或 i )当 x2 y时, 则0 max ,0 +

三向应力状态简介

三向应力状态简介

例:填空题。
危险点接近于三向均匀受拉的塑性材料,应选用
破坏形式为

第一
脆性断裂
强度理论进行计算,因为此时材料的
例:选择题。 纯剪切应力状态下,各向同性材料单元体的体积改变有四种答案:
(A)变大 (B)变小 (C)不变 (D)不确定
123 m
K
例: 圆轴直径为d,材料的弹性模量为E,泊松比为 μ ,为了测得轴端的力偶m之值,但只有一 枚电阻片。 (1) 试设计电阻片粘贴的位置和方向; (2) 若按照你所定的位置和方向,已测得线应
对于二向应力状态:
1 1 E ( 1 2 )
2
1 E
(
2
1)
3 E ( 1 2 )
2 1
CL10TU30
下 面 考 虑 体 积 变 化 :
V0abc
V 1 a ( 1 1 ) b ( 1 2 ) c ( 1 3 ) 2
a b c ( 1 1 23 )
) ) )
§10-6 复杂应力状态下的变形比能
拉压变形能:
U1Pl1PPl P2l
2
2 EA 2EA
变形比能:
P
P
l l
uU P2l
2
1
V 2EAAl 2E 2
CL10TU40
变形比能:
u 1
2
u2 1112 1222 133 2
1 3
变形比能:
u21112122 2133
2 1 E 1 2 1 E12 2 13 2 2 ((1 2 2 3 )23 31 )
强度理论的论述基本一致。

例:填空题。
一球体在外表面受均布压力p = 1 MPa作用,则在球心处的主应力 1 =

第九章三向应力状态(6,7,8)

第九章三向应力状态(6,7,8)
1 2 2 2 1 2 2 3 3 1 2 这个理论比第三强度理论更符合已有的一些 平面应力状态下的试验结果,但在工程实践中多 半采用计算较为简便的第三强度理论。




(5) 强度理论的相当应力
上述四个强度理论所建立的强度条件可统一写 作如下形式:
影响材料的脆性和塑性的因素很多,例如低温能提 高脆性,高温一般能提高塑性; 在高速动载荷作用下 脆性提高,在低速静载荷作用下保持塑性。 无论是塑性材料或脆性材料:
在三向拉应力接近相等的情况下,都以断裂的形式破坏, 所以应采用最大拉应力理论;
在三向压应力接近相等的情况下,都可以引起塑性变形, 所以应该采用第三或第四强度理论。
于是,第四强度理论的屈服判据为 vd vdu
1 vd ( 1 2 ) 2 ( 2 3 ) 2 ( 3 1 ) 2 6E


对于由单轴拉伸试验可测定屈服极限s的材料,注 意到试验中1= s, 2=3=0,而相应的形状改 变能密度的极限值为 1 vdu 2 s2 6E 故屈服判据可写为
1 1 E 1 ( 2 3) 1 2 ( 3 1) 2 E 3 1 3 ( 1 2) E
1 2 2 2 v 1 2 3 2 ( 1 2 2 3 3 1 ) 2E
1 1 2 2 2 1 2 2 3 3 1 2 s2 62 1 2 2 3 3 1 s 2 此式中,1、2、3是构成危险点处的三个主应力, 相应的强度条件则为
§9-7 强度理论及其相当应力
一、强度理论的概念

三向应力

三向应力

z
s z s 30 s 120 ) (

我们应该把X,Y,Z理解 成任意三个垂直的方向
特例(主单元体)
s
2
s3
s1
s
2
s1
1 2 3
1 E 1 E 1 E (s 1 s 2 ) (s s 1 )
s1
1 2 3
1 E 1 E 1 E (s 1 0 )
xy

2 xy

x y
例: 已知一点在某一平面内的 1、 2、 3、方向上的应变 1、
2、 3,三个线应变,求该面内的主应变。
解:由
x cos i y sin i
2 2
i
xy
sin i cos i
i =1,2,3这三个方程求出 x, y, x y;然后在求主应变。
2
co s 2
xy
2
sin 2
x y
2
sin 2
y
xy
2
co s 2
2 s x s t
2
s
s x s

s x s
2
y
cos 2 t xy sin 2
y
sin 2 t xy cos 2
二、应变分析图解法——应变圆( Strain Circle)
1) x1 方 向 的 线 应 变 ; .沿 2)x1 y 1角 的 剪 应 变 。 .
dx
f ( x , y , z , xy , ) g ( x , y , z , xy , )
y1
y
x1
dy

三向应力状态简介

三向应力状态简介


变形比能: 1 u 2

2

1 1 1 u 1 1 2 2 3 3 2 2 2
1 3
变形比能: 1 1 1 u 1 1 2 2 3 3 2 2 2
1 2 2 1 2 2 3 2 ( 1 2 2 3 3 1 ) 2E 1
例:求图示应力状态的主应力和最大剪应力
(应力单位为MPa)。
解: 1 50MPa
2 50MPa 3 50MPa max 1 3
2 50MPa
CL10TU33
例:求图示应力状态的主应力和最大剪应力
(应力单位为MPa)。
CL10TU34
解:
120 40 2 2


3(1 2 ) 2 1 2 2 m ( 1 2 3 ) uv 2E 6E
u f u uv
12 2 2 2 m ( 1 2 ) ( 2 3 ) ( 3 1 ) 6E
m
1 2 3
3
3 ( 1 2 ) 1 2 3 m 变形比能 = 体积改变比能 + 形状改变比能 E 3 K u = u + u
v
f CL10TU41
1 2 2 u 1 2 2 3 2 ( 1 2 2 3 3 1 ) 2E
1 式中:
E 1 体积弹性模量 K 3 (12 2 ) 2 ( 3 1 ) E 1 2 3 m 1 3 3 ( 1 2 ) 3 E 当 05 . 时, 0
2
3 1
1 3

第九章应力状态(3,4,5)

第九章应力状态(3,4,5)

s
3
e3

1 E
s
3

s 1

s 2
例 9-17
边长a =0.1 m的铜质立方体,置于刚性很大的 钢块中的凹坑内(图a),钢块与凹坑之间无间隙。 试求当铜块受均匀分布于顶面的竖向荷载F =300 kN时,铜块内的主应力,最大切应力,以及铜块 的体应变。已知铜的弹性模量E =100 GPa,泊松比
1 2
E
sx sy sz
思考: 各向同性材料制成的构件内一点处,
三个主应力为s1=30 MPa,s2=10 MPa,s3=-40
MPa。现从该点处以平行于主应力的截面取出边 长均为a的单元体,试问:(1) 变形后该单元体的 体积有无变化?(2) 变形后该单元体的三个边长之 比有无变化?
弹性,小变形条件下可以
应用叠加原理,故知x方 向的线应变与正应力之
间的关系为
e x

sx
E


sy
E


sz
E


1 E
sx

sy
sz
同理有
e y

1 E
s
y
s x
s z ,e z

1 E
sz

sx
s
最一般表现形式的空间应力状态中有9个应力
分量,但根据切应力互等定理有txy=tyx,tyz=tzy , txz=tzx,因而独立的应力分量为6个,即sx、sy、sz、 tyx、tzy、tzx。
当空间应力状态的三个主应
力s1、s2、s3已知时(图a),与
任何一个主平面垂直的那些斜截
面(即平行于该主平面上主应力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料破坏的基本形式有两种:流动、断裂 相应地,强度理论也可分为两类:
一类是关于脆性断裂的强度理论; 另一类是关于塑性屈服的强度理论。 一、关于脆断的强度理论
26
1.最大拉应力理论(第一强度理论)
• 它假定:无论材料内各点的应力状态如何,
只要有一点的主应力σ1 达到单向拉伸断裂时 的极限应力σu,材料即破坏。
2
1
7
这样,单元体上与主应力之一平行的各个 斜截面上的正应力和剪应力,可由三个应力圆 圆周上各点的坐标来表示。
3
2
1
8
至于与三个主方向都不平行的任意斜截面, 弹性力学中已证明,其应力σn和τn可由图中阴 影面内某点的坐标来表示。
3
2
1
9
• 在三向应力状态情况下:
2
max 1
min 3
1
max
18
对于二向应力状态:
1 1 E ( 1 2 )
2
1 E
(
2
1)
3 E ( 1 2 )
2 1
CL10T1U9 30
下 面 考 虑 体 积 变 化 :
V0abc
V 1 a ( 1 1 ) b ( 1 2 ) c ( 1 3 ) 2
a b c ( 1 1 23 )
1
3
2
3
• τmax 作用在与σ2平行且与σ1和σ3的方向成45°
角的平面上,以τ1,3表示
CL10T1U0 31
例:求图示应力状态的主应力和最大剪应力 (应力单位为MPa)。
CL10T1U1 32
解:
1 330 220 30 220 2402 5 4 2 2 .2 .2M M P a
25500M M PPaa
2
3
3
1
1 1
3 2
3
2
2
3
2
1
3
同理,在平行于 σ2 的各个斜截面上,其 应力对应于由主应力 σ1 和 σ3 所画的应力圆圆 周上各点的坐标。
2
3
1
1
3 2
4
3
2
1
5
在平行于 σ1 的各个斜截面上,其应力对应 于由主应力 σ2 和 σ3 所画的应力圆圆周上各点 的坐标。
2
3
1
1
3 2
6
3
单 位 体 积 的 体 积 改 变 为 :
V1 V0
V0
123
3 a
b 1 c
也 称 为 体 积 应 变 。
CL10T2U0 30
§10-6 复杂应力状态下的变形比能
P
拉压变形能:
U1Pl1PPl P2l
2
2 EA 2EA
变形比能:
P
l l
uU P2l
2
1
V 2EAAl 2E 2
CL10TU40
解:
2 1 1 12 20 02 2 4 40 0 1 2 0 2 4 0 23 021 3 3 0 0M M P a 3 3 30 0M MP Pa a
m ax1 2380M Pa
15
§10-5 广义胡克定律
纵向应变:
E
横向应变:
E
CL10T1U6 35
下 面 计 算 沿 1 方 向 的 应 变 :
§10-4 三向应力状态简介
主单元体:六个平面都是主平面
2
1 3
若三个主应力已知,求任意斜截面上的应CL力10T:U1 30
首先分析平行于主应力之一(例如σ3)的 各斜截面上的应力。
σ3 对斜截面上的应力没有影响。这些斜截 面上的应力对应于由主应力 σ1 和 σ2 所画的应 力圆圆周上各点的坐标。
1引 起 的 应 变 为 1
1
E
2
2 、 3 引 起 的 应 变 为12E1 Nhomakorabea3
E
1 3
当 三 个 主 应 力 同 时 作 用 时 :
1E 11( 23)
CL10T1U7 30
广义胡克定律:
1
1 E
1 ( 2 3)
2
1 E
2

3

1
3
1 E
3 ( 1 2)
• 1.最大剪应力理论(第三强度理论)
• 它假定,无论材料内各点的应力状态如何, 只要有一点的最大剪应力τmax达到单向拉伸 屈服剪应力τS时,材料就在该处出现明显塑 性变形或屈服。
• 屈服破坏条件是:
max s
21
变形比能:
u 1
2
u2 1112 1222 133 2
1 3
22
2 1
m m
2 m
1 m
3
m
3 m
m
1
2
3
3
变 形3 比(1 能=2 体)积 改1 变 比能2+ 形状3改变比m 能
u E = uv 3+
uK f CL10T2U3 41
u 2 1 E1 2 2 2 3 2 2 (12 23 31 )
28
2.最大伸长线应变理论(第二强度理论)
• 它假定,无论材料内各点的应变状态如何, 只要有一点的最大伸长线应变ε1达到单向拉 伸断裂时应变的极限值 εu,材料即破坏。
• 所以发生脆性断裂的条件是 ε1 ≥ εu • 若材料直到脆性断裂都是在线弹性范围内工
作,则
1 E 11 ( 23 ) , uE u 29 E b
• 由此导出失效条件的应力表达式为:
1 (2 3 ) b
[ ] b
n
• 第二强度条件: 1(23 ) []
30
煤、石料或砼等材料在轴向压缩试验时,如 端部无摩擦,试件将沿垂直于压力的方向发生 断裂,这一方向就是最大伸长线应变的方向, 这与第二强度理论的结果相近。
CL10T3U1 50
二、关于屈服的强度理论
m ax1 2347.2M Pa
12
例:求图示应力状态的主应力和最大剪应力 (应力单位为MPa)。
解: 1 5 0 M P a
2 50M Pa
3 50M Pa
max
1 3 2
50M Pa
CL10T1U3 33
例:求图示应力状态的主应力和最大剪应力 (应力单位为MPa)。
CL10T1U4 34
• 在单向拉伸时,极限应力 σu =σb
• 失效条件可写为 σ1 ≥ σb
[ ] b
n
• 第一强度强度条件: 1 []
27
试验证明,这一理论与铸铁、岩石、砼、 陶瓷、玻璃等脆性材料的拉断试验结果相符, 这些材料在轴向拉伸时的断裂破坏发生于拉应 力最大的横截面上。脆性材料的扭转破坏,也 是沿拉应力最大的斜面发生断裂,这些都与最 大拉应力理论相符,但这个理论没有考虑其它 两个主应力的影响。
uv
3(12)
2E
2m
1 6E 2(123)2
uf uuv
1 6 2E ( 1 1 2 ) 2 m(2 m 3 ) 2 (3 1 1 ) 2 m
3
m
3 m
24
§10-7 强度理论的概念
max [ ] max [ ]
流动破坏 材料破坏的形式主要有两类:
断裂破坏
25
§10-8 常用的四种强度理论
相关文档
最新文档