高考专题第九章 解析几何第1节
2018年高考数学人教理科总复习福建专用配套课件:第九

������ -1
(-2,1)
解析 答案
-11考点1 考点2 考点3
考点 1
直线的倾斜角与斜率
例1(1)设直线l的方程为x+ycos θ+3=0(θ∈R),则直线l的倾斜角α 的范围是( )
A.[0,π)
B. 4 , 2
π π
C. 4 , 4
π 3π
D. 4 , 2 ∪ 2 , 4
π π
π 3π
(2)经过点P(0,-1)作直线l,若直线l与连接A(1,-2),B(2,1)的线段总 有公共点,则直线l的倾斜角α的范围是 . π π 2π (3)若直线l的斜率为k,倾斜角为α,而 α∈ , ∪ ,π ,则k的取 6 4 3 值范围是 .
������2 -������1
-4知识梳理 考点自测
3.直线方程的五种形式
名称 几何条件 方 斜截式 纵截距,斜率 点斜式 过一点,斜率 两点式 过两点 截距式 纵、横截距 一般式 程 y=kx+b 适用条件 与 x 轴不垂直的直线 与两坐标轴均不垂直 的直线 不过原点,且与两坐标 轴均不垂直的直线 平面内所有直线都适 用
由图可观察出,直线 l 倾斜角 α 的范围是 0, 4 ∪
π π √3 √3 2π √3 ,1 3
,π .
(3)当 6 ≤α<4 时, 3 ≤tan α<1,∴ 3 ≤k<1;当 3 ≤α<π 时,-√3≤tan α<0, 即-√3≤k<0.∴k∈ ∪[-√3,0).
-14考点1 考点2 考点3
思考直线倾斜角和直线的斜率有怎样的关系? 解题心得直线的斜率与倾斜角的区别与联系
直线 l 的斜率 区 当直线 l 垂直于 x 轴时,l 别 的斜率不存在 直线 l 的倾斜角 α 当直线 l 垂直于 x 轴时,l 的倾斜角 为2
2020高考全国一轮数学理科 第九章 解析几何

&# 已知点 %$#""%是圆0'$!/&!&-$&!&%"内的一点"那 么过点 % 的最短弦所在直线的方程是""""""""(
二解答题
'# 在平面直角坐标系$9&中"已知圆: 在$ 轴上截得的线段
长为!槡!"在& 轴上截得的线段长为!槡,( $#%求圆心: 的轨迹方程(
$!%若: 点到直线&%$ 的距离为槡!!"求圆: 的方程(
!$,槡,"!%的入射光线<#被直线<'&%槡,,$ 反射"反射光线 <!交&轴于" 点"圆0 过点! 且与<#"<!都相切"求<!所在 直线的方程和圆0 的方程(
第*题
* )" *
!!!!!!!!!!!!!!!!!!!!! 第九章"解析几何
第&)讲"圆的方程
""应知应会
二解答题 )# 已知圆0 截& 轴 所 得 的 弦 长 为 !"圆 心 0 到 直 线<'$&
&# !"#$漳州质检若点:$$"&%在直线$/&&-%"上"则 $!/&!的最小值是""""(
二解答题 '# 已知点:#$!",%":!$&-".%和!$&#"!%"求过点! 且与点
:#":!距离相等的直线方程(
数学(理)一轮复习:第九章 解析几何 双曲线

1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c 为常数且a〉0,c〉0。
(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a〉|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质标准方程错误!-错误!=1(a〉0,b〉0)y2a2-错误!=1(a〉0,b〉0)图形性质范围x≥a或x≤-a,y∈Rx∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±错误!x y=±错误!x离心率e=错误!,e∈(1,+∞),其中c=错误!实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关c2=a2+b2 (c>a>0,c>b〉0)系【知识拓展】巧设双曲线方程(1)与双曲线错误!-错误!=1(a>0,b〉0)有共同渐近线的方程可表示为错误!-错误!=t(t≠0).(2)过已知两个点的双曲线方程可设为错误!+错误!=1(mn〈0).【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( ×)(2)方程错误!-错误!=1(mn〉0)表示焦点在x轴上的双曲线.(×)(3)双曲线方程错误!-错误!=λ(m〉0,n>0,λ≠0)的渐近线方程是错误!-错误!=0,即错误!±错误!=0.( √)(4)等轴双曲线的渐近线互相垂直,离心率等于 2.(√)(5)若双曲线错误!-错误!=1(a〉0,b>0)与错误!-错误!=1(a〉0,b>0)的离心率分别是e1,e2,则错误!+错误!=1(此结论中两条双曲线称为共轭双曲线).(√)1.(教材改编)若双曲线错误!-错误!=1 (a〉0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A。
2021届高考数学一轮复习第九章平面解析几何第1节直线的方程教学案含解析新人教A版

第1节 直线的方程考试要求 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知 识 梳 理1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan__α. (2)计算公式:①经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率k =y 2-y 1x 2-x 1. ②若直线的方向向量为a =(x ,y )(x ≠0),则直线的斜率k =y x. 3.直线方程的五种形式名称 几何条件 方程适用条件 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线点斜式 过一点、斜率 y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线截距式 纵、横截距x a +y b =1 不过原点且与两坐标轴均不垂直的直线 一般式Ax +By +C =0(A 2+B 2≠0)所有直线[常用结论与微点提醒]1.直线的倾斜角α和斜率k 之间的对应关系:α 0 0<α<π2π2 π2<α<π kk >0 不存在k <02.截距和距离的不同之处“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)两直线的斜率相等,则其倾斜角一定相等. 答案 (1)× (2)× (3)× (4)√2.(老教材必修2P89B5改编)若过两点A (-m ,6),B (1,3m )的直线的斜率为12,则直线的方程为________.解析 由题意得3m -61+m =12,解得m =-2,∴A (2,6),∴直线AB 的方程为y -6=12(x -2), 整理得12x -y -18=0. 答案 12x -y -18=03.(老教材必修2P101B2改编)若方程Ax +By +C =0表示与两条坐标轴都相交的直线(不与坐标轴重合),则应满足的条件是________.解析 由题意知,直线斜率存在且斜率不为零,所以A ≠0且B ≠0. 答案 A ≠0且B ≠04.(2020·西安调研)直线x -y +1=0的倾斜角为( ) A.30°B.45°C.120°D.150°解析 由题意得,直线y =x +1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°,故α=45°. 答案 B5.(2020·昆明诊断)已知直线l 经过A (2,1),B (1,m 2)两点(m ∈R ),那么直线l 的倾斜角的取值范围是( ) A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,π解析 直线l 的斜率k =1-m 22-1=1-m 2,因为m ∈R ,所以k ∈(-∞,1],所以直线的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π.答案 B6.(2020·合肥调研)过点(-3,4),在x 轴上的截距为负数,且在两坐标轴上的截距之和为12的直线方程为______.解析 由题设知,横、纵截距均不为0,设直线的方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9(舍).故所求直线的方程为4x -y +16=0.答案 4x -y +16=0考点一 直线的倾斜角与斜率典例迁移【例1】 (一题多解)(经典母题)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析 法一 设PA 与PB 的倾斜角分别为α,β,直线PA 的斜率是k AP =1,直线PB 的斜率是k BP =-3,当直线l 由PA 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-3].故斜率的取值范围是(-∞,-3]∪[1,+∞). 法二 设直线l 的斜率为k ,则直线l 的方程为y =k (x -1),即kx -y -k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(-3-k )≤0,即(k -1)(k +3)≥0,解得k ≥1或k ≤- 3.即直线l 的斜率k 的取值范围是(-∞,-3]∪[1,+∞). 答案 (-∞,-3]∪[1,+∞)【迁移1】 若将例1中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解 设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),即kx -y +k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0,即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤13,3. 【迁移2】 若将例1中的B 点坐标改为B (2,-1),其他条件不变,求直线l 倾斜角的取值范围.解 由例1知直线l 的方程kx -y -k =0,∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(2k +1-k )≤0, 即(k -1)(k +1)≤0,解得-1≤k ≤1.即直线l 倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.规律方法 1.由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围求直线倾斜角的取值范围时,常借助正切函数y =tan x 在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上的单调性求解,这里特别要注意,正切函数在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上并不是单调的.2.过一定点作直线与已知线段相交,求直线斜率范围时,应注意倾斜角为π2时,直线斜率不存在.【训练1】 如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2. 答案 D考点二 直线方程的求法【例2】 求适合下列条件的直线方程: (1)经过点P (1,2),倾斜角α的正弦值为45;(2)(一题多解)经过点P (2,3),并且在两坐标轴上截距相等;(3)经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线的一个方向向量v =(-3,2). 解 (1)由题可知sin α=45,则tan α=±43,∵直线l 经过点P (1,2),∴直线l 的方程为y -2=±43(x -1),即y =±43(x -1)+2,整理得4x -3y +2=0或4x +3y -10=0.(2)法一 ①当截距为0时,直线l 过点(0,0),(2,3), 则直线l 的斜率为k =3-02-0=32,因此,直线l 的方程为y =32x ,即3x -2y =0.②当截距不为0时,可设直线l 的方程为x a +y a=1. 因为直线l 过点P (2,3),所以2a +3a=1,所以a =5.所以直线l 的方程为x +y -5=0.综上可知,直线l 的方程为3x -2y =0或x +y -5=0. 法二 由题意可知所求直线斜率存在, 则可设y -3=k (x -2),且k ≠0.令x =0,得y =-2k +3.令y =0,得x =-3k+2.于是-2k +3=-3k +2,解得k =32或k =-1.则直线l 的方程为y -3=32(x -2)或y -3=-(x -2),即直线l 的方程为3x -2y =0或x +y -5=0.(3)联立⎩⎪⎨⎪⎧x +y =2,2x -y =1,得x =1,y =1,∴直线过点(1,1),∵直线的方向向量v =(-3,2), ∴直线的斜率k =-23.则直线的方程为y -1=-23(x -1),即2x +3y -5=0.规律方法 1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).【训练2】 (1)求经过点B (3,4),且与两坐标轴围成一个等腰直角三角形的直线方程; (2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解 (1)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0.(2)当直线不过原点时,设所求直线方程为x 2a +y a =1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k=-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.考点三 直线方程的综合应用 多维探究角度1 直线过定点问题【例3-1】 已知k ∈R ,写出以下动直线所过的定点坐标: (1)若直线方程为y =kx +3,则直线过定点________; (2)若直线方程为y =kx +3k ,则直线过定点________; (3)若直线方程为x =ky +3,则直线过定点________. 解析 (1)当x =0时,y =3,所以直线过定点(0,3). (2)直线方程可化为y =k (x +3),故直线过定点(-3,0). (3)当y =0时,x =3,所以直线过定点(3,0). 答案 (1)(0,3) (2)(-3,0) (3)(3,0)规律方法 1.直线过定点问题,可以根据方程的结构特征,得出直线过的定点坐标. 2.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.角度2 与直线方程有关的多边形面积的最值问题【例3-2】 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2(2-a )+12×2(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,又0<a <2,所以当a =12时,面积最小.答案 12规律方法 1.求解与直线方程有关的面积问题,应根据直线方程求解相应坐标或者相关长度,进而求得多边形面积.2.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.【训练3】 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1. ∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.A 级 基础巩固一、选择题1.(2020·安阳模拟)若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( ) A.1±2或0 B.2-52或0 C.2±52D.2+52或0解析 由题意知k AB =k AC ,即a 2+a 2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1± 2.答案 A2.(2020·广东七校联考)若过点P (1-a ,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是( ) A.(-2,1) B.(-1,2)C.(-∞,0)D.(-∞,-2)∪(1,+∞)解析 由题意知2a -1-a 3-1+a <0,即a -12+a <0,解得-2<a <1.答案 A3.(2020·福建六校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0,结合选项知B 符合,其他均不符合. 答案 B4.(2020·成都诊断)过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( ) A.x =2 B.y =1 C.x =1D.y =2解析 直线y =-x -1的倾斜角为3π4,则所求直线的倾斜角为π2,故所求直线斜率不存在,又直线过点(2,1),所以所求直线方程为x =2. 答案 A5.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A.y =3x +2 B.y =3x -2 C.y =3x +12D.y =-3x +2解析 因为直线x -2y -4=0的斜率为12,所以直线l 在y 轴上的截距为2,所以直线l 的方程为y =3x +2.答案 A6.(2020·湖北四地七校联考)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π4解析 由f ⎝⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以a =-b ,由直线ax -by +c =0知其斜率k =a b =-1,所以直线的倾斜角为3π4,故选D.答案 D7.直线x sin α+y +2=0的倾斜角的取值范围是( ) A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫π2,π解析 设直线的倾斜角为θ,则有tan θ=-sin α.又sin α∈[-1,1],θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.答案 B8.(2020·东北三省四校调研)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12B.[-1,0]C.[0,1]D.⎣⎢⎡⎦⎥⎤12,1解析 由题意知,y ′=2x +2,设P (x 0,y 0),则在点P 处的切线的斜率k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案 A 二、填空题9.直线l 的倾斜角为60°,且在x 轴上的截距为-13,则直线l 的方程为________.解析 由题意可知,直线l 的斜率为3,且该直线过⎝ ⎛⎭⎪⎫-13,0,∴直线l 的方程为y =3⎝ ⎛⎭⎪⎫x +13,即3x -3y +1=0. 答案 3x -3y +1=010.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.答案 x +13y +5=011.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.所以b 的取值范围是[-2,2].答案 [-2,2]12.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角是直线4x -3y +2 020=0的倾斜角的一半,则y 的值为________.解析 因为直线4x -3y +2 020=0的斜率为43,所以由倾斜角的定义可知直线4x -3y +2 020=0的倾斜角α满足tan α=43,因为α∈[0,π),所以α2∈⎣⎢⎡⎭⎪⎫0,π2,所以2tanα21-tan 2α2=43,解得tan α2=12,由已知及倾斜角与斜率的关系得2y +1+34-2=12,所以y =-32.答案 -32B 级 能力提升13.(2019·湖南长郡中学月考)已知点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎭⎪⎫π4,π3B.⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫34π,πC.⎝ ⎛⎭⎪⎫34π,56πD.⎝ ⎛⎭⎪⎫23π,34π解析 因为点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,所以(-a -2+1)·⎝⎛⎭⎪⎫33a -0+1>0,即(a +1)(a +3)<0,所以-3<a <-1,又知直线l 的斜率k =a ,即-3<k <-1,又因为直线倾斜角的范围是[0,π),所以直线l 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫23π,34π,故选D. 答案 D14.(2020·兰州模拟)若直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( ) A.ab >0,bc <0 B.ab >0,bc >0 C.ab <0,bc >0D.ab <0,bc <0解析 易知直线的斜率存在,则直线方程可化为y =-a b x -cb ,由题意知⎩⎪⎨⎪⎧-ab <0,-cb >0,所以ab >0,bc <0.答案 A15.已知数列{a n }的通项公式为a n =1n (n +1)(n ∈N *),其前n 项和S n =910,则直线x n +1+y n=1与坐标轴所围成的三角形的面积为________. 解析 由a n =1n (n +1)可知a n =1n -1n +1,所以S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又知S n =910,所以1-1n +1=910,所以n =9.所以直线方程为x 10+y9=1,且与坐标轴的交点为(10,0)和(0,9),所以直线与坐标轴所围成的三角形的面积为12×10×9=45.答案 4516.(2020·豫北名校调研)直线l 过点P (6,4),且分别与两坐标轴的正半轴交于A ,B 两点,当△ABO 的面积最小时,直线l 的方程为________.解析 设直线l 的方程为y -4=k (x -6)(k ≠0),则A ⎝⎛⎭⎪⎫6-4k,0,B (0,4-6k ),由题意知k <0,则S △ABO =12×|OA |·|OB |=12⎝ ⎛⎭⎪⎫6-4k ·(4-6k )=24-18k -8k ,∵k <0,∴-18k >0,-8k >0,∴-18k -8k≥2(-18k )·⎝ ⎛⎭⎪⎫-8k =24,当且仅当-18k =-8k ,即k 2=49,也即k =-23时取得等号,所以△ABO 的面积的最小值为48,此时直线l 的方程为y -4=-23(x -6),即2x +3y -24=0.答案 2x +3y -24=0C 级 创新猜想17.(多填题)设点A (-2,3),B (3,2),已知直线l 的方程为ax +y +2=0,则直线l 过定点________,若直线l 与线段AB 没有交点,则实数a 的取值范围是________.解析 直线ax +y +2=0恒过点M (0,-2),且斜率为-a ,∵k MA =3-(-2)-2-0=-52,k MB =2-(-2)3-0=43,结合题意可知-a >-52,且-a <43,∴a ∈⎝ ⎛⎭⎪⎫-43,52.答案 (0,-2) ⎝⎛⎭⎪⎫-43,52。
第1节 直线的倾斜角与斜率、直线的方程

第九章 平面解析几何第1节 直线的倾斜角与斜率、直线的方程基础巩固题组(建议用时:40分钟)一、单项选择题1.直线x sin π7+y cos π7=1的倾斜角α是( ) A .1π7 B .6π7 C .5π14 D .9π142.若直线l 沿x 轴的负方向平移2个单位,再沿y 轴的正方向平移3个单位后,又回到原来的位置,则直线l 的斜率为( )A .32B .23C .32-D .23- 3.下列说法的正确的是( )A .经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示;B .经过定点A (0,b )的直线都可以用方程y =kx +b 表示;C .不经过原点的直线都可以用方程x a +y b=1表示; D .经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.4.过两点(-1,1)和(0,3)的直线在x 轴上的截距为( )A .-32B .32C .3D .-3 5.直线l 经过点A (1,2),且在两坐标轴上的截距的绝对值相等,则直线l 的方程为( )A .30x y +-=或10x y -+=B .10x y -+=或20x y -=C .30x y +-=或20x y -=D .30x y +-=或10x y -+=或20x y -=6. 直线l 过点(41)--,,且与两坐标轴围成的三角形的面积为8,则直线l 有( )条.A .1B .2C .3D .4二、多项选择题7.根据以下各组中所给的直线的基本量,能确定直线的位置的有( )A .一个定点和斜率B .两个定点C .一个定点和倾斜角D .纵截距和横截距8.已知直线l 1的方程是y =ax +b ,l 2的方程是y =-bx +a (ab ≠0,a ≠b ),则下列各示意图中,可能正确的有( )三、填空题9. 设m 为常数,则过两点A (2,-1),B (2,m )的直线的倾斜角是________.10. 若A (-2,3),B (3,-2),C 1()2m ,三点共线,则m 的值为________. 11. 若直线l 的斜率为k ,倾斜角为α,而α∈2[)[)643ππππ,,,则k 的取值范围是____________. 12.过点P (-1,-1)的直线l 与x 轴、y 轴分别交于A 、B 两点,若P 恰为线段AB 的中点,则直线l 的方程为__________.能力提升题组(建议用时:20分钟)13.若直线1(00)x y a b a b+=>,>过点(1,2),则2a b +的最小值为 . 14.直线l 1:4x -3y +1=0,直线l 2过点(1,0),且它的倾斜角是直线l 1的倾斜角的一半,则直线l 2的方程为__________.15. 已知△ABC 中,A (1,-4),B (6,6),C (-2,0).求:(1)△ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程;(2)BC 边的中线所在直线的一般式方程,并化为截距式方程.16.已知直线l 过点P (5,2),分别求满足下列条件的直线方程.(1)直线l 在x 轴上的截距是在y 轴上的截距的2倍;(2)直线l 与两坐标轴围成的三角形面积为52.。
第九章 第一节 直线与方程

第九章⎪⎪⎪解析几何第一节 直线与方程[考纲要求]1.在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. 3.能根据两条直线的斜率判定这两条直线平行或垂直.4.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式等),了解斜截式与一次函数的关系.5.能用解方程组的方法求两相交直线的交点坐标.6.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.突破点一 直线的倾斜角与斜率、两直线的位置关系[基本知识]1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的范围是[0,π). 2.直线的斜率公式(1)定义式:若直线l 的倾斜角α≠π2,则斜率k =tan_α.(2)两点式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.两条直线平行与垂直的判定两条直线平行对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2两条直线垂直如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. 当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2[基本能力]一、判断题(对的打“√”,错的打“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.( ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( )(3)直线的倾斜角越大,其斜率就越大.( )(4)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (5)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) 答案:(1)√ (2)× (3)× (4)× (5)× 二、填空题1.过点M (-1,m ),N (m +1,4)的直线的斜率等于1,则m 的值为________. 答案:12.若直线l 1:(a -1)x +y -1=0和直线l 2:3x +ay +2=0垂直,则实数a 的值为________. 答案:343.(2019·湖南百所中学检测)若直线l 1:ax +y -1=0与l 2:3x +(a +2)y +1=0平行,则a 的值为________.答案:14.直线x +(a 2+1)y +1=0的倾斜角的取值范围是________. 答案:⎣⎡⎭⎫3π4,π[全析考法]考法一 直线的倾斜角与斜率1.直线都有倾斜角,但不一定都有斜率,二者的关系具体如下:斜率k k =tan α>0k =0 k =tan α<0不存在 倾斜角α锐角0°钝角90°2.在分析直线的倾斜角和斜率的关系时,要根据正切函数k =tan α的单调性,如图所示:(1)当α取值在⎣⎡⎭⎫0,π2内,由0增大到π2⎝⎛⎭⎫α≠π2时,k 由0增大并趋向于正无穷大;(2)当α取值在⎝⎛⎭⎫π2,π内,由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 由负无穷大增大并趋近于0.解决此类问题,常采用数形结合思想.[例1] (1)(2019·江西五校联考)已知直线l 与两条直线y =1,x -y -7=0分别交于P ,Q 两点,线段P Q 的中点坐标为(1,-1),那么直线l 的斜率是( )A.23 B.32 C .-23D .-32(2)(2019·张家口模拟)直线l 经过A (2,1),B (1,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是( )A.⎣⎡⎦⎤0,π4B.⎝⎛⎭⎫π2,π C.⎣⎡⎭⎫π4,π2D.⎝⎛⎦⎤π2,3π4[解析] (1)设P (a,1),Q (b ,b -7), 则⎩⎨⎧a +b2=1,1+b -72=-1,解得⎩⎪⎨⎪⎧a =-2,b =4,所以P (-2,1),Q (4,-3),所以直线l 的斜率k =1-(-3)-2-4=-23,故选C.(2)直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.[答案] (1)C (2)C [方法技巧]求直线倾斜角范围的注意事项直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0). 考法二 两直线的位置关系两直线位置关系的判断方法 (1)已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等; ②两直线垂直⇔两直线的斜率之积为-1. (2)已知两直线的斜率不存在若两直线的斜率不存在,当两直线在x 轴上的截距不相等时,两直线平行;否则两直线重合.[例2] (1)(2019·武邑中学月考)已知过两点A (-3,m ),B (m,5)的直线与直线3x +y -1=0平行,则m 的值为( )A .3B .7C .-7D .-9(2)(2019·安徽六安四校联考)设m ∈R ,则“m =0”是“直线l 1:(m +1)x +(1-m )y -1=0与直线l 2:(m -1)x +(2m +1)y +4=0垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)由题可知,5-m m +3=-3,解得m =-7,故选C.(2)由直线l 1与l 2垂直可得(m +1)(m -1)+(1-m )·(2m +1)=0,解得m =0或m =1.所以“m =0”是“直线l 1:(m +1)x +(1-m )y -1=0与直线l 2:(m -1)x +(2m +1)y +4=0垂直”的充分不必要条件.故选A.[答案] (1)C (2)A [方法技巧]由一般式方程确定两直线位置关系的方法到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.[集训冲关]1.[考法一]已知直线过A (2,4),B (1,m )两点,且倾斜角为45°,则m =( ) A .3 B .-3 C .5D .-1解析:选A ∵直线过A (2,4),B (1,m )两点,∴直线的斜率为m -41-2=4-m .又∵直线的倾斜角为45°,∴直线的斜率为1,即4-m =1,∴m =3.故选A.2.[考法一、二]已知倾斜角为θ的直线l 与直线x +2y -3=0垂直,则cos 2θ的值为( ) A.35B .-35C.15 D .-15解析:选B 由题意得-12·tan θ=-1,∴tan θ=2,cos 2θ=1-tan 2θ1+tan 2θ=1-41+4=-35,故选B.3.[考法二]若直线l 1:ax -(a +1)y +1=0与直线l 2:2x -ay -1=0垂直,则实数a =( ) A .3 B .0 C .-3D .0或-3解析:选D ∵直线l 1与直线l 2垂直,∴2a +a (a +1)=0,整理得a 2+3a =0, 解得a =0或a =-3.故选D.4.[考法二]设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件解析:选C 当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0的斜率都是-12,截距不相等,∴两条直线平行,故前者是后者的充分条件;当两条直线平行时,得a 1=2a +1≠-14,解得a =-2或a =1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选C.突破点二 直线的方程[基本知识]直线方程的五种形式 形式 几何条件 方程 适用范围 点斜式 过一点(x 0,y 0),斜率k y -y 0=k (x -x 0) 与x 轴不垂直的直线 斜截式 纵截距b ,斜率k y =kx +b 与x 轴不垂直的直线 两点式过两点(x 1,y 1),(x 2,y 2)y -y 1y 2-y 1=x -x 1x 2-x 1与x 轴、y 轴均不垂直的直线 截距式 横截距a ,纵截距bx a +y b =1 不含垂直于坐标轴和过原点的直线一般式Ax +By +C =0,A 2+B 2≠0平面直角坐标系内所有直线[基本能力]一、判断题(对的打“√”,错的打“×”)(1)经过定点A (0,b )的直线都可以用方程y =kx +b 表示.( )(2)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )(3)不经过原点的直线都可以用x a +yb =1表示.( ) 答案:(1)× (2)√ (3)× 二、填空题1.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为______________. 答案:4x +3y =0或x +y +1=02.(2019·开封模拟)过点A (-1,-3),斜率是直线y =3x 斜率的-14的直线方程为____________.答案:3x +4y +15=03.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为____________.解析:由已知,得BC 的中点坐标为⎝⎛⎭⎫32,-12,且直线BC 边上的中线过点A ,则BC 边上中线的斜率k =-113,故BC 边上的中线所在直线方程为y +12=-113⎝⎛⎭⎫x -32,即x +13y+5=0.答案:x +13y +5=0[全析考法]考法一 求直线方程[例1] (2019·湖北十堰模拟)已知菱形ABCD 的顶点A ,C 的坐标分别为A (-4,7),C (6,-5),BC 边所在直线过点P (8,-1).求:(1)AD 边所在直线的方程; (2)对角线BD 所在直线的方程. [解] (1)k BC =-5-(-1)6-8=2,∵AD ∥BC ,∴k AD =2.∴AD 边所在直线的方程为y -7=2(x +4), 即2x -y +15=0. (2)k AC =-5-76-(-4)=-65.∵菱形的对角线互相垂直, ∴BD ⊥AC ,∴k BD =56.∵AC 的中点(1,1),也是BD 的中点,∴对角线BD 所在直线的方程为y -1=56(x -1),即5x -6y +1=0.[方法技巧]求直线方程的注意事项(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应先判断截距是否为零).考法二 与直线方程有关的最值问题[例2] (1)已知直线x +a 2y -a =0(a 是正常数),当此直线在x 轴,y 轴上的截距和最小时,正数a 的值是( )A .0B .2 C. 2D .1(2)若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)[解析] (1)直线x +a 2y -a =0(a 是正常数)在x 轴,y 轴上的截距分别为a 和1a ,此直线在x 轴,y 轴上的截距和为a +1a ≥2,当且仅当a =1时,等号成立.故当直线x +a 2y -a =0在x 轴,y 轴上的截距和最小时,正数a 的值是1,故选D.(2)令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].[答案] (1)D (2)C [方法技巧]与直线方程有关的最值问题的解题思路(1)借助直线方程,用y 表示x 或用x 表示y ; (2)将问题转化成关于x (或y )的函数;(3)利用函数的单调性或基本不等式求最值.[集训冲关]1.[考法一]已知直线l 过点P (1,3),且与x 轴,y 轴的正半轴所围成的三角形的面积等于6,则直线l 的方程是( )A .3x +y -6=0B .x +3y -10=0C .3x -y =0D .x -3y +8=0解析:选A 设直线l 的方程为x a +yb=1(a >0,b >0).由题意得⎩⎨⎧1a +3b =1,12ab =6,解得a =2,b =6.故直线l 的方程为x 2+y6=1,即3x +y -6=0.故选A.2.[考法一]过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为_________. 解析:当直线过原点时,直线方程为y =-53x ;当直线不过原点时,设直线方程为x a +y-a =1(a ≠0),即x -y =a (a ≠0),把(-3,5)代入,得a =-8, 所以直线方程为x -y +8=0.故所求直线方程为y =-53x 或x -y +8=0.答案:y =-53x 或x -y +8=03.[考法二]已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析:直线l 1可写成a (x -2)=2(y -2),直线l 2可写成2(x -2)=a 2(2-y ),所以直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154.当a =12时,面积最小. 答案:12突破点三 直线的交点、距离与对称问题[基本知识]1.两条直线的交点2.三种距离类型 条件距离公式两点间的距离点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2点到直线的距离点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2两平行直线间的距离 两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2[基本能力]一、判断题(对的打“√”,错的打“×”)(1)若两直线的方程组成的方程组有唯一解,则两直线相交.( ) (2)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k 2.( ) (3)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( )(4)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB的中点在直线l 上.( )答案:(1)√ (2)× (3)√ (4)√ 二、填空题1.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 的值为________. 答案:2-12.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为________. 答案:8233.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第________象限.答案:二4.(2018·忻州检测)在平面直角坐标系中,点(0,2)与点(4,0)关于直线l 对称,则直线l的方程为______________.答案:2x -y -3=0[全析考法]考法一 距离问题[例1] (2019·北京西城期中)已知直线l 经过点P (-2,1). (1)若点Q (-1,-2)到直线l 的距离为1,求直线l 的方程; (2)若直线l 在两坐标轴上截距相等,求直线l 的方程.[解] (1)当直线l 的斜率不存在时,即直线l 的方程为x =-2,符合要求; 当直线l 的斜率存在时,设直线l 的方程为y -1=k (x +2), 整理得kx -y +2k +1=0,Q (-1,-2)到直线l 的距离d =|-k +2+2k +1|k 2+(-1)2=|k +3|k 2+1=1,解得k =-43,所以直线l 的方程为4x +3y +5=0.(2)由题知,直线l 的斜率k 一定存在且k ≠0,故可设直线l 的方程为kx -y +2k +1=0, 当x =0时,y =2k +1,当y =0时,x =-2k +1k , ∴2k +1=-2k +1k ,解得k =-1或-12,即直线l 的方程为x +2y =0或x +y +1=0. [方法技巧]1.解决与点到直线的距离有关的问题应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.2.求两条平行线间的距离要先将直线方程中x ,y 的对应项系数转化成相等的形式,再利用距离公式求解.也可以转化成点到直线的距离问题.考法二 对称问题[例2] 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. [解] (1)设A ′(x ,y ),由题意知⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413.所以A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′的方程为9x -46y +102=0. (3)设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ), 因为P ′在直线l 上,所以2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0. [方法技巧]1.中心对称问题的两种类型及求解方法2.轴对称问题的两种类型及求解方法[集训冲关]1.[考法一]“C =2”是“点(1,3)到直线x +3y +C =0的距离为3”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选B 若点(1,3)到直线x +3y +C =0的距离为3,则有|1+3+C |12+(3)2=3,解得C =2或C =-10,故“C =2”是“点(1,3)到直线x +3y +C =0的距离为3”的充分不必要条件,故选B.2.[考法二]直线3x -4y +5=0关于x 轴对称的直线的方程是( ) A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0D .-3x +4y +5=0解析:选A 在所求直线上任取一点P (x ,y ),则点P 关于x 轴的对称点P ′(x ,-y )在已知的直线3x -4y +5=0上,所以3x -4(-y )+5=0,即3x +4y +5=0,故选A.3.[考法一]已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.答案:x +2y -3=04.[考法二]若直线l 与直线2x -y -2=0关于直线x +y -4=0对称,则直线l 的方程为________________.解析:由⎩⎪⎨⎪⎧ 2x -y -2=0,x +y -4=0,得⎩⎪⎨⎪⎧x =2,y =2,即两直线的交点坐标为(2,2),在直线2x -y -2=0上取一点A (1,0),设点A 关于直线x +y -4=0的对称点的坐标为(a ,b ),则⎩⎨⎧ba -1=1,a +12+b2-4=0,解得⎩⎪⎨⎪⎧a =4,b =3,即点A 关于直线x +y -4=0的对称点的坐标为(4,3),则直线l 的方程为y -23-2=x -24-2,整理得x -2y +2=0.答案:x -2y +2=0[课时跟踪检测][A 级 基础题——基稳才能楼高]1.(2019·合肥模拟)直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.2.(2019·永州模拟)已知直线l 1:x +y +1=0,l 2:x +y -1=0,则直线l 1与直线l 2之间的距离为( )A .1 B. 2 C. 3D .2解析:选B 由平行线间的距离公式可知,直线l 1与直线l 2之间的距离为|1+1|2= 2.3.(2019·成都月考)当点P (3,2)到直线mx -y +1-2m =0的距离最大时,m 的值为( ) A. 2 B .0 C .-1D .1解析:选C 直线mx -y +1-2m =0过定点Q (2,1),所以点P (3,2)到直线mx -y +1-2m =0的距离最大时,P Q 垂直直线,即m ·2-13-2=-1,∴m =-1,故选C.4.(2019·济宁模拟)过点(-10,10)且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为( )A .x -y =0B .x +4y -30=0C .x +y =0或x +4y -30=0D .x +y =0或x -4y -30=0解析:选C 当直线经过原点时,此时直线的方程为x +y =0,满足题意.当直线不经过原点时,设直线方程为x 4a +y a =1,把点(-10,10)代入可得a =152,故直线方程为x 30+2y 15=1,即x +4y -30=0.综上所述,可知选C.5.(2019·深圳月考)若两直线kx -y +1=0和x -ky =0相交且交点在第二象限,则k 的取值范围是( )A .(-1,0)B .(0,1]C .(0,1)D .(1,+∞)解析:选A 由题意知k ≠±1.联立⎩⎪⎨⎪⎧kx -y +1=0,x -ky =0,解得⎩⎨⎧x =k1-k 2,y =11-k 2,∴⎩⎨⎧k1-k 2<0,11-k 2>0,∴-1<k <0.故选A.6.(2019·银川月考)点P (2,5)关于x +y +1=0对称的点的坐标为( ) A .(6,3) B .(3,-6) C .(-6,-3)D .(-6,3)解析:选C 设点P (2,5)关于x +y +1=0的对称点为Q (a ,b ),则⎩⎪⎨⎪⎧b -5a -2·(-1)=-1,a +22+b +52+1=0,解得⎩⎪⎨⎪⎧a =-6,b =-3,即P (2,5)关于x +y +1=0对称的点的坐标为(-6,-3).故选C.[B 级 保分题——准做快做达标]1.(2019·广州月考)已知点A (1,3),B (-1,33),则直线AB 的倾斜角是( ) A .60° B .30° C .120°D .150°解析:选C 设直线AB 的倾斜角为α. ∵A (1,3),B (-1,33), ∴k AB =33-3-1-1=-3,∴tan α=-3,∵0°≤α<180°,∴α=120°.故选C.2.(2019·惠阳月考)点A (2,5)到直线l :x -2y +3=0的距离为( ) A .2 5B.55C. 5D.255解析:选C 点A (2,5)到直线l :x -2y +3=0的距离为d =|2-10+3|1+4= 5.故选C.3.(2019·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( )A .7 B.172 C .14D .17解析:选B 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,求得m =172.4.已知点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是( ) A .8 B .2 2 C. 2D .16解析:选A 因为点P (x ,y )在直线x +y -4=0上,所以x 2+y 2的最小值即为原点到直线x +y -4=0距离的平方,d =|-4|1+1=22,d 2=8.5.(2019·重庆第一中学月考)光线从点A (-3,5)射到x 轴上,经x 轴反射后经过点B (2,10),则光线从A 到B 的距离为( )A .5 2B .2 5C .510D .10 5解析:选C 点B (2,10)关于x 轴的对称点为B ′(2,-10),由对称性可得光线从A 到B 的距离为|AB ′|=(-3-2)2+[5-(-10)]2=510.故选C.6.(2019·黄陵期中)不论m 为何值,直线(m -1)x +(2m -1)y =m -5恒过定点( ) A.⎝⎛⎭⎫1,-12 B .(-2,0) C .(2,3)D .(9,-4)解析:选D ∵直线方程为(m -1)x +(2m -1)y =m -5, ∴直线方程可化为(x +2y -1)m +(-x -y +5)=0.∵不论m 为何值,直线(m -1)x +(2m -1)y =m -5恒过定点,∴⎩⎪⎨⎪⎧ x +2y -1=0,-x -y +5=0,∴⎩⎪⎨⎪⎧x =9,y =-4.故选D. 7.(2018·成都五校联考)已知A ,B 是x 轴上的两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是( )A .2x +y -7=0B .x +y -5=0C .2y -x -4=0D .2x -y -1=0解析:选B 由|PA |=|PB |得点P 一定在线段AB 的垂直平分线上,根据直线PA 的方程为x -y +1=0,可得A (-1,0),将x =2代入直线x -y +1=0,得y =3,所以P (2,3),所以B (5,0),所以直线PB 的方程是x +y -5=0,选B.8.(2019·大庆一中期末)设点A (-2,3),B (3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是( )A.⎝⎛⎭⎫-∞,-52∪⎝⎛⎭⎫43,+∞ B.⎝⎛⎭⎫-43,52 C.⎣⎡⎦⎤-52,43 D.⎝⎛⎭⎫-∞,-43∪⎝⎛⎭⎫52,+∞ 解析:选B 直线ax +y +2=0过定点P (0,-2),可得直线PA 的斜率k PA =-52,直线PB 的斜率k PB =43.若直线ax +y +2=0与线段AB 没有交点,则-52<-a <43,解得-43<a <52,故选B.9.(2019·河南新乡期末)三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0构成一个三角形,则k 的取值范围是( )A .k ∈RB .k ∈R 且k ≠±1,k ≠0C .k ∈R 且k ≠±5,k ≠-10D .k ∈R 且k ≠±5,k ≠1解析:选C 由l 1∥l 3,得k =5;由l 2∥l 3,得k =-5;由x -y =0与x +y -2=0,得x =1,y =1,若(1,1)在l 3上,则k =-10.若l 1,l 2,l 3能构成一个三角形,则k ≠±5且k ≠ -10,故选C.10.(2019·淮安期末)若三条直线x +y -2=0,mx -2y +3=0,x -y =0交于一点,则实数m 的值为________.解析:直线x +y -2=0,x -y =0的交点为(1,1),所以m -2+3=0,解得m =-1. 答案:-111.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________________.解析:l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则|c +6|=⎪⎪⎪⎪c +32,解得c =-154,所以l 的方程为12x +8y -15=0.答案:12x +8y -15=012.直线l :x cos α+3y +2=0的倾斜角的取值范围是________________.解析:设直线l 的倾斜角为θ,依题意知,θ≠π2,直线l 的斜率k =-33cos α,∵cos α∈[-1,1],∴k ∈⎣⎡⎦⎤-33,33,即tan θ∈⎣⎡⎦⎤-33,33.又θ∈[0,π),∴θ∈⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π. 答案:⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π 13.已知直线l :x -my +3m =0上存在点M 满足与两点A (-1,0),B (1,0)连线的斜率k MA 与k MB 之积为3,则实数m 的取值范围是________________.解析:设M (x ,y ),由k MA ·k MB =3, 得y x +1·y x -1=3,即y 2=3x 2-3. 联立⎩⎨⎧x -my +3m =0,y 2=3x 2-3,得⎝⎛⎭⎫1m 2-3x 2+23m x +6=0. 要使直线l :x -my +3m =0上存在点M 满足与两点A (-1,0),B (1,0)连线的斜率k MA与k MB 之积为3,则Δ=⎝⎛⎭⎫23m 2-24⎝⎛⎭⎫1m 2-3≥0,即m 2≥16.所以实数m 的取值范围是⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞. 答案:⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞ 14.(2019·江苏如皋联考)“m =3”是“两直线l 1:mx +3y +2=0和l 2:x +(m -2)y +m -1=0平行”的________条件.(在“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选一个填空)解析:若l 1∥l 2,则m (m -2)-3=0,解得m =3或m =-1(此时两直线重合,舍去),所以m =3,必要性成立;若m =3,k 1=k 2,l 1∥l 2,充分性成立,所以“m =3”是“两直线l 1:mx +3y +2=0和l 2:x +(m -2)y +m -1=0平行”的充要条件.答案:充要15.(2019·四川达州月考)已知直线l 过点(1,2)且在x ,y 轴上的截距相等.(1)求直线l 的一般方程;(2)若直线l 在x ,y 轴上的截距不为0,点P (a ,b )在直线l 上,求3a +3b 的最小值. 解:(1)①截距为0时,l :y =2x ;②截距不为0时,k =-1,l :y -2=-(x -1), ∴y =-x +3.综上,l 的一般方程为2x -y =0或x +y -3=0.(2)由题意得l :x +y -3=0,∴a +b =3,∴3a +3b ≥23a ·3b =23a +b =63,当且仅当a =b =32时,等号成立,∴3a +3b 的最小值为6 3.16.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图.由l ⊥OP ,得k l k OP =-1, 所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0. 所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线, 最大距离为|-5|5= 5.。
高考数学总复习课件第9章 平面解析几何

∴△AOC 是以∠C 为直角的等腰直角三角形,易得 C 点坐 北
师
标为( 3, 3).将( 3, 3)代入①式得 b2=4,
大 版
∴椭圆
M
的方程为x2 12
+y42=1.
第9章 教师备课平台
高考数学总复习
(2)当直线 l 的斜率 k=0 时,直线 l 的方程为 y=t, 则满足题意的 t 的取值范围为-2<t<2. 当直线 l 的斜率 k≠0 时,设直线 l 的方程为 y=kx+t.
师 大
版
故对其不容忽视.
第9章 教师备课平台
高考数学总复习
[例 6] (2012·枣庄模拟)已知 A、B、C 是椭圆 M:xa22+yb22=
1(a>b>0)上的三点,其中点 A 的坐标为(2 3,0),BC 过椭圆 M
的中心,且A→C·B→C=0,|B→C|=2|A→C|(如图所示).
北 师
大
(1)求椭圆 M 的方程;
x2+y2=2502,直线 l 的方程为 y=-x+300,
由yx=2+-y2x=+2350002 得 x2-300x+550×25=0,
第9章 教师备课平台
高考数学总复习
由于 Δ=3002-4×550×25=100×(900-550)>0,
因此,A 城将受影响.
北
圆心 A 到直线 l 的距离为 150 2,又圆半径为 250,得弦长
小值.
[解析] 令 y-3x=b,则 y=3x+b,原问题转化为在椭圆1x62
北 师 大 版
+2y52 =1 上找一点,使过该点的直线斜率为 3,且在 y 轴上有最
大截距或最小截距.当直线 y=3x+b 与椭圆1x62 +2y52 =1 相切时,
高考数学一轮复习 第九章 平面解析几何9 (1)

高考数学一轮复习 第九章 平面解析几何9.12 圆锥曲线中的探索性与综合性问题题型一 探索性问题例1 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与C 2:y 29-x 23=1有相同的渐近线,点F (2,0)为C 1的右焦点,A ,B 为C 1的左、右顶点.(1)求双曲线C 1的标准方程;(2)若直线l 过点F 交双曲线C 1的右支于M ,N 两点,设直线AM ,BN 的斜率分别为k 1,k 2,是否存在实数λ使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由. 解 (1)∵C 2的渐近线方程为y =±3x ,∴b a =3, ∵c =a 2+b 2=2,∴a =1,b =3,∴双曲线C 1的标准方程为x 2-y 23=1. (2)由已知,A (-1,0),B (1,0),M (x 1,y 1),N (x 2,y 2),l 过点F (2,0)与右支交于两点,则l 斜率不为零,设l :x =my +2,由⎩⎪⎨⎪⎧ x 2-y 23=1,x =my +2,消元得(3m 2-1)y 2+12my +9=0, ∵l 与双曲线右支交于两点,∴⎩⎪⎨⎪⎧3m 2-1≠0,y 1y 2=93m 2-1<0,解得m ∈⎝⎛⎭⎫-33,33, Δ=(12m )2-4×9(3m 2-1)=36(m 2+1)>0,∴y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,∵k 1=y 1x 1+1,k 2=y 2x 2-1≠0, ∴k 1k 2=y 1x 2-1y 2x 1+1=y 1my 2+1y 2my 1+3=my 1y 2+y 1my 1y 2+3y 2, ∵y 1+y 2y 1y 2=-12m 9=-4m 3, ∴my 1y 2=-34(y 1+y 2), ∴k 1k 2=-34y 1+y 2+y 1-34y 1+y 2+3y 2=14y 1-34y 2-34y 1+94y 2 =-13, ∴存在λ=-13使得k 1=λk 2. 教师备选(2022·洛阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点E ,F 分别为其下顶点和右焦点,坐标原点为O ,且△EOF 的面积为 2.(1)求椭圆C 的方程;(2)是否存在直线l ,使得l 与椭圆C 相交于A ,B 两点,且点F 恰为△EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由.解 (1)由题意可知⎩⎨⎧c a =33,12bc =2,a 2=b 2+c 2,解得⎩⎨⎧ a =6,b =2,c =2, 所以椭圆C 的方程为x 26+y 24=1. (2)假设满足条件的直线l 存在,由E (0,-2),F (2,0),得k EF =2,因为点F 为△EAB 的垂心,所以AB ⊥EF ,所以k AB =-22, 设直线l 的方程为y =-22x +t , 代入x 26+y 24=1, 得7x 2-62tx +6(t 2-4)=0,Δ=(-62t )2-4×7×6(t 2-4)=-96t 2+672>0,即-7<t <7,记A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 1+x 2=627t ,x 1x 2=6t 2-47,由AF ⊥BE 得y 1x 1-2·y 2+2x 2=-1, 所以y 1y 2+2y 1+x 1x 2-2x 2=0,将y 1=-22x 1+t ,y 2=-22x 2+t 代入上式,得3x 1x 2-2(t +2)(x 1+x 2)+(2t 2+4t )=0,所以3×6t 2-47-2(t +2)·62t 7+(2t 2+4t ) =0,所以5t 2+t -18=0,解得t =95(t =-2舍去), 满足Δ>0,所以直线l 的方程为y =-22x +95. 思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·南京模拟)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,经过P (t ,0)(t >0)的直线l 与C 交于A ,B 两点.(1)若t =4,求AP 长度的最小值;(2)设以AB 为直径的圆交x 轴于M ,N 两点,问是否存在t ,使得OM →·ON →=-4?若存在,求出t 的值;若不存在,请说明理由.解 (1)设A ⎝⎛⎭⎫y 204,y 0,由P (4,0),可得|AP |2=⎝⎛⎭⎫y 204-42+y 20 =y 4016-y 20+16 =116(y 20-8)2+12≥12, 当y 0=±22时,|AP |取得最小值2 3.(2)设直线AB 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,可得y 2-4my -4t =0, 即有y 1+y 2=4m ,y 1y 2=-4t ,设以AB 为直径的圆上任一点Q (x ,y ),M (x 3,0),N (x 4,0),所以Q 的轨迹方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.x 1+x 2=m (y 1+y 2)+2t =4m 2+2t ,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+mt (y 1+y 2)+t 2=-4m 2t +4m 2t +t 2=t 2.所以Q 的轨迹方程化为x 2-(4m 2+2t )x +t 2+y 2-4my -4t =0.令y =0,得x 2-(4m 2+2t )x +t 2-4t =0.所以上式方程的两根分别为x 3,x 4,则x 3x 4=t 2-4t .由OM →·ON →=x 3x 4=-4,即有t 2-4t =-4,解得t =2.所以存在t =2,使得OM →·ON →=-4.题型二 圆锥曲线的综合问题例2 (2022·梅州模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 的距离的取值范围.解 (1)设椭圆C :x 2a 2+y 2b 2=1的右焦点F 2(c ,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离 d =|c +22-1|12+12=a , 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1,所以椭圆的标准方程为x 24+y 23=1. (2)设B (m ,n ),线段MN 的中点为D ,直线OD 与椭圆交于A ,B 两点,因为O 为△BMN 的重心,则|BO |=2|OD |=|OA |,所以D ⎝⎛⎭⎫-m 2,-n 2, 即B 到直线MN 的距离是原点O 到直线MN 的距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处.由|OB |=2,得|OD |=1,则点O 到直线MN 的距离为1,点B 到直线MN 的距离为3. 当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎨⎧ x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2x 1-x 24+y 1+y 2y 1-y 23=0,因为D 为线段MN 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m 4n , 所以直线MN 的方程为y +n 2=-3m 4n ⎝⎛⎭⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m 264n 2+36m 2. 因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m 264n 2+36m 2=12144+16n 2=39+n 2. 因为0<n 2≤3,所以3<9+n 2≤23,所以123≤19+n 2<13, 所以332≤3d <3, 即点B 到直线MN 的距离的取值范围为⎣⎡⎦⎤332,3. 教师备选(2022·开封模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,P 是抛物线C 上一点,且满足FP →=(0,-2).(1)求抛物线C 的方程;(2)已知斜率为2的直线l 与抛物线C 交于A ,B 两点,若|F A →|,|FP →|,|FB →|成等差数列,求该数列的公差.解 (1)由题设知F ⎝⎛⎭⎫p 2,0,设点P (x 0,y 0),由FP →=(0,-2),即⎝⎛⎭⎫x 0-p 2,y 0=(0,-2), ∴x 0=p 2,y 0=-2,代入y 2=2px , 得4=p 2,又p >0,∴p =2,则抛物线C 的方程为y 2=4x .(2)设直线l :y =2x +m ,则⎩⎪⎨⎪⎧y =2x +m ,y 2=4x , 消去y 得4x 2+(4m -4)x +m 2=0,满足Δ=(4m -4)2-16m 2=-32m +16>0,即m <12, 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1-m ,x 1x 2=m 24, 若|F A →|,|FP →|,|FB →|成等差数列,则|F A →|+|FB →|=2|FP →|,即x 1+x 2+2=4,即3-m =4,m =-1.即x 1+x 2=2,x 1x 2=14, 又∵公差d 满足2d =|FB →|-|F A →|=x 2-x 1,而|x 2-x 1|=x 1+x 22-4x 1x 2=3,∴2d =±3,即d =±32. 思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r ,弦长的一半h ,弦心距d 满足r 2=h 2+d 2;圆的弦的垂直平分线过圆心;若AB 是圆的直径,则圆上任一点P 有P A →·PB →=0.跟踪训练2 (2022·鹰潭模拟)如图,O 为坐标原点,抛物线C 1:y 2=2px (p >0)的焦点是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,A 为椭圆C 2的右顶点,椭圆C 2的长轴长为|AB |=8,离心率e =12.(1)求抛物线C 1和椭圆C 2的方程;(2)过A 点作直线l 交C 1于C ,D 两点,射线OC ,OD 分别交C 2于E ,F 两点,记△OEF 和△OCD 的面积分别为S 1和S 2,问是否存在直线l ,使得S 1∶S 2=3∶13?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题知,a =4,c a =12, 所以c =2,所以b =a 2-c 2=23,p =4.所以抛物线C 1的方程为y 2=8x ,椭圆C 2的方程为x 216+y 212=1. (2)由题设知直线l 的斜率不为0,设直线l 的方程为x =my +4.则⎩⎪⎨⎪⎧y 2=8x ,x =my +4⇒y 2-8my -32=0. 设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=8m ,y 1y 2=-32.所以S 2S 1=12|OC |·|OD |sin ∠COD 12|OE |·|OF |sin ∠EOF =|OC |·|OD ||OE |·|OF |=|y 1|·|y 2||y E |·|y F |=32|y E |·|y F |, 因为直线OC 的斜率为y 1x 1=y 1y 218=8y 1,所以直线OC 的方程为y =8y 1x . 由⎩⎨⎧ y =8y 1x ,x 216+y 212=1, 得y 2⎝⎛⎭⎫y 2164×16+112=1, 则y 2E⎝⎛⎭⎫y 2164×16+112=1, 同理可得y 2F⎝⎛⎭⎫y 2264×16+112=1, 所以y 2E ·y 2F ⎝⎛⎭⎫y 2264×16+112⎝⎛⎭⎫y 2164×16+112=1, 所以y 2E ·y 2F =36×256121+48m 2, 要使S 1∶S 2=3∶13,只需322121+48m 236×256=⎝⎛⎭⎫1332, 解得m =±1,所以存在直线l :x ±y -4=0符合条件.课时精练1.已知椭圆C :x 28+y 24=1的左、右焦点为F 1,F 2,点P 为双曲线x 24-y 24=1上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A ,B 和C ,D .(1)设直线PF 1,PF 2的斜率分别为k 1,k 2,证明:k 1·k 2=1;(2)是否存在常数λ,使得1|AB |+1|CD |=λ恒成立?若存在,求λ的值;若不存在,请说明理由. (1)证明 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则k 1=y 0x 0+2,k 2=y 0x 0-2, 因为点P 为双曲线x 24-y 24=1上异于顶点的任意一点, 所以x 20-y 20=4(x 0≠±2),所以k 1k 2=y 0x 0+2·y 0x 0-2=y 20x 20-4=1, 即k 1k 2=1.(2)解 由直线PF 1的方程为y =k 1(x +2), 代入椭圆C :x 28+y 24=1, 可得(1+2k 21)x 2+8k 21x +8k 21-8=0,所以x 1+x 2=-8k 212k 21+1,x 1x 2=8k 21-82k 21+1, 所以|AB |=1+k 21x 1+x 22-4x 1x 2=42·k 21+12k 21+1, 同理可得|CD |=42·k 22+12k 22+1, 因为k 1k 2=1,可得|CD |=42·k 21+1k 21+2, 则1|AB |+1|CD |=142·⎝ ⎛⎭⎪⎫2k 21+1k 21+1+k 21+2k 21+1 =328, 即存在常数λ=328, 使得1|AB |+1|CD |=328恒成立. 2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实半轴长为1,且C 上的任意一点M 到C 的两条渐近线的距离的乘积为34. (1)求双曲线C 的方程;(2)设直线l 过双曲线C 的右焦点F ,与双曲线C 相交于P ,Q 两点,问在x 轴上是否存在定点D ,使得∠PDQ 的平分线与x 轴或y 轴垂直?若存在,求出定点D 的坐标;若不存在,请说明理由.解 (1)由题意可得a =1,所以双曲线C :x 2-y 2b 2=1, 所以渐近线方程为bx ±y =0,设M (x 0,y 0), 则|bx 0-y 0|b 2+1·|bx 0+y 0|b 2+1=34, 即|b 2x 20-y 20|b 2+1=34, 因为M (x 0,y 0)在双曲线上,所以x 20-y 20b2=1, 即b 2x 20-y 20=b 2,所以b 2b 2+1=34, 解得b 2=3,所以双曲线C 的方程为x 2-y 23=1. (2)假设存在D (t ,0),使得∠PDQ 的平分线与x 轴或y 轴垂直,则可得k PD +k QD =0,F (2,0),设P (x 1,y 1),Q (x 2,y 2),当直线l 的斜率存在时,直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k x -2,3x 2-y 2=3, 可得(3-k 2)x 2+4k 2x -4k 2-3=0,所以x 1+x 2=4k 2k 2-3, x 1x 2=4k 2+3k 2-3, 所以k PD +k QD =y 1x 1-t +y 2x 2-t =y 1x 2-t +y 2x 1-t x 1x 2-t x 1+x 2+t 2=0, 即k (x 1-2)(x 2-t )+k (x 2-2)(x 1-t )=0恒成立,整理可得k [2x 1x 2-(t +2)(x 1+x 2)+4t ]=0,所以k ⎣⎢⎡⎦⎥⎤2×4k 2+3k 2-3-t +2×4k 2k 2-3+4t =0, 即2×4k 2+3k 2-3-(t +2)×4k 2k 2-3+4t =0, 所以8k 2+6-4k 2(t +2)+4t (k 2-3)=0,所以6-12t =0,解得t =12, 当直线l 的斜率不存在时,t =12也满足题意. 所以存在点D ⎝⎛⎭⎫12,0,使得∠PDQ 的平分线与x 轴或y 轴垂直.3.(2022·承德模拟)已知M (-2,0),N (2,0),动点P 满足:直线PM 与直线PN 的斜率之积为-14,设动点P 的轨迹为曲线C 1.抛物线C 2:x 2=2py (p >0)与C 1在第一象限的交点为A ,过点A 作直线l 交曲线C 1于点B ,交抛物线C 2于点E (点B ,E 不同于点A ).(1)求曲线C 1的方程;(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.解 (1)设动点P (x ,y )(x ≠±2),则k PM =y x +2,k PN =y x -2. ∵k PM ·k PN =-14, ∴y x +2·y x -2=-14, 即y 2x 2-4=-14, 即x 24+y 2=1(x ≠±2), ∴曲线C 1的方程为x 24+y 2=1(x ≠±2). (2)设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2),E (x 0,y 0),显然直线l 存在斜率,设l :y =kx +m (k ≠0,m ≠0),由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,∴x 1+x 2=-8km 1+4k 2,x 0=-4km 1+4k 2. 又由⎩⎪⎨⎪⎧x 2=2py ,y =kx +m , 得x 2=2p (kx +m ),即x 2-2pkx -2pm =0,∴x 1x 0=-2pm ,∴x 1·-4km 1+4k 2=-2pm ⇒x 1=p ⎝⎛⎭⎫1+4k 22k , ∴k >0,∵⎩⎪⎨⎪⎧ x 24+y 2=1,x 2=2py , 即x 2+x 4p 2=4, ∴p 2⎝⎛⎭⎫1+4k 22k 2+p 4⎝⎛⎭⎫1+4k 22k 4p 2=4, ∴p 2=4⎝⎛⎭⎫1+4k 22k 2+⎝⎛⎭⎫1+4k 22k 4,设⎝⎛⎭⎫1+4k 22k 2=⎝⎛⎭⎫12k +2k 2 =t ≥⎝⎛⎭⎫212k ·2k 2=4, 当且仅当12k =2k ,即k =12时取等号, 则p 2=4t +t 2=4⎝⎛⎭⎫t +122-14, 当t ≥4时,⎝⎛⎭⎫t +122-14≥20, 当k =12,即t =4时,p 2取得最大值,最大值为15, 即p =55. 此时A ⎝⎛⎭⎫255,255,满足Δ>0, 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p 的最大值为55.4.(2022·九江模拟)在平面直角坐标系xOy 中,已知抛物线C :x 2=2py (p >0),P 为直线y =x -2上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.解 (1)P 为直线y =x -2上的动点,当P 在y 轴上时,则P (0,-2),由x 2=2py (p >0),得y =x 22p (p >0), 所以y ′=x p(p >0), 设A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p ,x 1>0,x 2<0, 所以过点A 的切线方程为y -x 212p =x 1p(x -x 1), 又因为点P 在过点A 的切线上,所以-2-x 212p =x 1p(0-x 1), 解得x 21=4p ,又因为OA ⊥OB ,所以直线OA 的斜率为1,所以x 1=x 212p,解得x 1=2p , 解得p =1,所以抛物线C 的方程为x 2=2y .(2)由(1)得抛物线的切线的斜率y ′=x ,A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222, 所以切线P A 的方程为y -x 212=x 1(x -x 1), 切线PB 的方程为y -x 222=x 2(x -x 2), 两切线方程联立解得P ⎝⎛⎭⎫x 1+x 22,x 1x 22,又点P 在直线y =x -2上,所以x 1x 22=x 1+x 22-2, 由题意知直线AB 的斜率一定存在,所以设直线AB 的方程为y =kx +m ,与抛物线的方程联立⎩⎪⎨⎪⎧y =kx +m ,x 2=2y , 消元得x 2-2kx -2m =0,Δ=4k 2+8m >0,所以x 1+x 2=2k ,x 1x 2=-2m , 所以-2m 2=2k 2-2,即k +m =2,满足Δ>0, 所以点O 到直线AB 的距离为d =|m |1+k 2=2-k 21+k 2=1+-4k +31+k 2, 令t =-4k +31+k 2, 则t ′=2k -22k +11+k 22, 令t ′=0,得k =2或k =-12, 所以当k ∈⎝⎛⎭⎫-∞,-12∪(2,+∞)时, t ′>0,t 单调递增,当k ∈⎝⎛⎭⎫-12,2时,t ′<0,t 单调递减, 当k =-12时,t =4,当k →+∞时,t →0且t <0, 所以t max =4,所以d max =1+4=5,所以点O 到直线AB 距离的最大值为 5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考专题第九章 解析几何
第一节 直线与方程
1.(2014·广东,10)曲线y =e -5x +2在点(0,3)处的切线方程为________.
2.(2014·四川,14)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.
3.(2014·江苏,11)在平面直角坐标系xOy 中,若曲线y =ax 2+b x
(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.
1.(2016·福建福州模拟)设不同直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0.则“m =2”是“l 1∥l 2”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
2.(2016·河北邢台模拟)已知点P (x ,y )为曲线y =x +1x
上任一点,点A (0,4),则直线AP 的斜率k 的取值范围是( ) A.[-3,+∞) B.(3,+∞)C.[-2,+∞) D.(1,+∞)
3.(2016·广西南宁调研)已知直线ax +4y -2=0与2x -5y +b =0互相垂直,垂足为(1,c ),则a +b +c 的值为( )
A.-4
B.20
C.0
D.24
4.(2015·山东省实验中学期末)已知倾斜角为α的直线l 与直线x -2y +2=0平行,则tan 2α的值为( ) A.45B.43C.34D.23
5.(2016·四川乐山模拟)已知集合A =⎩⎨⎧⎭
⎬⎫(x ,y )|y -3x -2=a +1,B ={(x ,y )|(a 2-1)x +(a -1)y =15},求a 为何值时,A ∩B =∅.
6.(2015·盐城模拟)经过两条直线2x -3y +3=0,x -y +2=0的交点,且与直线x -3y -1=0平行的直线的一般式方程为______________________.
答案精析
1.5x +y -3=0 [y ′=-5e
-5x ,曲线在点(0,3)处的切线斜率k =y ′|x =0=-5,故切线方程为y -3=-5(x -0),即
5x +y -3=0.]
2.5 [易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,不难验证P A ⊥PB ,所以|P A |2+|PB |2=|AB |2=10,
所以|P A |·|PB |≤|P A |2+|PB |22
=5(当且仅当|P A |=|PB |=5时,等号成立),当P 与A 或B 重合时,|P A |·|PB |=0,故|P A |·|PB |的最大值是5.]
3.-3 [由曲线y =ax 2+b x 过点P (2,-5)可得-5=4a +b 2 (1).又y ′=2ax -b x 2,所以在点P 处的切线斜率4a -b 4
=-72 (2).由(1)(2)解得a =-1,b =-2,所以a +b =-3.]
1.C [当m =2时,代入两直线方程中,易知两直线平行,即充分性成立.当l 1∥l 2时,显然m ≠0,从而有2m
=m -1,解得m =2或m =-1,但当m =-1时,两直线重合,不合要求,故必要性成立,故选C.]
2.A [由题意知k AP =y -4x =1-4x +1x 2=⎝⎛⎭⎫1x -22
-3≥-3.] 3.A [由两直线垂直得-a 4×25
=-1, ∴a =10,将垂足坐标代入ax +4y -2=0,得c =-2,再代入2x -5y +b =0,得b =-12,∴a +b +c =-4.]
4.B [直线的斜率为12,即直线l 的斜率为k =tan α=12,所以tan 2α=2tan α1-tan 2α=2×12
1-⎝⎛⎭⎫122=134
=43,选B.] 5.解 集合A 、B 分别为平面xOy 上的点集,直线l 1:(a +1)x -y -2a +1=0(x ≠2),
l 2:(a 2-1)x +(a -1)y -15=0.
由⎩⎪⎨⎪⎧(a +1)(a -1)=(-1)·(a 2-1),-1×(-15)≠(a -1)(-2a +1),解得a =±1. ①当a =1时,显然有B =∅,所以A ∩B =∅;
②当a =-1时,集合A 为直线y =3(x ≠2),集合B 为直线y =-152
,两直线平行,所以A ∩B =∅; ③由l 1可知(2,3)∉A ,当(2,3)∈B 时,即2(a 2-1)+3(a -1)-15=0,
可得a =52
或a =-4,此时A ∩B =∅. 综上所述,当a =-4,-1,1,52
时,A ∩B =∅. 6.x -3y =0 [两条直线2x -3y +3=0,x -y +2=0的交点为(-3,-1),
所以所求直线为y +1=13(x +3),即x -3y =0.]。