三角函数之正余弦定理

合集下载

第4章第6讲 正弦定理和余弦定理

第4章第6讲 正弦定理和余弦定理

第6讲 正弦定理和余弦定理基础知识整合1.正弦定理a sin A =01b sin B =02csin C =2R , 其中2R 为△ABC 外接圆的直径.变式:a =032R sin A ,b =042R sin B ,c =052R sin C . a ∶b ∶c =06sin A ∶07sin B ∶08sin C . 2.余弦定理a 2=09b 2+c 2-2bc cos A ;b 2=10a 2+c 2-2ac cos B ; c 2=11a 2+b 2-2ab cos C .变式:cos A =12b 2+c 2-a 22bc ;cos B =13a 2+c 2-b 22ac ;cos C =14a 2+b 2-c 22ab . sin 2A =sin 2B +sin 2C -2sin B sin C cos A .3.在△ABC 中,已知a ,b 和A 时,三角形解的情况图形关系式 解的个数 A 为锐角a <b sin A15无解a =b sin A16一解b sin A <a <b 17两解a ≥b18一解 A 为钝角a >b19一解或直角a ≤b 20无解4.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =2112ac sin B =2212ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C2. 2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ; c =b cos A +a cos B .1.(2019·北京西城模拟)已知△ABC 中,a =1,b =2,B =45°,则A 等于( ) A .150° B .90° C .60° D .30°答案 D解析 由正弦定理,得1sin A =2sin45°,得sin A =12.又a <b ,∴A <B =45°.∴A =30°.故选D.2.(2019·安徽马鞍山一模)△ABC的内角A,B,C的对边分别为a,b,c.已知a=3,b=2,A=60°,则c=()A.12B.1C. 3 D.2答案 B解析∵a=3,b=2,A=60°,∴由余弦定理a2=b2+c2-2bc cos A,得3=4+c2-2×2×c×12,整理得c2-2c+1=0,解得c=1.故选B.3.(2019·安徽合肥模拟)在△ABC中,A=60°,AB=2,且△ABC的面积为3 2,则BC的长为()A.32B. 3C.2 3 D.2 答案 B解析因为S=12AB·AC sin A=12×2×32AC=32,所以AC=1,所以BC2=AB2+AC2-2AB·AC cos60°=3.所以BC= 3.4.(2019·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-14,则bc=()A.6 B.5C.4 D.3答案 A解析∵a sin A-b sin B=4c sin C,∴由正弦定理,得a2-b2=4c2,即a2=4c2+b2.由余弦定理,得cos A=b 2+c2-a22bc=b2+c2-(4c2+b2)2bc=-3c22bc=-14,∴bc=6.故选A.5.设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cos C=-1 4,3sin A =2sin B ,则c =________.答案 4解析 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4.6.在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________. 答案 2解析 因为∠A =75°,∠B =45°,所以∠C =60°,由正弦定理可得AC sin45°=6sin60°,解得AC =2.核心考向突破考向一 利用正、余弦定理解三角形 例1 (1)(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .4 2B .30 C.29 D .2 5答案 A解析 因为cos C =2cos 2C 2-1=2×⎝ ⎛⎭⎪⎫552-1=-35,所以AB 2=BC 2+AC 2-2BC ·AC ·cos C =1+25-2×1×5×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2.选A.(2)(2019·沧州七校联考)已知在△ABC 中,a =5,b =15,∠A =30°,则c =( )A .2 5B . 5C .25或 5D .均不正确 答案 C解析 ∵a sin A =bsin B ,∴sin B =b sin A a =155·sin30°=32.∵b >a ,∴B =60°或120°.若B =60°,则C =90°,∴c =a 2+b 2=2 5. 若B =120°,则C =30°,∴a =c = 5.解三角形问题的技巧(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.①应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍.②求角时易忽略角的范围而导致错误,因此需要根据大边对大角,大角对大边的规则,画图进行判断.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角规则进行判断.[即时训练] 1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定 答案 C解析 由正弦定理,得b sin B =csin C , ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.2.(2019·浙江高考)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =________,cos ∠ABD =________.答案1225 7210解析 如图, 易知sin ∠C =45, cos ∠C =35.在△BDC 中,由正弦定理可得 BD sin ∠C =BCsin ∠BDC, ∴BD =BC ·sin ∠C sin ∠BDC =3×4522=1225.由∠ABC =∠ABD +∠CBD =90°,可得cos ∠ABD =cos(90°-∠CBD )=sin ∠CBD =sin[π-(∠C +∠BDC )] =sin(∠C +∠BDC )=sin ∠C ·cos ∠BDC +cos ∠C ·sin ∠BDC =45×22+35×22=7210.考向二 利用正、余弦定理判断三角形形状例2(1)设△ABC的内角A,B,C所对的边分别为a,b,c,若a2+b2-c2=ab,且2cos A sin B=sin C,则△ABC的形状为()A.等边三角形B.直角三角形C.钝角三角形D.不确定答案 A解析∵a2+b2-c2=ab,∴cos C=a 2+b2-c22ab=12,又0<C<π,∴C=π3,又由2cos A sin B=sin C,得sin(B-A)=0,∴A=B,故△ABC为等边三角形.(2)在△ABC中,a,b,c分别表示三个内角A,B,C的对边,如果(a2+b2)sin(A -B)=(a2-b2)sin(A+B),则该三角形的形状为()A.直角三角形B.等边三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 C解析∵(a2+b2)sin(A-B)=(a2-b2)sin(A+B),∴(a2+b2)(sin A cos B-cos A sin B)=(a2-b2)(sin A cos B+cos A sin B),∴a2cos A sin B=b2sin A cos B,∴sin2A cos A sin B=sin2B sin A cos B,∴sin A cos A=sin B cos B,∴sin2A=sin2B,∴A=B或A+B=π2,即△ABC是等腰三角形或直角三角形.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a=2R sin A,a2+b2-c2=2ab cos C等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A=sin B⇔A=B;sin(A-B)=0⇔A=B;sin2A=sin2B⇔A=B或A+B=π2等.(2)利用正弦定理、余弦定理化角为边,如sin A=a2R,cos A=b2+c2-a22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.提醒:(1)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.(2)在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A,B,C的范围对三角函数值的影响.[即时训练] 3.(2019·陕西安康模拟)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B解析∵b cos C+c cos B=a sin A,∴由正弦定理,得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.又sin A>0,∴sin A=1,又A∈(0,π),∴A=π2,故△ABC为直角三角形.4.在△ABC中,角A,B,C所对的边分别为a,b,c,若cb<cos A,则△ABC 为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形答案 A解析根据正弦定理得cb =sin Csin B<cos A,即sin C<sin B cos A,∵A+B+C=π,∴sin C=sin(A+B)<sin B cos A,整理得sin A cos B<0,又三角形中sin A>0,∴cos B<0,∴π2<B<π.∴△ABC为钝角三角形.精准设计考向,多角度探究突破考向三正、余弦定理的综合应用角度1三角形面积问题例3(1)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若sin A=223,a=3,S△ABC=22,则b的值为()A.6 B.4C.2 D.2或3答案 D解析因为S△ABC=22=12bc sin A,sin A=223,且A∈⎝⎛⎭⎪⎫0,π2,所以bc=6,cos A=13,又因为a=3,由余弦定理,得9=b2+c2-2bc cos A=b2+c2-4,所以b2+c2=13,可得b=2或b=3.(2)(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a =2c,B=π3,则△ABC的面积为________.答案6 3解析由余弦定理,得b2=a2+c2-2ac cos B.又b=6,a=2c,B=π3,∴36=4c2+c2-2×2c2×12,∴c=23,∴a=43,∴S△ABC=12ac sin B=12×43×23×32=6 3.(3)(2020·合肥八中模拟)在古希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长分别为a,b ,c ,则其面积S =p (p -a )(p -b )(p -c ),这里p =12(a +b +c ).已知在△ABC 中,BC =6,AB =2AC ,则其面积取最大值时,sin A =________.答案 35解析 已知在△ABC 中,BC =6,AB =2AC , 所以a =6,c =2b ,所以p =12(6+b +2b )=3+3b2, △ABC 的面积S =p (p -a )(p -b )(p -c ) =⎝ ⎛⎭⎪⎫3+3b 2⎝ ⎛⎭⎪⎫3b 2-3⎝ ⎛⎭⎪⎫3b 2+3-b ⎝ ⎛⎭⎪⎫3+3b 2-2b =⎝ ⎛⎭⎪⎫3+3b 2⎝ ⎛⎭⎪⎫3b 2-3⎝ ⎛⎭⎪⎫b 2+3⎝ ⎛⎭⎪⎫3-b 2 =⎝ ⎛⎭⎪⎫9b 24-9⎝ ⎛⎭⎪⎫9-b 24 =3-116(b 2-20)2+16.故当b 2=20时,S 有最大值, 所以b =25,c =45, cos A =b 2+c 2-a 22bc =45, 所以sin A =35.三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.[即时训练] 5.(2018·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知b sin C+c sin B=4a sin B sin C,b2+c2-a2=8,则△ABC的面积为________.答案233解析根据题意,结合正弦定理可得sin B sin C+sin C sin B=4sin A sin B sin C,所以sin A=12,结合余弦定理可得2bc cos A=8,所以A为锐角,所以cos A=32,所以bc=833,所以△ABC的面积为S=12bc sin A=12×833×12=233.6.(2020·福建三明质量检查)△ABC的内角A,B,C所对的边分别是a,b,c,且b=3(a cos B+b cos A),b+c=8.(1)求b,c;(2)若BC边上的中线AD=72,求△ABC的面积.解(1)由正弦定理,得sin B=3(sin A cos B+sin B cos A),所以sin B=3sin(A+B),因为A+B+C=π,所以sin(A+B)=sin(π-C)=sin C,所以sin B=3sin C,所以b=3c,又b+c=8,所以b=6,c=2.(2)在△ABD和△ACD中,由余弦定理,得c2=AD2+BD2-2AD·BD·cos∠ADB,b2=AD2+CD2-2AD·CD·cos∠ADC.因为∠ADB+∠ADC=π,所以cos∠ADB=-cos∠ADC,又因为b=6,c=2,BD=DC=a2,AD=72,所以a2=31,所以cos ∠BAC =b 2+c 2-a 22bc =38,又因为∠BAC ∈(0,π),所以sin ∠BAC =558. 所以△ABC 的面积S △ABC =12bc sin ∠BAC =3554. 角度2 三角形中的范围问题例4 (1)(2019·江西赣州模拟)在锐角△ABC 中,若B =2A ,则ba 的取值范围是( )A .(2,6)B .(1,2)C .(2,3)D .(3,6)答案 C解析 ∵B =2A ,∴b a =sin Bsin A =2cos A . 又△ABC 为锐角三角形,∴A +B =3A >π2,B =2A <π2,∴π6<A <π4,∴22<cos A <32,∴2<ba < 3.故选C.(2)(2018·北京高考)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =________;ca 的取值范围是________.答案 π3 (2,+∞)解析 依题意有12ac sin B =34(a 2+c 2-b 2)=34×2ac cos B ,则tan B =3, ∵0<∠B <π,∴∠B =π3.c a =sin C sin A =sin ⎝ ⎛⎭⎪⎫2π3-A sin A =12+3cos A 2sin A =12+32·1tan A , ∵∠C 为钝角,∴2π3-∠A >π2,又∠A >0,∴0<∠A <π6,则0<tan A <33, ∴1tan A >3,故c a >12+32×3=2. ∴ca 的取值范围为(2,+∞).解三角形问题中,求解某个量(式子)的取值范围是命题的热点,其主要解决思路是:要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.[即时训练] 7.(2019·山东实验中学等四校联考)如图所示,边长为1的正三角形ABC 中,点M ,N 分别在线段AB ,AC 上,将△AMN 沿线段MN 进行翻折,得到右图所示的图形,翻折后的点A 在线段BC 上,则线段AM 的最小值为________.答案 23-3解析 设AM =x ,∠AMN =α,则BM =1-x , ∠AMB =180°-2α,∴∠BAM =2α-60°, 在△ABM 中,由正弦定理可得AM sin ∠ABM =BM sin ∠BAM ,即x32=1-x sin (2α-60°),∴x =3232+sin (2α-60°),∴当2α-60°=90°,即α=75°时,x 取得最小值为3232+1=23-3,即线段AM 的最小值为23-3.8.(2019·陕西第三次教学质量检测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且(a +b +c )(a +b -c )=3ab .(1)求角C 的值;(2)若c =2,且△ABC 为锐角三角形,求a +b 的取值范围. 解 (1)由题意知(a +b +c )(a +b -c )=3ab , ∴a 2+b 2-c 2=ab ,由余弦定理可知, cos C =a 2+b 2-c 22ab =12, 又C ∈(0,π),∴C =π3. (2)由正弦定理可知, a sin A =b sin B =2sin π3=433,即a =433sin A ,b =433sin B , ∴a +b =433(sin A +sin B ) =433⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫2π3-A=23sin A +2cos A =4sin ⎝ ⎛⎭⎪⎫A +π6,又△ABC 为锐角三角形,∴⎩⎪⎨⎪⎧0<A <π2,0<B =2π3-A <π2,即π6<A <π2,则π3<A +π6<2π3,∴23<4sin ⎝ ⎛⎭⎪⎫A +π6≤4,综上a +b 的取值范围为(23,4]. 角度3 正、余弦定理解决平面几何问题例5 (2019·南宁模拟)如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.解 (1)由cos ∠ADC =17知sin ∠ADC =437, 于是sin ∠BAD =sin(∠ADC -∠B ) =sin ∠ADC ·cos π3-cos ∠ADC ·sin π3 =437×12-17×32=3314. (2)在△ABD 中,由正弦定理,得BD =AB ·sin ∠BAD sin ∠ADB =AB ·sin ∠BAD sin (π-∠ADC )=8×3314437=3.在△ABC 中,由余弦定理,得 AC 2=AB 2+BC 2-2AB ·BC ·cos B =82+52-2×8×5×12=49.所以AC =7.平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.[即时训练]9.(2020·河北唐山期末)如图,在梯形ABCD中,∠A=∠D=90°,M为AD上一点,AM=2MD=2,∠BMC=60°.(1)若∠AMB=60°,求BC的长;(2)设∠DCM=θ,若MB=4MC,求tanθ.解(1)由∠BMC=60°,∠AMB=60°,得∠CMD=60°.在Rt△ABM中,MB=2AM=4;在Rt△CDM中,MC=2MD=2.在△MBC中,由余弦定理,得BC2=MB2+MC2-2MB·MC·cos∠BMC=12,所以BC=2 3.(2)因为∠DCM=θ,所以∠ABM=60°-θ,0°<θ<60°.在Rt△MCD中,MC=1,sinθ,在Rt△MAB中,MB=2sin(60°-θ)由MB =4MC ,得2sin(60°-θ)=sin θ, 所以3cos θ-sin θ=sin θ,即2sin θ=3cos θ, 整理可得tan θ=32.学科素养培优(八) 利用基本不等式破解三角形中的最值问题(2018·江苏高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.答案 9解析 依题意画出图形,如图所示. 易知S △ABD +S △BCD =S △ABC , 即12c sin60°+12a sin60°=12ac sin120°, ∴c +a =ac ,∴1a +1c =1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”.答题启示利用基本不等式破解三角形中的最值问题时,当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.对点训练(2019·山东烟台模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2(tan A +tan B )=tan A cos B +tan Bcos A .(1)证明:a +b =2c ; (2)求cos C 的最小值.解 (1)证明:由题意知2⎝ ⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B .因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C .由正弦定理,得a +b =2c .(2)由(1)知c =a +b2,所以cos C =a 2+b 2-c 22ab =a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab=38⎝ ⎛⎭⎪⎫a b +b a -14≥34-14=12,当且仅当a =b 时,等号成立. 故cos C 的最小值为12.课时作业1.(2020·广东广雅中学模拟)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 所对的边,若3b cos C =c (1-3cos B ),则sin C ∶sin A =( )A .2∶3B .4∶3C .3∶1D .3∶2答案 C解析 由正弦定理得3sin B cos C =sin C -3sin C cos B,3sin(B +C )=sin C ,因为A +B +C =π,所以B +C =π-A ,所以3sin A =sin C ,所以sin C ∶sin A =3∶1,故选C.2.(2019·南昌模拟)在△ABC 中,已知C =π3,b =4,△ABC 的面积为23,则c =( )A .27B .7C .2 2D .2 3答案 D解析 由S =12ab sin C =2a ×32=23,解得a =2,由余弦定理得c 2=a 2+b 2-2ab cos C =12,故c =2 3.3.(2019·兰州市实战考试)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24 B .-24 C.34 D .-34答案 B解析 由题意得,b 2=ac =2a 2,所以b =2a ,所以cos C =a 2+b 2-c22ab=a 2+2a 2-4a 22a ×2a=-24,故选B.4.(2019·广西南宁模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3b sin A ,则△ABC 的面积等于( )A.12 B .32C .1D .34答案 A解析 ∵a =3b sin A ,∴由正弦定理得sin A =3sin B sin A ,∴sin B =13.∵ac =3,∴△ABC 的面积S =12ac sin B =12×3×13=12.故选A.5.在△ABC 中,角A ,B ,C 所对的边的长分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 C解析 根据正弦定理可得a 2+b 2<c 2.由余弦定理,得cos C =a 2+b 2-c22ab <0,故C 是钝角.6.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =( )A.π6 B .π4 C.π3 D .3π4答案 C解析 因为c -b c -a =sin A sin C +sin B ,所以c -b c -a =ac +b ,即(c -b )(c +b )=a (c -a ),所以a 2+c 2-b 2=ac ,所以cos B =12,又B ∈(0,π),所以B =π3.7.(2019·大连双基测试)△ABC 中,AB =2,AC =3,B =60°,则cos C =( ) A.33 B .±63 C .-63 D .63 答案 D解析 由正弦定理得AC sin B =AB sin C ,∴sin C =AB ·sin B AC =2×sin60°3=33,又AB <AC ,∴0<C <B =60°,∴cos C =1-sin 2C =63.故选D.8.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2 B .π3 C.π4 D .π6 答案 C解析 由题可知S △ABC =12ab sin C =a 2+b 2-c 24,所以a 2+b 2-c 2=2ab sin C .由余弦定理得a 2+b 2-c 2=2ab cos C ,∴sin C =cos C .∵C ∈(0,π),∴C =π4.故选C.9.(2019·江西新八校第二次联考)我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222,若a 2sin C =2sin A ,(a +c )2=6+b 2,则用“三斜求积”公式求得△ABC 的面积为( )A.32 B .3 C.12 D .1答案 A解析 因为a 2sin C =2sin A ,所以a 2c =2a ,所以ac =2, 因为(a +c )2=6+b 2,所以a 2+c 2+2ac =6+b 2, 所以a 2+c 2-b 2=6-2ac =6-4=2, 从而△ABC 的面积为S △ABC =14×⎣⎢⎡⎦⎥⎤22-⎝ ⎛⎭⎪⎫222=32,故选A. 10.(2019·南阳模拟)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则C =( )A.π3 B .3π4 C.5π6 D .2π3答案 D解析 因为3sin A =5sin B ,所以由正弦定理可得:3a =5b ,所以a =5b3. 又b +c =2a ,所以c =2a -b =7b3, 不妨取b =3,则a =5,c =7,所以cos C=a 2+b2-c22ab=52+32-722×5×3=-12.因为C∈(0,π),所以C=2π3.11.已知△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C +c cos A,b=2,则△ABC的面积的最大值是()A.1 B. 3C.2 D.4答案 B解析∵2b cos B=a cos C+c cos A,∴2sin B cos B=sin A cos C+sin C cos A=sin(A+C)=sin B.∵0<B<π,∴cos B=12,∴B=π3.∵cos B=a 2+c2-b22ac=12,b=2,∴a2+c2-4=ac.∵a2+c2≥2ac,∴2ac-4≤ac,即ac≤4,当且仅当a=c时等号成立,∴S△ABC =12ac sin B≤12×4×32=3,故△ABC的面积的最大值为 3.12.在△ABC中,角A,B,C的对边分别为a,b,c,若2(b cos A+a cos B)=c2,b=3,3cos A=1,则a=()A. 5 B.3C.10 D.4答案 B解析由正弦定理可得2(sin B cos A+sin A cos B)=c sin C,∵2(sin B cos A+sin A cos B)=2sin(A+B)=2sin C,∴2sin C=c sin C,∵sin C>0,∴c=2,由余弦定理得a2=b2+c2-2bc cos A=32+22-2×3×2×13=9,∴a=3.故选B.13.(2020·北京海淀模拟)在△ABC中,A=2π3,a=3c,则bc=________.答案 1解析由题意知sin2π3=3sin C,∴sin C=12,又0<C<π3,∴C=π6,从而B=π6,∴b=c,故bc=1.14.△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C+c cos A,则B=________.答案π3解析解法一:由2b cos B=a cos C+c cos A及正弦定理,得2sin B cos B=sin A cos C+sin C cos A.∴2sin B cos B=sin(A+C).又A+B+C=π,∴A+C=π-B.∴2sin B cos B=sin(π-B)=sin B.又sin B≠0,∴cos B=12.∴B=π3.解法二:∵在△ABC中,a cos C+c cos A=b,∴条件等式变为2b cos B=b,∴cos B=12.又0<B<π,∴B=π3.15.(2019·杭州模拟)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sin B)=(c-b)·sin C,则△ABC的面积的最大值为________.答案 3解析因为a=2,(2+b)(sin A-sin B)=(c-b)sin C,所以根据正弦定理,得(a +b)(a-b)=(c-b)c,所以a2-b2=c2-bc,所以b2+c2-a2=bc,根据余弦定理,得cos A=b 2+c2-a22bc=12,因为A∈(0,π),故A=π3.因为b2+c2-bc=4,所以4=b2+c2-bc≥2bc-bc=bc(当且仅当b=c=2时取等号),所以△ABC的面积S△ABC =12bc sin A=34bc≤34×4=3,所以△ABC的面积的最大值为 3.16.已知在△ABC 中,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示, 则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则sin ∠ABC =154,cos ∠ABC =14. 所以S △BDC =12BC ·BD ·sin ∠DBC =12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD 22BD ·BC =8-CD 28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104.17.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求sin C .解 (1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C , 故由正弦定理得b 2+c 2-a 2=bc . 由余弦定理得cos A =b 2+c 2-a 22bc =12. 因为0°<A <180°,所以A =60°. (2)由(1)知B =120°-C ,由题设及正弦定理,得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C , 可得cos(C +60°)=-22.因为0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos60°-cos(C +60°)sin60°=6+24.18.(2019·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值; (2)求sin ⎝ ⎛⎭⎪⎫2B +π6的值.解 (1)在△ABC 中,由正弦定理b sin B =csin C , 得b sin C =c sin B .由3c sin B =4a sin C , 得3b sin C =4a sin C ,即3b =4a ,所以b =43a . 因为b +c =2a ,所以c =23a .由余弦定理可得 cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14. (2)由(1)可得sin B =1-cos 2B =154, 从而sin2B =2sin B cos B =-158, cos2B =cos 2B -sin 2B =-78,故sin ⎝ ⎛⎭⎪⎫2B +π6=sin2B cos π6+cos2B sin π6=-158×32-78×12=-35+716.19.(2019·河南安阳一模)如图,在圆内接四边形ABCD 中,AB =2,AD =1,3BC =3BD cos α+CD sin β.(1)求角β的大小;(2)求四边形ABCD 周长的取值范围. 解 (1)∵3BC =3BD cos α+CD sin β, ∴3sin ∠BDC =3sin βcos α+sin αsin β, ∴3sin(α+β)=3sin βcos α+sin αsin β, ∴3(sin αcos β+sin βcos α) =3sin βcos α+sin αsin β,∴3sin αcos β=sin αsin β,∴tan β=3, 又β∈(0,π),∴β=π3.(2)根据题意,得∠BAD =2π3,由余弦定理,得 BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD =4+1-2×2×1×cos 2π3=7, 又BD 2=CB 2+CD 2-2CB ·CD cos β =(CB +CD )2-3CB ·CD≥(CB +CD )2-3(CB +CD )24=(CB +CD )24,∴CB +CD ≤27,又CB +CD >7,∴四边形ABCD 的周长AB +BC +CD +DA 的取值范围为(3+7,3+27]. 20.(2019·河南联考)如图,在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c,已知c=4,b=2,2c cos C=b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.解(1)因为c=4,b=2,2c cos C=b,所以cos C=b2c=14.由余弦定理得cos C=a2+b2-c22ab=a2+4-164a=14,所以a=4,即BC=4.在△ACD中,CD=2,AC=2,所以AD2=AC2+CD2-2AC·CD·cos∠ACD=6,所以AD= 6.(2)因为AE是∠BAC的平分线,所以S△ABES△ACE=12AB·AE·sin∠BAE12AC·AE·sin∠CAE=ABAC=2,又S△ABES△ACE=BEEC,所以BEEC=2,所以EC=13BC=43,DE=2-43=23.又cos C=14,所以sin C=1-cos2C=154.所以S△ADE=12DE·AC·sin C=156.。

三角函数正余弦定理公式大全

三角函数正余弦定理公式大全

三角函数正余弦定理公式大全三角函数是数学中的一项重要内容,其常用到的公式有正弦定理和余弦定理。

这两个定理在解决三角形问题时起着非常关键的作用,可以帮助我们求解三角形的各个边长和角度。

下面将详细介绍三角函数的正弦定理和余弦定理的公式及其应用。

1.正弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C,则有以下公式成立:sinA / a = sinB / b = sinC / c其中,a,b,c为三角形ABC的边长,A,B,C为对应的角度。

正弦定理可以用来求解三角形的边长或角度,只要已知任意两个角或边长即可。

应用1:已知三角形两边和夹角的情况下,可以利用正弦定理求解第三边的长度。

例如:已知三角形ABC中,边AB = 5 cm,边AC = 7 cm,∠BAC = 60°,求边BC的长度。

解:根据正弦定理可得:sin∠BAC / 5 = sin∠ABC / BC将∠BAC=60°代入,可得:sin60° / 5 = sin∠ABC / BC√3 / 2 / 5 = sin∠ABC / BC√3 / 10 = sin∠ABC / BC再将sin∠ABC的值代入,求得BC的值。

2.余弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C,则有以下公式成立:c^2 = a^2 + b^2 - 2ab * cosC其中,a,b,c为三角形ABC的边长,A,B,C为对应的角度。

余弦定理可以用来求解三角形的边长或角度,只要已知任意一个角的两边长度即可。

应用2:已知三角形两边和夹角的情况下,可以利用余弦定理求解第三边的长度。

例如:已知三角形ABC中,边AB = 5 cm,边AC = 7 cm,∠BAC = 60°,求边BC的长度。

解:根据余弦定理可得:BC^2 = AB^2 + AC^2 - 2 * AB * AC * cos∠BAC将已知数值代入,可得:BC^2 = 5^2 + 7^2 - 2 * 5 * 7 * cos60°BC^2=25+49-70*0.5BC^2=25+49-35BC^2=39BC=√39求得边BC的长度。

正弦,余弦定理

正弦,余弦定理

正弦,余弦定理正弦和余弦定理是三角函数中的重要概念,它们在解决三角形相关问题时起到了关键作用。

本文将分别介绍正弦和余弦定理的含义、推导过程以及应用场景。

一、正弦定理正弦定理是指在任意三角形中,三边的长度与其对应的角的正弦值之间存在一定的关系。

设三角形的三边分别为a、b、c,对应的角为A、B、C,则正弦定理可以表示为:a/sinA = b/sinB = c/sinC正弦定理的推导过程如下:假设有一个三角形ABC,分别连接AB、AC的垂线,垂足分别为D、E。

根据几何性质,可以得到以下关系:AD = b * sinCAE = c * sinB再根据三角形的内角和等于180°的性质,可以得到:∠B + ∠C + ∠AED = 180°∠B + ∠C + ∠ADE = 180°将上述两个等式代入,得到:∠ADE + ∠AED = 180°∠ADE + ∠ABC = 180°由此可以得出∠ABC = ∠AED,进而得到以下等式:sinA/sinB = AD/AE = b/c通过类似的推导过程,可以得到其他两个等式:sinA/sinC = c/asinB/sinC = a/b由此可以看出,正弦定理实际上是三个比例关系的等式,可以用来求解未知边长或角度的问题。

例如,已知一个三角形的两边和夹角,可以利用正弦定理求解第三边的长度或另外两个角的大小。

二、余弦定理余弦定理是指在任意三角形中,三边的长度与其对应的角的余弦值之间存在一定的关系。

设三角形的三边分别为a、b、c,对应的角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2abcosCb² = a² + c² - 2accosBa² = b² + c² - 2bccosA余弦定理的推导过程如下:假设有一个三角形ABC,分别连接AC、BC的垂线,垂足分别为D、E。

正弦定理和余弦定理总结

正弦定理和余弦定理总结

cot A/2 sinA/ 1 cosA 1 cosA /sinA.

sin2 1 cos2 2 2
cos2 1 cos2 2 2
正弦定理
• • • • • 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 即a/sinA=b/sinB=c/sinC=2R (2R是此三角形外接圆的半径的两倍) 方法一 证明:在锐角△ABC中,设BC=a,AC=b,AB=c 作CH⊥AB垂足为点H
余弦定理
• 两式相加
a2 b2 accos bccos abcos abcos
• 整理得:
a2 b2 c2 2abcos
a2 b2 2ab cos c2
tan(3π/2-α)= cotα
cos(3π/2-α)= -sinα
cot(3π/2-α)= tanα
诱导公式记背诀窍:奇变偶不变,符号看象限
以上k∈Z
两角和公式
• sin(α+β)=sinαcosβ+cosαsinβ
• sin(α-β)=sinαcosβ –cosαsinβ • cos(α+β)=cosαcosβ-sinαsinβ • cos(α-β)=cosαcosβ+sinαsinβ
三角函数
锐角三角函数公式
正弦:sin 的对边 的斜边 余弦:cos 的邻边 的斜边
正切:tan 的对边 的邻边
余切:cot 的邻边 的对边
简单的三角函数
• 定义
cot 1 tan
csc 1 sin
1 sec cos
• • • • •
CH=a· sinB CH=b· sinA

正余弦正切的和差角公式

正余弦正切的和差角公式

正余弦正切的和差角公式正余弦正切的和差角公式,是数学中最为重要的测量工具,它可以用于计算相关角度间的余弦、正弦和正切值之和和差。

它是非常重要的理论基础,在几何图形、图论、三角测量以及空间平面化解非常有帮助。

一、正余弦正切的和差角公式1、正余弦定理:当三角形的三个内角A,B,C满足$\cos A+\cosB+\cos C=0$ 时,称被称为正余弦定理,它具有如下特点:(1) 当三角形的三个内角A、B、C满足$\cos A+\cos B+\cos C=0$ 时,其三个角的余弦值之和为零。

(2) 任何正三角形当中,其三个内角A、B、C之和等于$\pi$,即$A+B+C=\pi$。

(3) 若三角形为锐角三角形,则角A、B、C的余弦之和为$-\dfrac{3}{4}$,而当其为直角三角形时,则角A、B、C余弦之和为$-\dfrac{1}{2}$。

2、正切和差定理:当三角形的三个内角A,B,C满足$\tan A\cdot\tanB\cdot\tan C=1$ 时,称被称为正切和差定理,它具有如下特点:(1) 当三角形的三个内角A、B、C满足$\tan A\cdot\tan B\cdot\tanC=1$ 时,其三个角的正切值之积为1。

(2) 若三角形为锐角三角形,则角A、B、C的正切之积大于1,而当其为直角三角形时,则角A、B、C正切之积等于1。

(3) 任何三角形当中,两角的正切余弦之积等于另一角的正切余弦之差,即$\tan A\cdot\cos A-\tan B\cdot\cos B=\tan C\cdot\cos C$。

二、应用1、几何图形:正余弦正切的和差角公式可以帮助我们精确测量几何图形的角度。

通过计算出来的和差角公式,可以精确测量出直线的斜率、平行线的平行角以及有关等边三角形的角度等。

2、图论:正余弦正切的和差角公式对于解决图论中各种疑难问题也起着非常重要的作用。

例如,当我们在图论中试图寻找两个距离最近的顶点时,可以利用正余弦正切的和差角公式计算出这两个顶点之间的最短距离。

三角函数与解三角形:正弦定理和余弦定理

三角函数与解三角形:正弦定理和余弦定理

正弦定理和余弦定理【考点梳理】1.正弦定理和余弦定理(1)S=12a·h a(h a表示边a上的高);(2)S=12ab sin C=12ac sin B=12bc sin A.(3)S=12r(a+b+c)(r为内切圆半径).【考点突破】考点一、利用正、余弦定理解三角形【例1】在△ABC中,∠BAC=3π4,AB=6,AC=32,点D在BC边上,AD=BD,求AD的长.[解析] 设△ABC的内角∠BAC,B,C所对边的长分别是a,b,c,由余弦定理得a2=b2+c2-2bc cos∠BAC=(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a=310.又由正弦定理得sin B=b sin∠BACa=3310=1010,由题设知0<B<π4,所以cos B=1-sin 2B=1-110=31010.在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B,故由正弦定理得AD=AB·sin Bsin(π-2B)=6sin B2sin B cos B=3cos B=10.【类题通法】1.正弦定理是一个连比等式,只要知道其比值或等量关系就可以运用正弦定理通过约分达到解决问题的目的.2.(1)运用余弦定理时,要注意整体思想的运用.(2)在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.【对点训练】1.已知a,b,c分别为△ABC三个内角A,B,C的对边,且(b-c)(sin B +sin C)=(a-3c)sin A,则角B的大小为()A.30°B.45°C.60°D.120°[答案]A[解析] 由正弦定理a sin A =b sin B =csin C 及(b -c )·(sin B +sin C )=(a -3c )sin A 得(b -c )(b +c )=(a -3c )a ,即b 2-c 2=a 2-3ac ,∴a 2+c 2-b 2=3ac .又∵cos B =a 2+c 2-b 22ac ,∴cos B =32,∴B =30°.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.[答案] 2113[解析] 在△ABC 中,∵cos A =45,cos C =513,∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又∵a sin A =b sin B ,∴b =a sin B sin A =1×636535=2113.考点二、判断三角形的形状【例2】(1)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,满足a cos A =b cos B ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形(2)设角A ,B ,C 是△ABC 的三个内角,则“A +B <C ”是“△ABC 是钝角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] (1)D (2)A[解析] (1)因为a cos A =b cos B ,由正弦定理得sin A cos A =sin B cos B ,即sin 2A =sin 2B ,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形,故选D.(2)由A +B +C =π,A +B <C ,可得C >π2,故三角形ABC 为钝角三角形,反之不成立.故选A. 【类题通法】1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系.(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能. 【对点训练】1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A cos B =sin C ,那么△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形[答案] B[解析] 法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b .2.在△ABC 中,c =3,b =1,∠B =π6,则△ABC 的形状为( )A.等腰直角三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形[答案] D[解析]根据余弦定理有1=a2+3-3a,解得a=1或a=2,当a=1时,三角形ABC为等腰三角形,当a=2时,三角形ABC为直角三角形,故选D.考点三、与三角形面积有关的问题【例3】已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sin A sinC.(1)若a=b,求cos B;(2)设B=90°,且a=2,求△ABC的面积.[解析] (1)由题设及正弦定理可得b2=2ac.又a=b,可得b=2c,a=2c.由余弦定理可得cos B=a2+c2-b22ac=14.(2)由(1)知b2=2ac.因为B=90°,由勾股定理得a2+c2=b2,故a2+c2=2ac,进而可得c=a= 2.所以△ABC的面积为12×2×2=1.【类题通法】三角形面积公式的应用方法:(1)对于面积公式S=12ab sin C=12ac sin B=12bc sin A,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【对点训练】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=7,△ABC的面积为332,求△ABC的周长.[解析] (1)由已知及正弦定理得2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sin(A+B)=sin C,故2sin C cos C=sin C.可得cos C=12,所以C=π3.(2)由已知得12ab sin C=332.又C=π3,所以ab=6.由已知及余弦定理得a2+b2-2ab cos C=7,故a2+b2=13,从而(a+b)2=25.所以△ABC的周长为5+7.。

初中正弦定理和余弦定理

初中正弦定理和余弦定理

初中正弦定理和余弦定理
《初中正弦定理和余弦定理》
正弦定理和余弦定理是初中数学中的重要定理,它们与三角函数的概念和几何形状的关系有着密切联系。

通过这两个定理,我们可以解决许多与三角形相关的问题,如计算三角形的边长和角度等。

正弦定理是指在一个任意三角形ABC中,三个角的正弦比例与对应的边长的比例呈正比关系。

即对于三角形ABC的三个角A、B、C和对边a、b、c,有以下关系:
a/sinA = b/sinB = c/sinC
其中,sinA表示角A的正弦值。

正弦定理的应用十分广泛,可以用来求解未知边长或角度,
推导出其他重要公式,如海伦公式等。

余弦定理则是指在一个任意三角形ABC中,三个角的余弦值与对应边长的平方的比例呈反比
关系。

即对于三角形ABC的三个角A、B、C和对边a、b、c,有以下关系:
c² = a² + b² - 2ab*cosC
其中,cosC表示角C的余弦值。

余弦定理的应用十分广泛,可以用来求解未知边长或角度,
判断三角形的形状,以及解决各种实际问题,如测量不便的三角形的边长等。

正弦定理和余弦定理在解决三角形问题时起着重要的作用。

它们不仅是数学课堂上的重点内容,也是在实际生活中运用数学解决问题的有效工具。

通过掌握正弦定理和余弦定理,我们可以更好地理解三角形的性质和特点,提高解题的准确性和效率。

因此,对于初中生来说,掌握正弦定理和余弦定理是十分重要的。

三角函数中的正弦定理与余弦定理

三角函数中的正弦定理与余弦定理

三角函数中的正弦定理与余弦定理三角函数是数学中常用的一种函数,在几何学中也起着重要的作用。

本文将探讨三角函数中的两个关键定理:正弦定理和余弦定理。

这两个定理在解决各种三角形问题时非常有用,通过它们可以计算出未知的边长和角度。

一、正弦定理正弦定理是一个关于三角形边长和角度之间关系的定理,它适用于所有的三角形。

正弦定理表达的是三角形中一个角的正弦值与其对边的比例关系。

设三角形的三边分别为a、b、c,相应的角为A、B、C,那么正弦定理可以表示为:a/sinA = b/sinB = c/sinC这个定理的一种形式是:a/sinA = 2R其中,R是三角形外接圆的半径。

正弦定理的应用非常广泛,例如可以通过已知两边和一个角度,求解未知边长或者角度。

同时,它也常用于解决三角形的面积问题。

二、余弦定理余弦定理是另一个与三角形边长和角度之间关系的定理,与正弦定理相比,余弦定理更加灵活,适用于各种类型的三角形。

余弦定理表达的是三角形中一个角的余弦值与其对边的平方和其他两边的乘积之间的关系。

设三角形的三边分别为a、b、c,相应的角为A、B、C,那么余弦定理可以表示为:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC余弦定理的应用非常广泛,可以通过已知三边求解未知角度或者通过已知两边和一个夹角求解未知边长。

三、正弦定理与余弦定理的关系正弦定理和余弦定理在解决三角形问题时可以互相补充使用。

根据正弦定理,我们可以求解任意一个角的正弦值,通过求解余弦,我们可以得知其他两个角的余弦值。

进而,我们可以通过余弦定理求解三角形的边长。

例如,在解决三角形的边长问题时,我们可以首先使用正弦定理求解一个角的正弦值,然后使用余弦定理求解其他两个角的余弦值。

通过已知角度的余弦值,我们可以应用余弦定理求解未知边长。

在实际应用中,我们常常需要通过这两个定理来解决与三角形相关的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师寄语:天才=1%的灵感+99%的血汗1戴氏教育中高考名校冲刺教育中心【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。

学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。

谢谢使用!!!】 主管签字:________§3.6 正弦定理和余弦定理一、考点、热点回顾2014会这样考 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.复习备考要这样做 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合.基础知识.自主学习1. 正弦定理:a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4. 在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解教师寄语:天才=1%的灵感+99%的血汗21.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.1. 在△ABC 中,若A =60°,a =3,则a +b +csin A +sin B +sin C=________.2. (2012·福建)已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________.3. (2012·重庆)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cos B =513,b =3,则c =________.4. (2011·课标全国)在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________. 5. 已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .8 2 C. 2D.22二、典型例题题型一 利用正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c .思维启迪:已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的个数的判断.教师寄语:天才=1%的灵感+99%的血汗3探究提高 (1)已知两角及一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________. 题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.思维启迪:由cos B cos C =-b2a +c ,利用余弦定理转化为边的关系求解.探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A =0. (1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.教师寄语:天才=1%的灵感+99%的血汗4题型三 正弦定理、余弦定理的综合应用例3 (2012·课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .思维启迪:利用正弦定理将边转化为角,再利用和差公式可求出A ;面积公式和余弦定理相结合,可求出b ,c .探究提高 在已知关系式中,若既含有边又含有角.通常的思路是将角都化成边或将边都化成角,再结合正、余弦定理即可求角.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状.易 错 警 示 系 列——代数化简或三角运算不当致误典例:(12分)在△ABC中,若(a2+b2)sin(A-B)=(a2-b2)·sin(A+B),试判断△ABC的形状.审题视角(1)先对等式化简,整理成以单角的形式表示.(2)判断三角形的形状可以根据边的关系判断,也可以根据角的关系判断,所以可以从以下两种不同方式切入:一、根据余弦定理,进行角化边;二、根据正弦定理,进行边化角.规范解答温馨提醒(1)利用正弦、余弦定理判断三角形形状时,对所给的边角关系式一般都要先化为纯粹的边之间的关系或纯粹的角之间的关系,再判断.(2)本题也可分析式子的结构特征,从式子看具有明显的对称性,可判断图形为等腰或直角三角形.(3)易错分析:①方法一中由sin 2A=sin 2B直接得到A=B,其实学生忽略了2A与2B互补的情况,由于计算问题出错而结论错误.方法二中由c2(a2-b2)=(a2+b2)(a2-b2)不少同学直接得到c2=a2+b2,其实是学生忽略了a2-b2=0的情况,由于化简不当致误.②结论表述不规范.正确结论是△ABC为等腰三角形或直角三角形,而不少学生回答为:等腰直角三角形.高考圈题系列——高考中的解三角形问题典例:(12分)(2012·辽宁)在△ABC中,角A,B,C的对边分别为a,b,c.角A,B,C成等差数列.(1)求cos B的值;(2)边a,b,c成等比数列,求sin A sin C的值.考点分析本题考查三角形的性质和正弦定理、余弦定理,考查转化能力和运算求解能力.解题策略根据三角形内角和定理可直接求得B;利用正弦定理或余弦定理转化到只含角或只含边的式子,然后求解.教师寄语:天才=1%的灵感+99%的血汗 5教师寄语:天才=1%的灵感+99%的血汗6规范解答解后反思 (1)在解三角形的有关问题中,对所给的边角关系式一般要先化为只含边之间的关系或只含角之间的关系,再进行判断.(2)在求解时要根据式子的结构特征判断使用哪个定理以及变形的方向.方法与技巧1.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C - 2sin B ·sin C ·cos A ,可以进行化简或证明. 失误与防范1.在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.三、习题练习A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·广东)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC 等于( )A .4 3B .2 3C. 3D.322. (2011·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则教师寄语:天才=1%的灵感+99%的血汗7sin A cos A +cos 2B 等于( )A .-12B.12C .-1D .13. 在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形4. (2012·湖南)△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394二、填空题(每小题5分,共15分)5. (2011·北京)在△ABC 中,若b =5,∠B =π4,sin A =13,则a =________.6. (2011·福建)若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________. 7. 在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.三、解答题(共22分)8. (10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC→=3.(1)求△ABC 的面积; (2)若b +c =6,求a 的值.9. (12分)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 2B +C 2-cos 2A =72.(1)求A 的度数;(2)若a =3,b +c =3,求b 、c 的值.B 组 专项能力提升教师寄语:天才=1%的灵感+99%的血汗8(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定2. (2011·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A=2a ,则ba 等于( )A .2 3B .2 2C. 3D. 23. (2012·湖北)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4二、填空题(每小题5分,共15分)4. 在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边长,已知a ,b ,c 成等比数列,且a 2-c 2=ac -bc ,则∠A =________,△ABC 的形状为__________.5. 在△ABC 中,若∠A =60°,b =1,S △ABC =3,则a +b +c sin A +sin B +sin C 的值为________.6. 在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若b a +a b =6cos C ,则tan C tan A +tan Ctan B的值是______. 三、解答题7. (13分)(2012·浙江)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C . (1)求tan C 的值;(2)若a =2,求△ABC 的面积.教师寄语:天才=1%的灵感+99%的血汗9。

相关文档
最新文档