第八章配位化合物
配位化合物

8.2 配合物的空间结构和异构现象
1、配合物的空间结构 空间构型
配位数 2 杂化轨道 sp 空间构型 直线型 实例 [Ag(NH3)2]+
3
4
sp2
sp3
平面三角形
平面正方形
[HgI3][Ni(CN)4]-、[PdCl4]2-
四面体
5 dsp3或d3sp d2sp2 6 d2sp3或sp3d2 三角双锥 正方锥形 正八面体
配位数(不一定是配体数)
与中心原子直接以配位键结合的配位原子的数目 称为中心原子的配位数。中心原子的配位数一般可为 2-12,以配位数2,4,6最为常见。 中必原子的配位数与配体的齿数有关,
配体是单齿,那么中心原子的配位数就是配体的数目; 配体是多齿,那么中心原子的配位数则是配体的数目 与其齿数的乘积。 例如: [Co Br(NH3)5] (SO4),
1.62×107=(0.02-x)/4x3
x=6.8×10-4
二、配位解离平衡移动
1. 与弱电解质平衡的竞争
M+ + L+ + OHH+ [ML]
当Ka, Kb越小,配离子越易解离 平衡向生成弱酸、弱碱方向移动 MOH HL
[ Fe(C2O4 )3 ]3
Fe3 3C2O4 2
+ 6H+
→
3. 杂化轨道形式与配合物的空间构型
配 位 数 2 3
空间构型
直线形 平面三角形
杂化轨 道类型 sp sp2
实例
Ag(NH3)2+ , Ag(CN)2– Cu(CN)32 – ,HgI3–
4 4 5
5 6
正四面体 四方形 三角双锥
四方锥 八面体
第八章 络合物(配位化合物)化学基础

第八章络合物(配位化合物)化学基础【竞赛要求】配位键。
重要而常见的配合物的中心离子(原子)和重要而常见的配位(水、羟离子、卤离子、拟卤离子、氨分子、酸根离子、不饱和烃等)。
螯合物及螯合效应。
重要而常见的络合剂及其重要而常见的配合反应。
配合反应与酸碱反应、沉淀反应、氧化还原反应的联系(定性说明)。
配合物几何构型和异构现象基本概念。
配合物的杂化轨道理论。
八面体配合物的晶体的颜色。
路易斯酸碱的概念。
场理论。
Ti(H2O) 36【知识梳理】一、配合物基本知识1、配合物的定义由中心离子(或原子)和几个配体分子(或离子)以配位键相结合而形成的复杂分子或离子,通常称为配位单元。
凡是含有配位单元的化合物都称作配位化合物,简称配合物,也叫络合物。
[Co(NH3)6]3+,[Cr(CN)6]3–,Ni(CO)4都是配位单元,分别称作配阳离子、配阴离子、配分子。
[Co(NH3)6]Cl3、K3[Cr(CN)6]、Ni(CO)4都是配位化合物。
[Co(NH3)6]、[Cr(CN)6] 也是配位化合物。
判断的关键在于是否含有配位单元。
思考:下列化合物中哪个是配合物①CuSO4·5H2O ②K2P t Cl6 ③KCl·CuCl2④Cu(NH2CH2COO)2 ⑤KCl·MgCl2·6H2O ⑥Cu(CH3COO)2注意:①配合物和配离子的区别②配合物和复盐的区别2、配合物的组成中心离子内界单齿配体配位体多齿配体配合物螯合配体外界(1)配合物的内界和外界以[Cu(NH3)4]SO4为例:[Cu(NH3)4]2+ SO 24内界外界内界是配位单元,外界是简单离子。
又如K3[Cr(CN)6] 之中,内界是[Cr(CN)6]3–,外界是K+。
可以无外界,如Ni(CO)4。
但不能没有内界,内外界之间是完全电离的。
(2)中心离子和配位体中心离子:又称配合物的形成体,多为金属(过渡金属)离子,也可以是原子。
chap8-1 配位化合物

5
(2) 配位体 配位体可以是简单阴离子,也可以是多原子离子 或中性分子 ,如F-、SCN-、NH3、乙二胺等。 与中心原子直接结合的原子,称为配位原子。作 为配位原子,它们大都是位于周期表右上方 IVA,VA,VIA,VIIA族电负性较强的非金属原子。 只有一个配位原子的配位体称为单齿配位体,如 NH3,CN- 等;含有两个或两个以上配位原子的配位 体称为多齿配位体,如乙二胺 (en , NH2-CH2-CH2NH2 ) (注意:多齿配位体的配位数等于配体数乘 以该配体的基数(齿数))。 由多齿配位体与同一个金属离子形成的具有环状 6 2+ 结构的配合物称为螯合物,如[Cu(en)2] 。
20
(1)外轨型配合物 中心离子以最外层的原子轨道( ns , np , nd ) 组成杂化轨道,和配位原子形成的配位键,称 为外轨配键,其对应的配合物称为外轨(型) 配合物。
21
外轨型配合物特点:
形成外轨型配合物时,中心离子的内层电 子排布没有发生变化,未成对的 d 电子尽可能 分占轨道而自旋平行,所以外轨型配合物也称 作高自旋型配合物。 它们常常具有顺磁性,未成对电子数越多、 磁矩越大。 由于中心离子以能量较高的最外层轨道杂 化成键,故外轨型配合物的稳定性较小(与内 轨型相比较)。
29
(3)判断外轨型、内轨型配合物:
中心离子的电子构型 中心离子所带的电荷
配位原子的电负性大小
30
中心离子的电子构型:
具有 d10 构型的离子只能用外层轨道形成外
轨型配合物;如 Ag+,Zn2+,Cd2+ 等只能形成外轨
型。 具有 d8 构型的离子,如:Ni2+,Pt2+,Pd2+等, 在大多数情况下形成内轨型配合物;
第八章 配位化合物

A·m2
(3)测定 磁矩可通过磁天平测定。 • 顺磁性:被磁场吸引
• 反磁性:被磁场排斥
• 铁磁性:被磁场强烈吸引 (如 Fe , Co , Ni)
..
..
..
..
N
S
(a)无磁场
N
S
(b)磁场打开
顺磁性的说明
(4)影响因素 未成对电子数越多,磁矩越高,配合物
的磁性越大。
(5)意义
• 根据未成对电子数求磁矩; • 根据磁矩求未成对电子数; • 判断杂化方式、空间构型、配合物类型。
未成对电子数 0 1 2 3 4 5
µ计 / B.M
0 1.73 2.83 3.87 4.90 5.92
例: 测定FeF63-的µ为5.90 B.M,可判断: Fe3+有5个未成对电子;
Ag+
4d
[Ag(NH3)2]+
4d
5s
5p
NH3 NH3
5s
5p
sp杂化
2. 配位数为4的配合物的杂化方式及空间构型
(1)[NiCl4]2-:Ni 3d84s2
sp3杂化
Ni2+
Ni2+ 3d8 外轨型
四面体
3d
[NiCl4]2-
3d
4s
4p
Cl-
Cl- Cl- Cl-
4s
4p
sp3杂化
[NiCl4]2-
NH2-CH2-CH2-H2N
说明:
少数配体虽然有两个配位原子,由于两 个配位原子靠得太近,只能选择其中一 个与中心原子成键,故仍属单齿配体。
硝基NO(2 N是配位原子) 亚硝酸根ONO- (O是配位原子) 硫氰根SCN (S是配位原子) 异硫氰根NCS (N是配位原子)
第八章 配位化合物

NCS−(异硫氰根)
多齿配体:配体中含有两个或两个以上配位原子。
第一节 配位化合物的基本概念
多齿配体 O O 2草酸根( C2O4 ): ‖ ‖ —O—C—C—O— (二齿配体) .. ..
(二齿配体)
乙二胺(en)
:NH2—CH2—CH2—H2N:
(六齿配体) 乙二胺四乙酸(EDTA)
HOOC—CH2
色、稳定性、磁性等性质及其在实践中的应用。
内容提要
第一节 配合物的基本概念 一、配合物的定义 二、配合物的组成 三、配合物的命名 四、配合物的异构现象 五、螯合物和螯合效应 第二节 配合物的价键理论 一、价键理论的基本要点 二、内轨型配合物与外轨型配合物 三、配合物的磁性 第三节 配位平衡
一、配合物的标准稳定常数和标准不稳定常数 二、配位平衡的移动 第四节 配合物的应用 一、生命必需金属元素 二、有毒金属元素的促排
第一节 配位化合物的基本概念
(三)配位数
与中心原子直接结合的配位原子的数目,称 为中心原子的配位数。 中心原子的常见配位数是2、4、6。 对单齿配体:配位数=∑配体数 对多齿配体:配位数=∑配体数×配位原子数(齿数)
[Cu(NH3)4]2+ : 4 单齿配体 [PtCl (NH )]- :3+1=4 3 3
第一节 配位化合物的基本概念
(四)配离子的电荷
配离子的电荷=中心原子和配体所带电荷数的代数和
配离子电荷 中心原子电荷 外界电荷 [Cu(NH3)4]SO4 K2[HgI4]
+2
-2
+2
+2
பைடு நூலகம்-2
+2
H2[PtCl6]
[Ag(NH3)2]OH K4[Fe(CN)6]
第八章配位化合物解析

P t Cl 3 ( NH3 )
( 2 )
( 3) K 3 Fe(CN)6
赤血盐 ,
( 2) K 4 Fe(CN)6
黄血盐
(0) ( 3) Co Cl 3 (NH3 ) 3 , Fe(CO)5
配合物磁性的测定是判断配合物结构的一个重要手段。 磁矩: µ = [n(n+2)]1/2 (B.M.)玻尔磁子.
[Fe(H2O)6]3+ 磁矩 5.9B.M. 5个未成对电子 外轨型 [Fe(CN)6]3磁矩 2.0B.M. 1个未成对电子 内轨型
价键理论能很好地解释了配合物的空间构型、
磁性、稳定性,直观明了,使用方便,但它无
的多面体结构的化合物。
金属冠状配合物:过渡金属离子相互连接成 与冠醚结构类似的环状结构的化合物。 有机金属配合物:含有金属-碳键的配合物。
8.2.2 配位化合物的命名
配酸:×××酸。例: H2[PtCl6]
配碱:氢氧化×××。 例:[Ag(NH3)2]OH
配盐:先阴离子后阳离子,简单酸根加“化”字,
8.2.1 配合物的类型 简单配合物:一个中心离子,每个配体均为单齿配体. 如 Fe(CN)4 Co(NH ) (H O)3
6 3 5 2
螯合物:一个中心离子与多齿配体成键形成环状结构 的配合物. 如[Cu(en)2]2+, CaY2-
其它分类: 多核配合物:一个配位原子同时与两个中心 离子结合形成的配合物。 原子簇化合物:簇原子以金属-金属键组成
2
4 3 1 4 2 2 2 6 3 2 6 1 6 6
P tCl3 (NH3 ) 2 CoCl2 (en)2 3 Al(C2O 4 )3 2 Ca(EDT A)
第八章_配位化合物

0.10 21 1.0 10 2 y (0.10)
y 1.0 10
20
即Ag+的平衡浓度为1.0×10-20 mol/L。
2、判断配位反应进行的方向
[Ag(NH3)2] ++ 2CN反应向哪个方向进行?
2 [ Ag ( CN ) ][ NH ] 2 3 K [ Ag ( NH 3 ) 2 ][CN ]2
[Cu( NH 3 ) ] 1 2 [Cu ][NH 3 ]
2
2
[Cu( NH 3 ) 2 ] [Cu 2 ][NH 3 ]2
2
3
[Cu( NH 3 ) 3 ] [Cu 2 ][NH 3 ]3
2
2
4
[Cu( NH 3 )4 ] K稳 2 4 [Cu ][ NH 3 ]
[Zn(NH3)4]2+ [Zn(CN)4]2+ 5×108 1.0×1016
中心离子不同,配体相同,配位数相同。
[Zn(NH3)4]2+ [Cu(NH3)4]2+ 5×108 4.8×1012
不同类型配合物稳定性要通过计算 求出溶液中的离子浓度。
CuY2[Cu(en)2]2+ 6.3×1018 4.9×1019
配位离子 [Cu(NH3)4]2+ 配位单元 配合物 配位分子 Fe(SCN)3 配离子与带有异电荷的离子 组成的中性化合物。 [Cu(NH3)4]SO4
Hale Waihona Puke 1.2 配合物的组成中心离子和配位体之 间以配位键结合。
NH3 H3N Cu NH3 NH3
2+ 2 SO4 2
配合物的组成分为内 界和外界两部分。
第八章配位化合物ppt课件

● 配离子与形成体的电荷数
()
3
Ag(S 2O3 ) 2 ,
(2)
Pt Cl 3 (NH 3 )
(3)
K 3 Fe (CN) 6
赤血盐 ,
(2)
K 4 Fe (CN) 6
(3)
(0)
Co Cl 3 (NH 3 )3 , Fe(CO) 5
黄血盐
12
13
←
← ←
← ← ←
(1) 内界与外界
32
8.4.1 价键理论 (valence bond theory)
同一原子内,轨道的杂化和不同原子间轨道的重叠构成了共价键 理论的核心论点之一.这里把第二章的s-p杂化轨道扩大到d轨道上 ,形成s-p-d杂化轨道.
(1) 价键理论的要点
● 形成体(M)有空轨道,配位体(L)有孤对电子,形成配位键
Ag(NH 3 )2 Cl
中配 外 心位 界 离体 子
Ni(CO) 4 CoCl3 (NH3 )3
中配 心位 原体 子
中 心配 离位 子体
配离子
形成体 — 中心离子或原子(central ion or central atom)
(配分子) 配位体 — 中性分子或阴离子
形成体 — 提供空轨道 电子对接受体 Lewis酸 配位体 — 提供孤对电子 电子对给予体 Lewis碱
8
(三)配位数
配合物中,直接与中心离子(或原子)配 位的配位原子的数目称中心离子(或原子)的 配位数。
一般中心离子(或原子)配位数为2、4、 6。中心离子的配位数的多少,主要取决于中 心离子和配体的电荷、体积和电子层结构,以 及配合物形成时温度和反应物的浓度等。
配离子的电荷数等于中心离子和配位体电 荷的代数和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、配位数
配位数是与中心原子成键的配位原子总数
中心离子最高配位数:第一周期 2 , 第二周期 4
第三,四周期 6 ,第五周期 8
影响配位数的因素:❖中心离子
半径 半径 电荷 电荷
配位数 配位数
2020/2/18
(AlF63-, BF4-) (PtCl62-, PtCl42-)
❖配位原子
6
2020/2/18
2 结构异构: 原子间连接方式不同引起的异构现象(键合异构,电
离异构,水合异构,配位异构,配位位置异构,配位体 异构) (1)键合异构 [Co(NO2)(NH3)5]Cl2 硝基 黄褐色 酸中稳定 [Co(ONO)(NH3)5]Cl2 亚硝酸根 红褐色 酸中不稳定 (2) 电离异构
先阴离子后阳离子; 同类型离子,按英文字母顺序排配体
2020/2/18
常见配体的名称
N
2020/2/18
1)配阴离子配合物 规则:配体—合—中心离子(价态)酸
例:K[PtCl5(NH3)] 五氯.氨合铂(IV)酸钾 2)配阳离子配合物 规则:外界阴离子—化—配体—合—中心离子(价态)
例:[Co(ONO)(NH3)5]SO4 硫酸亚硝酸根.五氨合钴(III)
亮黄色,非极性
无抗癌活性 0.0366g/100g水 较稳定,不与en
为2反020式/2/1,8 与en或草酸反应
或草酸反应
cis-[CoCl2 (NH3)4], 蓝紫色
2020/2/18
trans-[CoCl2 (NH3)4], 绿色
八面体
2020/2/18
面式
经式
(2) 对映异构(又称手性异构、旋光异构、光学异构)
旋光异构体对偏振光的旋转方向是相反的. 当一束偏振光通过某一旋光异构体的溶液 时,偏振面如果顺时针方向旋转,称为右旋 体,名称前冠以D-;反之称为左旋体,名称前 冠以L-。
通常情况下,物体是左旋体、右旋体的混 合物,如果等量,就是外消旋体。
在有机化学中将讨论丰富多彩的旋光异构 现象。
2020/2/18
2020/2/18
§8.1 配合物的组成和定义
实验例:CuSO4→加NaOH , 浅蓝色沉淀Cu(OH)2 →加氨 水 ,沉淀溶解,生产绛蓝色溶液
加BaCl2,白色沉淀 加NaOH ,无沉淀 碱性条件下加热,无气体放出
说明:新生产的分子中几乎没有游离的Cu2+和NH3 [Cu(NH3)4]SO4 Cu2+:具空轨道,路易斯酸 NH3:具孤电子对,路易斯碱
❖ 1798年 ,塔赫特(Tassaert) Co3+ + NH4Cl + NH3·H2O CoCl3 ·6NH3 ( Co3+ 的电子层结构)
❖ 1893年 ,Werner 配位学说 ❖ 至今,形成一门独立学科,成为各分支化学的交叉点
2020/2/18
§8.1 配合物的组成和定义 §8.2 配合物的类型和命名 §8.3 配合物的化学键理论 §8.4 配位平衡 §8.5 螯合物的特点及稳定性
[CoCl(NH3)(en)2]SO4
硫酸 氯 • 氨 • 二(乙二胺)合钴(Ⅲ)
2020/2/18
(NH4)2[ FeCl5(H2O) ] 五氯·水合铁(Ⅲ)酸铵
[ Cr (Py)2(H2O)Cl3 ] 三氯·水·二吡啶合铬(Ⅲ)
[ Pt(NH3)4Cl2 ][ HgI4 ] 四碘合汞(Ⅱ)酸二氯·四氨合铂(Ⅳ)
填入 空轨道 孤对电子
4d
σ配键
2、π配键
H H Cl
Cl
C
Pt
Cl C HH
C2H2的π键电子 填入Pt的空轨道
π键
π配键
反馈π键:中心离子上的孤对电子反过来给予配体Fra bibliotekσ配键
M
L
反馈π键
2020/2/18
配离子中有无立体异构以及异构体的多少, 与中心离子的配位数以及配离子的空间构型 有关。如果配位数为2或3时无异构体,配位 数为4和6时,也只有平面正方形和八面体才 存在异构体 ,切配位体种类越多,异构体的 数量越多。由于对映体除旋光性外,物理化 学性质相同,通常将其看作是一种异构体.
旋光异构体的拆分及合成研究是目前研究热点之一
注意到左旋和右旋异构体生理作用的差异是很有意义的。例 如存在于烟草中左旋尼古丁的毒性要比人工合成出来的右旋 尼古丁毒性大的多。又如, 美国孟山都公司生产的L-dopa(即 ,二羟基苯基-L-丙氨酸)是治疗震颤性麻痹症的特效药,而 它的右旋异构体(D-dopa)却无任何生理活性。显然与它们在 生物体中不同的反应部位有关。
2020/2/18
二、配位化合物的组成
内界(配位个体)
外界
[Co(NH3)6]Cl3
配体
中心离子
配位数 配位原子
练习:
[Cu(NH3)4]SO4 K3[Fe(NCS)6] [Fe(CO)5]
2020/2/18
1、中心离子(或原子)
❖ 一般为带正电的过渡金属离子 [Co(NH3)6]3+, [Fe(CN)6]4-, [HgI4]2-
下表列出了配位数为4和6配合物的异构体 数量.
2020/2/18
表 配合物内界组成与异构体数量的关系
配离子类型 立体异构 体数
MX4
1
MX3Y
1
MX2Y2
2
MX2YZ
2
MXYZK
3
配离子类型 立体异构体数
MX6
1
MX5Y
1
MX4Y2
2
MX3Y3
2
MX4YZ
2
MX3Y2Z
3
MX2Y2Z2
[Co(SO4)(NH3)5]Br [Co Br(NH3)5] SO4
2020/2/18
(3) 水合异构 [Cr(H2O)6]Cl3
紫色
[CrCl(H2O)5]Cl2 ·H2O
亮绿色
[CrCl2(H2O)4]Cl ·2H2O 暗绿色
(4) 配位异构 [Co(en)3][Cr(C2O4)3], [Cr(en)3][Co(C2O4)3]
H2N Pt
Cl Pt NH2
❖ 多核 H2N
Cl H2N
Cl NH2
2、按配体种类
❖ 水合 ❖ 卤合 ❖ 氨合 ❖ 氰合
[Cu(H2O)6]2+ [AlF63-] [Co(NH3)6]3+ [Fe(CN)6]4-
2020/2/18
3、按成键类型
S
Co
Co
❖ 经典配合物 ❖ 簇状配合物
Co C
O
N C
半径 电荷
(AlF63-, AlCl4-)
半径 电荷
配位数 配位数
配位数: 与中心原子成键的配位原子总数.
分类 单齿配体:只含有一个配位原子的配体 多齿配体:含多个配位原子的配体
单齿配体: 多齿配体:
[ Cu(NH3)4]2+ 4 [PtCl3(NH3)]- 4 [CoCl2(en)2] + 6 [Al(C2O4)3]3- 6 [Ca(EDTA)]2- 6
2020/2/18
注意
某些常见的配合物,通常都用习惯上的 简单叫法。
如 [Cu(NH3)4]2+ 铜氨配离子 [Ag(NH3)2]+ 银氨配离子 K3[Fe(CN)6] 铁氰化钾(赤血盐)
K4[Fe(CN)6] 亚铁氰化钾(黄血盐)
H2SiF4 氟硅酸
K2PtCl6 氯铂酸钾
2020/2/18
§8.3 配合物的异构现象
第八章 配位化合物
复习1、共价键分类 按电子对提供方式分正常共价键和配位共价键
CO分子的结构: C: 2s22px12py12pz
CO
O: 2s2 2px12py1 2pz2
复习2、酸碱电子理论
酸:凡接受电子对的物质,碱:凡给出电子对的 物质
酸碱反应实质:形成配位键,生成配位化合物
2020/2/18
当偏振光通过它们时,偏振光的偏振面(和震动 方向垂直的面)就会旋转一定的角度 。
2020/2/18
旋光异构体在立体结构上的特点是互成镜象关系。
例如[CrBr2(NH3)2(H2O)2]+ 有六种异构体, 其中有一对旋光异构。
2020/2/18
在MA2B2C2中三顺式有对映异构体
2020/2/18
3)中性配合物 规则:配体—合—中心离子(价态) 例:PtCl2(NH3)2 二氯.二氨合铂(II)
2020/2/18
例
[Cu(NH3)4]SO4 K3[Fe(CNS)6] H2[PtCl6] [Cu(NH3)4](OH)2 K[PtCl5(NH3)]
硫酸四氨合铜(Ⅱ) 六异硫氰根合铁(Ⅲ)酸钾 六氯合铂(Ⅳ)酸 氢氧化四氨合铜(Ⅱ) 五氯•氨合铂(Ⅳ)酸钾
1、习惯名称
K4[Fe(CN)6]: 黄血盐 Fe(C5H5)2: 二茂铁 K3[Fe(CN)6]: 赤血盐 K[PtCl3(C2H4)]:蔡斯盐
2、系统名称
配合物内界命名:配位体数—配位体名称(不同配 位体名称之间以中圆点(·)分开)—合—中心离子(氧
化数) 配体顺序:先无机后有机;先离子后分子;
是一对互为镜象却不能在三维空间重合的 异构体。只存在第一类对称元素-旋转轴, 不存在第二类对成元素-对称中心、镜面、 旋转反映或旋转反演轴。如果存在第二类 对称元素,经过对称操作,物体的镜象就 会重叠,就不具有手性。
2020/2/18
旋光异构体对普通的化学试剂和一般物理检查都不表 现差异,但却具有旋光活性(或光学活性)。
碳酸一氯·一羟基·四氨合铂(IV) [ Pt (NH3)4 (OH) Cl ]CO3