完全平方公式培优训练题
平方差完全平方公式(培优)

平方差完全平方公式•选择题(共1小题)二.填空题(共3小题)2. (2011?湛江)多项式 2x 2- 3X +5是 _____________________ 次3. (2010?毕节地区)写出含有字母 x , y 的四次单项式 ____________________ .(答案不唯一,只要写出一个)4. ( 2004?南平)把多项式 2x 2- 3X +X 3按x 的降幕排列是 _ _5. (1999?内江)配方:X 2+4X +=(X + ) 2 配方:x 2-x+ =(x-1) 22三.解答题(共小题) 5.计算:(1)(x - y ) (x+y ) (x 2+y 2) (2) (a - 2b+c ) ( a+2b - c )6 .计算:1232 - 124 X 122 .7 .计算:2004 2tfi)4 2- 2005X20038. (x - 2y+z ) (- x+2y+z ).9 .运用乘法公式计算.(1) (x+y ) 2-(x -y ) 2;(2) (x+y - 2) (x - y+2);(3) X ;(4) .10 .化简:(m+n - 2) ( m+n+2).11 . (x - 2y - m ) (x - 2y+m )12 .计算(1) (a - b+c - d ) (c- a - d - b );(2) (x+2y ) (x - 2y ) (x 4- 8x 2/+16y 4).13 .计算:20082- 20072+20062- 20052+…+22- 12.14 .利用乘法公式计算:◎ ( a - 3b+2c ) (a+3b - 2c )② 472 - 94 X 27+272.1. (1999?烟台) F 列代数式I ,比逹,普,其中整式有( A . 1个B . 2个 C. 3个 D. 4个项式.15 .已知:x 2 - y 2=20, x+y=4,求 x - y 的值. ______________________16 .观察下列各式:(x - 1) (x+1) =x 2 - 1; (x - 1) (x 2+x+1) =x 3- 1 ; (x - 1) (x 3+x 2+x+1) =x 4- 1 …(1) _______________________________________________________________________________ 根据上面各式的规律得:(x - 1) (x m -1+x m -2+x m -3+…+x+1) = ______________________________________________________ ;(其中n 为正整数);(2) 根据这一规律,计算 1+2+22+23+24+…+268+269的值.17.先观察下面的解题过程,然后解答问题:题目:化简(2+1) (22+1) ( 24+1).解:(2+1) (22+1) ( 24+1) = (2 - 1) (2+1) (22+1) (24+1) = (22 - 1) ( 22+1) (24+1) = (24 - 1) (24+1) =28 - 1 . 问题:化简(3+1) (32+1) ( 34+1) ( 38+1)-( 364+1).19 . (2012?黄冈)已知实数 x 满足x 丄=3,则x 2丄的值为 ___________________________20 . (2007?天水)若a 2 - 2a+仁0.求代数式 /+~丄^的值.21 . (2009?佛山)阅读材料:把形如 ax 2+bx+c 的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配 方法的基本形式是完全平方公式的逆写,即 a 2±2ab+b 2= (a ± b ) 2.例如:(x - 1) 2+3、(x - 2) 2+2X 、(*X -2) 2疔x 2是x 2 - 2x+4的三种不同形式的配方(即"余项”分别是常数项、 一次项、二次项--见横线上的部分)请根据阅读材料解决下列问题:(1) 比照上面的例子,写出 x 2- 4x+2三种不同形式的配方;(2) 将a 2+ab+b 2配方(至少两种形式);(3) 已知 a 2+b 2+c 2 - ab - 3b - 2c+4=0,求 a+b+c 的值.22 . (2004?太原)已知实数 a 、b 满足(a+b ) 2=1, (a - b ) 2=25,求 a 2+b 2+ab 的值.2 +,223 . (2001?宁夏)设 a - b=- 2,求 一的值.24 .已知(x+y ) 2=49, (x - y ) 2=1,求下列各式的值:(1) x 2+y 2; (2) xy .25 .已知x+丄=4,求x --------- 的值.26 .已知:x+y=3, xy=2,求 x 2+y 2 的值.27.已知 a+b=3, ab=2,求 a 2+b 2, (a - b ) 2 的值.28 .若 x+y=2,且(x+2) (y+2) =5,求 x 2+xy+y 2 的值.18.门讨)⑴肖〔吟)(吟)(1+盘)29 -宀11x+1=0,求x2+;的值•求下列各式的值: (1)(2)平方差完全平方公式参考答案与试题解析一.选择题(共1小题)1 . (1999?烟台)下列代数式2x2+x- 2,齢21? F3 2 _ n卩十卩,其中整式有3 2VA. 1个B. 2个C. 3个D. 4个考点:整式.分析:解决本题关键是搞清整式的概念,紧扣概念作出判断.解答:解:整式有X2+x-2竺共22八个. 故选B.点评:主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.二.填空题(共3小题)2. (2011?湛江)多项式2x2- 3X+5是二次三项式.考点:多项式.专题:计算题.分析:根据单项式的系数和次数的定义,多项式的定义求解.解答:解:由题意可知,多项式2x2-3x+5是二次三项式.故答案为:二,点评:本题主要考查多项式的定义,解答此次题的关键是熟知以下概念:多项式中的每个单项式叫做多项式的项;多项式中不含字母的项叫常数项;多项式里次数最高项的次数,叫做这个多项式的次数.3. (2010?毕节地区)写出含有字母x, y的四次单项式科•(答案不唯一,只要写出一个)考点:单项式.专题:开放型.分析:单项式的次数是指单项式屮所有字母因数的指数和••• x3y, x2y2, xy3等都是四次单项式. 解答:解:根据四次单项式的定义,x2y2,x3y, xy3 等都符合题意(答案不唯—A).点评:考查了单项式的次数的概念.只要两个字母的指数的和等于4的单项式都符合要求.4. (2004?南平)把多项式2x2-3X+X3按x的降幕排列是x^Zx2—3x考点:多项式.分析:按照x 的次数从大到小排列即可.解答:解:按x的降幕排列是x3+2x2—3x.点评:主要考查降幂排列的定义,就是按照x的次数从大到小的顺序排列,操作时注意带着每一项前面的符号.三.解答题(共26 小题)5.计算:(1)(x—y) (x+y) (x2+y2)(2)(a—2b+c) ( a+2b- c)考点:平方差公式;完全平方公式.分析:(1) (x—y)与(x+y)结合,可运用平方差公式,其结果再与(x2+y2)相结合,再次利用平方差公式计算;( 2 )先运用平方差公式,再应用完全平方公式.解答:解:( 1 )( x—y)( x+y)( x2+y2),=( x2—y2)( x2+y2),=x4—y4;( 2)( a—2b+c) ( a+2b—c),2—( 2b—c)2,=a=a2—4b2+4bc—点评:本题主要考查了平方差公式与完全平方公式,熟记公式是解题的关键.平方差公式:(a+b) (a- b) =a2- b2.完全平方公式:(a± b)2=a2± 2ab+b2.6 •计算:1232- 124 X 122 .考点:平方差公式.分析:先把124 X 122 写成(123+1)X(123- 1), 利用平方差公式计算,去掉括号后再合并即可.解答:解:1232- 124X 122,=1232-(123+1) (123-1),=1232-( 1232 -12),=1.点评:本题考查平方差公式的实际运用,构造成平方差公式的结构形式是解题的关键.7 •计算:2004 20042- 2005X2003考点:平方差公式.分析:观察可得:2005=2004+1 ,2003=2004 - 1, 将其写成平方差公式代入原式计算可得答案.解答:解:2004 12004 2 - 2005 X 2003200420042 - (2004+13 X (2004-1)20042004 2 - 2004 2+1=2004.点评:本题考查平方差公式的实际运用,注意要构造成公式的结构形式,利用公式达到简化运算的目的.8. (x- 2y+z) (-x+2y+z).考点:平方差公式.专题:计算题.分析:把原式化为[Z+(x- 2y) ][z -(x-2y)],再运用平方差公式计算.解答:解:(x- 2y+z) (-x+2y+z), =[Z+ (x-2y) ][z -(x- 2y)], =£- ( x-2y )2, =£-( x2- 4xy+4y ),=z2- Y+4xy - 4y2.点评:本题考查了平方差公式,整体思想的利用是利用公式的关键,注意运用公式计算会减少运算量.9 •运用乘法公式计算.(1)(x+y) 2-(x-y) 2;(2)(x+y- 2) (x- y+2);(3)x;(4).考点:平方差公式.专题:计算题.分析:(1) (x+y) 2-(x-y) 2可以利用平方差公式进行计算;( 2)( x+y- 2 )(x- y+2)转化成[x+( y- 2) ][x -( y- 2) ]的形式,利用平方差公式以及完全平方公式进行计算;(3 )x可以转化成( 80-)( 80+)的形式,利用平方差公式计算;(4)可以转化为( 20-) 2进行简便计算.解答:解:(1) (x+y)2-( x- y) 2=( x+y+x- y)( x+y- x+y),=4xy;(2)( x+y- 2)(x- y+2),=[x+( y- 2) ][x -( y- 2) ],=x2-y2+4y- 4;(3 )x,=(80-)(80+),=;( 4) =( 20-)2=400 - 2 X 20X + ,点评:本题主要考查平方差公式和完全平方公式的运用,利用完全平方公式以及平方差公式可以使计算更加简便.10 .化简:(m+n- 2)(m+n+2).考点:平方差公式.分析:把(m+n)看作整体,m+n是相同的项,互为相反项是- 2 与2,然后利用平方差公式和完全平方公式计算即可.解答:解:( m+n- 2)( m+n+2 ),=( m+n) 2- 22,22=m +n +2mn- 4. 点评:本题主要考查了平方差公式的应用.运用平方差公式( a+b)( a - b) =a2- b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.11. (x - 2y - m) (x—2y+m)考点:平方差公式.专题:计算题.分析:把x- 2y 当成一个整体,利用两数的和乘以这两数的差,等于它们的平方差计算即可.解答:解:( x- 2y- m )(x- 2y+m),=( x- 2y) 2- m2,2- 4xy+4y2-=x2.m点评:本题主要考查了平方差公式,整体思想的利用比较关键.12.计算(1)(a—b+c—d) (c—a - d - b);(2) (x+2y) (x—2y) (x4—8x2/+l6y4) •考点:平方差公式.专题:计算题.分析:根据平方差公式以及完全平方公式即可解答本题.解答:解:( 1 )原式=([ c—b—d) +a][( c—b—d)—a] =( c—b—d) 2—a2 =c2+b2+d2+2bd—2bc—2cd—a2,(2 )T x4—8x2y2+16y4=( x2—4y2) 2•••原式=(x2—4y2)( x2—4y2)2=( x2—4y2) 3=( x2) 3—3( x2) 2( 4y2) +3x2?(4y2) 2—( 4y2)3=x6—12x4y2+48x2y4—64y6.点评:本题考查了平方差公式以及完全平方公式的运用,难度适中.13 .计算:20082—20072+20062—20052+ (22)12.考点:平方差公式.分析:分组使用平方差公式,再利用自然数求和公式解题.解答:解:原式=( 20082—20072)+(20062-20052) + …+(22- 12),=( 2008+2007 )( 2008 - 2007) +( 2006+2005)( 2006- 2005) +(2+1)(2- 1),=2008+2007+20 06+2005+… +2+1,=2017036.本题考查了平方差公式的运用,注意分组后两数的差都为1 ,所有两数的和组成自然数求和.14 .利用乘法公式计算:◎ ( a- 3b+2c) (a+3b- 2c)②472- 94 X 27+272.点评:考点:平方差公式;完全平方公式.分析:①可用平方差公式计算:找出符号相同的项和不同的项,结合再按公式解答,②把94 写成2X 47 后,可用完全平方公式计算.解答:解:①原式=[a -( 3b- 2c)][a+( 3b - 2c) ]=a2 -( 3b- 2c)2=9b2+12bc-4c2;②原式=472- 2X 47X 27+272=(47- 27)2=400.点评:本题考查了平方差公式,完全平方公式,熟记公式是解题的关键.①把(3b - 2c) 看作一个整体是运用平方差公式的关键;②把94写成2X 47是利用完全平方公式的关键.15 .已知:x2- y2=20, x+y=4,求x - y 的值. _5考点:平方差公式.分析:本题是平方差公式的应用.解答:解:a2- b2=(a+b) (a- b), x2- y2= (x+y) ( x -y) =20 把x+y=4代入求得x- y=5.点评:运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.把x+y=4代入求得x- y的值,为5.16 .观察下列各式:(x- 1) (x+1) =x2- 1;(x- 1) (x2+x+1) =x3- 1 ; (x- 1) (x3+x2+x+1) =x4- 1 …(1)根据上面各式的规律得:(x- 1) (x m-1+x m-2+x m-3+…+x+1) = x m- 1 ;(其中n为正整数);(2)根据这一规律,计算1+2+22+23+24+…+268+269的值.考点:平方差公式.分析:(1 )认真观察各式,等式右边x的指数比左边x的最高指数大1,利用此规律求解填空;(2 )先根据上面的式子可得:1+x+x2+x3+ …+x°= (x n+1- 1 ) + ( x- 1 ),从而得出1+2+22+…+268+269= (?69+1-1) r2-1), 再进行计算即可.解答:解:(1) ( x- 1 )(x m-1+x m-2+x m- 3+…+x2+x+1) =x m-1;(2 )根据上面的式子可得:2 31+x+x +x + …+宀(x n+1- 1 ) 十(X- 1 ),••• 1+2+22+…+268+269= (269+1-1)-( 2 - 1)=270- 1 .点评:本题考查了平方差公式,认真观察各式,根据指数的变化情况总结规律是解题的关键.17.先观察下面的解题过程,然后解答问题:题目化简(2+1) (22+1) ( 24+1).解:(2+1) (22+1) ( 24+1) = (2 - 1) (2+1) (22+1) (24+1) = (22- 1) ( 22+1) (24+1) = (24- 1) (24+1) =28- 1 . 问题:化简(3+1) (32+1) ( 34+1) ( 38+1)・・・(364+1).考点:平方差公式.分析:根据题意,整式的第一个因式可以根据平方差公式进行化简,然后再和后面的因式进行运算.解答:解:原式J (3-1) (3+1)(32+1) (34+1)(38+1)(364+1), (4分)丄(32 - 1)(32+1)(34+1)(38+1)(364+1),丄(34- 1)1(34+1) (38+1)(364+1),丄(38- 1)1(38+1)(364+1),二(364- 1 )(364+1), (8分)=1(3128-=(31). ( 10 分) 本题主要考查了平方差公式,关键在于把(3+1)化简为(3 - 1) (3+1)的形式,点评:考点:专题:分析:平方差公式.计算题.由平方差公式,(1+2)(1 -丄)2 =1 —2寺(1-解答: 丄22--,依此类推,从而得出结果.解:原式=(1 - 丄22(1 +18.)(1=1(1 + ;)考点: 完全平方公式.专题: 计算题.分析: 将x+ —=3两边平方, 然后移项即可得出答案.解答: 解:由题意得,1 o x+—=3,两边平方得:«+2+ :=9,故 x 2+ ° =7.X 故答案为:7.点评: 此题考查了完 全平方公式的知识,掌握完全点评: (1+二)24-■).1210-■)210=1-本题考查了平 方差公式的反 复应用,是基础 知识要熟练掌 握.(1+(1+(1+(1+19 . (2012?黄冈)已知实数 x 满足二=3,则x 2+ °的值为 7平方公式的展开式的形式是解答此题的关键,属于基础题.20 . (2007?天水)若a2- 2a+仁0.求代数式/+~岂的值•考点:完全平方公式.分析:根据完全平方公式先求出a的值,再代入求出代数式的值.解答:解:由a2-2a+1=0 得(a -1)2=0,••• a=1;把a=1代入a4+—^=1+1=2故答案为:2.点评:本题考查了完全平方公式,灵活运用完全平方公式先求出a 的值,是解决本题的关键.21. (2009?佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a± b)2.例如:(x- 1)2+3、(x-2)2+2X、(丄x-2)2芒x2是x2- 2x+4的三种不同形式的配方(即“余项”分别是常数项、2 4一次项、二次项--见横线上的部分)请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2- 4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2- ab - 3b - 2c+4=0,求a+b+c 的值.考点:完全平方公式.专题:阅读型.分析:(1)(2)本题考查对完全平方公式的灵活应用能力,由题中所给的已知材料可得x2-4x+2 和a2+ab+b2的配方也可分别常数项、一次项、二次项三种不同形式;(3 )通过配方后,求得a,b,c的值,再代入代数式求值. 解答:解:(1)X2- 4x+2的三种配方分别为:2- 4x+2= (x -x2) 2- 2,X2 - 4x+2=(x+ . ':) 2(2, f+4) x,x2- 4x+2= C Zx-:':)2-x2;(2)a2+ab+b2=(a+b) 2- ab,2 2a +ab+b =(F r(3)a2+b2+c2-ab - 3b -2c+4,=(a2- ab+丄b2)(4+ (上b2- 3b+3)+ (c2- 2c+1),+ (c2- 2c+1),=(a-亍b)2〒(b-2) 2+ (c- 1)2=0,从而有a-=b=0, b - 2=0,c- 1=0,即a=1, b=2, c=1,a+b+c=4.点评:本题考查了根据完全平方公式:a2± 2ab+b2=(a ± b) 2进行配方的能力.22 . (2004?太原)已知实数a、b 满足(a+b) 2=1, (a- b) 2=25,求a2+b2+ab 的值.考点:完全平方公式.分析:先由已知条件展开完全平方式求出ab的值,再将a2+b2+ab 转化为完全平方式(a+b) 2和ab的形式,即可求值.解答:解:•••( a+b)2=1, ( a- b)2=25,.a2+b2+2ab=1 , a2+b2-2ab=25..4ab= - 24,ab= - 6, .a2+b2+ab=(a+b) 2- ab=1 -(-6) =7.点评:本题考查了完全平方公式,利用完全平方公式展开后建立方程组,再整体代入求解.23 . (2001?宁夏)设a- b=- 2,求* 严-命的值.考点:完全平方公式.分析:对所求式子通分,然后根据完全平方公式把分子整理成平方的形式,把a -b= - 2代入计算即可.解答:解:原式/ + b2- 2ab =2G-b):1 2•/ a - b_- 2 ,•••原式_(-2〉2_ 2=2 .本题考查了完全平方公式,利用公式整理成已知条件的形式是解题的关键,注意整体思想的利用.24 .已知(x+y) 2=49, (x- y) 2=1,求下列各式的值: (1) x2+y2; (2) xy.考点:完全平方公式.分析:根据完全平方公式把(x+y) 2 和(x- y)2展开,然后相加即可求出x2+y2的值,相减即可求出xy的值.解答:解:由题意知:(x+y)2_x2+y2+2xy_49①,(x- y) 2_x2+y2 -2xy_1 ②,①+②得:(x+y)2+ (x-y) 2,_x2+y2+2xy+x2+y2-2xy,_2 (x2+y2),_49+1,_50,•-x2+y2_25;①-②得:4xy_(x+y) 2-( x-y) 2=49 -1_48,• xy_12.点评:点评:25 .已知考点:分析:本题考查了完全平方公式,灵活运用完全平方公式,熟记公式是解题的关键.x+-^4,求X-丄的值.解答:完全平方公式. 把已知条件两边平方求出x2+ ;的值,再X根据完全平方公式整理成(X -丄)2的形式并代入数据计算,然后进行开方运算.解:•••二4,X••• x2+ - =142 ,(x-—)X2=12,点评:26 .已知考点:--x -二= .\本题考查了完全平方公式,灵活运用完全平方公式,利用好乘积二倍项不含字母是常数是解题的关键.x+y=3, xy=2,求x2+y2的值.完全平方公式.分析:利用完全平方公式巧妙转化即可.解答:解:••• x+y=3,••• x2+y2+2xy=9,••• xy=2,• - x2+y2=9 -2xy=9 - 4=5.点评:本题考查了利用完全平方公式恒等变形的能力.27.已知a+b=3, ab=2,求a2+b2, (a- b) 2的值.考点:完全平方公式.分析:先把a+b=3两边平方, 然后代入数据计算即可求出a2+b2的值,根据完全平方公式把( a- b) 2展开, 再代入数据求解即可.解答:解:T a+b=3,• a2+2ab+b2=9,T ab=2,•-a2+b2=9 - 2 x 2=5;•(a-b) 2=a2- 2ab+b2=5- 2 x 2=1.点评:本题主要考查完全平方公式, 熟记公式结构是解题的关键, 整体代入思想的利用使计算更加简便.28 .若x+y=2,且(x+2) (y+2) =5,求x2+xy+y2的值.考点:完全平方公式.专题:整体思想.分析:先根据多项式乘多项式的法则把( x+2)(y+2)展开并解答:点评:29. x2考点:分析:代入数据求出xy的值,再根据完全平方公式把x+y=2两边平方,整理并代入数据即可求出x2+xy+y2的值.解:•••( x+2)(y+2) =5,••• xy+2 (x+y)+4=5,••• x+y=2,• xy=- 3, 二x2+xy+y2=(x+y) 2- xy=22 -(-3) =7. 本题考查了完全平方公式,运用整体代入思想,熟练对代数式进行变形是解题的关键.—11x+1=0, 求x2解答: 完全平方公式. 先把x2-11x+1=0两边同除x (由题意可知X M 0),得到x+二=11,然后把该式子两边平方即可得到/+ ;的值.X 解:••• X M 0 ,• X+ 二亠,X(x+—) 2=121,本题考查了完全平方公式,关点评:键是知道隐含 条件 X M 0, x 2- 11X + 1=0两边同 除X 得到 X+二=11,利用 X 和丄互为倒数乘 积是1,利用完 全平方公式来 进行解题.完全平方公式. 本题是完全平 方公式的应用, 两数的平方和, 再加上或减去 它们积的2倍, 就构成了一个 完全平方式.使 分式中含有 x 十!的形式,代 入求值. 解:( 1) /宀 X =(X -丄)2 - 2, X =42 - 2, =14;2 30 .已+, (1)y H ;X(2)2 X I + x求下列各式的值: 14+1' 考点:分析:解答:一15'本题主要考查完全点评:平方公式,解题的关键是灵活运用完全平方公式,并利用好乘积二倍项不含字母是常数的特点.。
完整版)完全平方公式提升练习题

完整版)完全平方公式提升练习题完全平方公式提升练题一、完全平方公式1.$(\frac{a}{2}b-c)^2$2.$(x-3y-2)(x+3y-2)$3.$(x-2y)(x^2-4y^2)(x+2y)$4.若$x^2+2x+k$是完全平方形式,则$k=x+1$5.若$x^2-7xy+M$是完全平方形式,则$M=\frac{49}{4}y^2$6.若$4a^2-Nab+81b^2$是完全平方形式,则$N=8a$7.若$25x-kxy+49y$是完全平方形式,则$k=50$二、公式的逆用8.$(2x-y)^2=4x^2-4xy+y^2$9.$(3m^2+n)^2=9m^4+6m^2n+n^2$10.$x^2-xy+y^2=(x-\frac{1}{2}y)^2+\frac{3}{4}y^2$11.$49a^2-18ab+81b^2=(7a-9b)^2$12.代数式$xy-x^2-y^2$等于$(x-y)^2-x^2-y^2$三、配方思想13.若$a+b-2a+2b+2=0$,则$a=-1$14.已知$x^2+y^2+4x-6y+13=1$,求$xy=-\frac{3}{2}$15.已知$x^2+y^2-2x-4y+5=0$,求$(x-1)^2-xy=\frac{3}{4}$16.已知$x^2+y^2+xy=2(x+y)$,求代数式$\frac{x+y}{4}$17.已知$x^2+y^2+z^2-2x+4y-6z+14=0$,则$x+y+z=1$四、完全平方公式的变形技巧18.已知$(a+b)^2=16$,$ab=4$,求$(a-b)^2=8$19.已知$2a-b=5$,$ab=2$,求$4a^2+b^2-1=44$20.已知$x-\frac{1}{x}=6$,求$x^2+\frac{1}{x^2}=37$21.已知$x^2+3x+1=0$,求$(1) x^2+\frac{1}{x^2}$,$(2) x^4+\frac{1}{x^4}$五、利用乘法公式进行计算22.$992-98\times100=-806$23.$(1-\frac{1}{2^2})(1-\frac{1}{3^2})(1-\frac{1}{4^2})=\frac{3}{4}$六、“整体思想”在整式运算中的运用24.当代数式$x^2+3x+5=7$时,求代数式$3x^2+9x-2=18$25.已知$a=\frac{1}{1\times2}\times\frac{2}{2\times3}\times\frac{3}{3\ti mes4}\times\cdots\times\frac{1999}{1999\times2000}$,$b=\frac{1}{2\times3}\times\frac{2}{3\times4}\times\frac{3}{4\ti mes5}\times\cdots\times\frac{1999}{2000\times2001}$,$c=\frac{1}{3\times4}\times\frac{2}{4\times5}\times\frac{3}{5\ti mes6}\times\cdots\times\frac{1999}{2001\times2002}$,求代数式$a^2+b^2+c^2-ab-ac-bc=\frac{1}{4003}$26、已知当$x=2$时,代数式$ax^5+bx^3+cx-8=10$,当$x=-2$时,代数式$ax^5+bx^3+cx-8$的值为27.当$x=2$时,代数式$ax^5+bx^3+cx-8=10$,即$32a+8b+2c=18$;当$x=-2$时,代数式$ax^5+bx^3+cx-8$的值为27,即$-32a+8b-2c=35$。
(完整版)完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式30道题

完全平方公式30道题一、完全平方公式基础计算(10道题)1. 计算(a + 3)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a=a,b = 3。
所以(a+3)^2=a^2+2× a×3 + 3^2=a^2 + 6a+9。
2. 计算(x 5)^2解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a=x,b = 5。
所以(x 5)^2=x^2-2× x×5+5^2=x^2-10x + 25。
3. 计算(2m+1)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 2m,b=1。
所以(2m + 1)^2=(2m)^2+2×2m×1+1^2=4m^2 + 4m+1。
4. 计算(3n 2)^2解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 3n,b = 2。
所以(3n-2)^2=(3n)^2-2×3n×2+2^2 = 9n^2-12n + 4。
5. 计算(a + b)^2,其中a = 2x,b=3y解析:先将a = 2x,b = 3y代入完全平方公式(a + b)^2=a^2+2ab + b^2,得到(2x+3y)^2=(2x)^2+2×2x×3y+(3y)^2=4x^2 + 12xy+9y^2。
6. 计算(m n)^2,其中m = 5a,n=2b解析:把m = 5a,n = 2b代入完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 5a,b = 2b,所以(5a-2b)^2=(5a)^2-2×5a×2b+(2b)^2=25a^2-20ab + 4b^2。
7. 计算(4x+3)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 4x,b = 3。
完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值. 25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
平方差完全平方公式(培优)

平方差完全平方公式 一.选择题(共1小题)1.(1999?烟台)下列代数式,x 2+x ﹣,,,其中整式有( ) A . 1个 B . 2个C . 3个D . 4个二.填空题(共3小题)2.(2011?湛江)多项式2x 2﹣3x+5是 _________ 次 _________ 项式.3.(2010?毕节地区)写出含有字母x ,y 的四次单项式 _________ .(答案不唯一,只要写出一个)4.(2004?南平)把多项式2x 2﹣3x+x 3按x 的降幂排列是 _________ .5.(1999?内江)配方:x 2+4x+___=(x+___)2 配方:x 2-x+ ___=(x-21)2 三.解答题(共26小题)5.计算:(1)(x ﹣y )(x+y )(x 2+y 2)(2)(a ﹣2b+c )(a+2b ﹣c )6.计算:1232﹣124×122.7.计算:.8.(x ﹣2y+z )(﹣x+2y+z ).9.运用乘法公式计算.(1)(x+y )2﹣(x ﹣y )2;(2)(x+y ﹣2)(x ﹣y+2);(3)×;(4).10.化简:(m+n ﹣2)(m+n+2).11.(x ﹣2y ﹣m )(x ﹣2y+m )12.计算(1)(a ﹣b+c ﹣d )(c ﹣a ﹣d ﹣b );(2)(x+2y )(x ﹣2y )(x 4﹣8x 2y 2+16y 4).13.计算:20082﹣20072+20062﹣20052+…+22﹣12.14.利用乘法公式计算:①(a ﹣3b+2c )(a+3b ﹣2c )②472﹣94×27+272.15.已知:x2﹣y2=20,x+y=4,求x﹣y的值._________16.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1…(1)根据上面各式的规律得:(x﹣1)(x m﹣1+x m﹣2+x m﹣3+…+x+1)= _________ ;(其中n为正整数);(2)根据这一规律,计算1+2+22+23+24+…+268+269的值.17.先观察下面的解题过程,然后解答问题:题目:化简(2+1)(22+1)(24+1).解:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=28﹣1.问题:化简(3+1)(32+1)(34+1)(38+1)…(364+1).18..19.(2012?黄冈)已知实数x满足x+=3,则x2+的值为_________ .20.(2007?天水)若a2﹣2a+1=0.求代数式的值.21.(2009?佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.22.(2004?太原)已知实数a、b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.23.(2001?宁夏)设a﹣b=﹣2,求的值.24.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.25.已知x+=4,求x﹣的值.26.已知:x+y=3,xy=2,求x2+y2的值.27.已知a+b=3,ab=2,求a2+b2,(a﹣b)2的值.28.若x+y=2,且(x+2)(y+2)=5,求x2+xy+y2的值.29.x2﹣11x+1=0,求x2+的值.30.已,求下列各式的值:(1);(2).平方差完全平方公式参考答案与试题解析一.选择题(共1小题)1.(1999?烟台)下列代数式,x2+x﹣,,,其中整式有()A.1个B.2个C.3个D.4个考点:整式.分析:解决本题关键是搞清整式的概念,紧扣概念作出判断.解答:解:整式有x2+x﹣,共2个.故选B.点评:主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.二.填空题(共3小题)2.(2011?湛江)多项式2x2﹣3x+5是二次三项式.考点:多项式.专题:计算题.分析:根据单项式的系数和次数的定义,多项式的定义求解.解答:解:由题意可知,多项式2x2﹣3x+5是二次三项式.故答案为:二,三.点评:本题主要考查多项式的定义,解答此次题的关键是熟知以下概念:多项式中的每个单项式叫做多项式的项;多项式中不含字母的项叫常数项;多项式里次数最高项的次数,叫做这个多项式的次数.3.(2010?毕节地区)写出含有字母x,y的四次单项式x2y2.(答案不唯一,只要写出一个)考点:单项式.专题:开放型.分析:单项式的次数是指单项式中所有字母因数的指数和∴x3y,x2y2,xy3等都是四次单项式.解答:解:根据四次单项式的定义,x2y2,x3y,xy3等都符合题意(答案不唯一).点评:考查了单项式的次数的概念.只要两个字母的指数的和等于4的单项式都符合要求.4.(2004?南平)把多项式2x2﹣3x+x3按x的降幂排列是x3+2x2﹣3x .考点:多项式.分析:按照x的次数从大到小排列即可.解答:解:按x的降幂排列是x3+2x2﹣3x.点评:主要考查降幂排列的定义,就是按照x的次数从大到小的顺序排列,操作时注意带着每一项前面的符号.三.解答题(共26小题)5.计算:(1)(x﹣y)(x+y)(x2+y2)(2)(a﹣2b+c)(a+2b﹣c)考点:平方差公式;完全平方公式.分析:(1)(x﹣y)与(x+y)结合,可运用平方差公式,其结果再与(x2+y2)相结合,再次利用平方差公式计算;(2)先运用平方差公式,再应用完全平方公式.解答:解:(1)(x﹣y)(x+y)(x2+y2),=(x2﹣y2)(x2+y2),=x4﹣y4;(2)(a﹣2b+c)(a+2b﹣c),=a2﹣(2b﹣c)2,=a2﹣4b2+4bc﹣c2.点评:本题主要考查了平方差公式与完全平方公式,熟记公式是解题的关键.平方差公式:(a+b)(a﹣b)=a2﹣b2.完全平方公式:(a±b)2=a2±2ab+b2.6.计算:1232﹣124×122.考点:平方差公式.分析:先把124×122写成(123+1)×(123﹣1),利用平方差公式计算,去掉括号后再合并即可.解答:解:1232﹣124×122,=1232﹣(123+1)(123﹣1),=1232﹣(1232﹣12),=1.点评:本题考查平方差公式的实际运用,构造成平方差公式的结构形式是解题的关键.7.计算:.考点:平方差公式.分析:观察可得:2005=2004+1,2003=2004﹣1,将其写成平方差公式代入原式计算可得答案.解答:解:,=,=,=2004.点评:本题考查平方差公式的实际运用,注意要构造成公式的结构形式,利用公式达到简化运算的目的.8.(x﹣2y+z)(﹣x+2y+z).考点:平方差公式.专题:计算题.分析:把原式化为[z+(x﹣2y)][z﹣(x﹣2y)],再运用平方差公式计算.解答:解:(x﹣2y+z)(﹣x+2y+z),=[z+(x﹣2y)][z﹣(x﹣2y)],=z2﹣(x﹣2y)2,=z2﹣(x2﹣4xy+4y2),=z2﹣x2+4xy﹣4y2.点评:本题考查了平方差公式,整体思想的利用是利用公式的关键,注意运用公式计算会减少运算量.9.运用乘法公式计算.(1)(x+y)2﹣(x﹣y)2;(2)(x+y﹣2)(x﹣y+2);(3)×;(4).考点:平方差公式.专题:计算题.分析:(1)(x+y)2﹣(x﹣y)2可以利用平方差公式进行计算;(2)(x+y﹣2)(x﹣y+2)转化成[x+(y﹣2)][x﹣(y﹣2)]的形式,利用平方差公式以及完全平方公式进行计算;(3)×可以转化成(80﹣)(80+)的形式,利用平方差公式计算;(4)可以转化为(20﹣)2进行简便计算.解答:解:(1)(x+y)2﹣(x﹣y)2=(x+y+x﹣y)(x+y﹣x+y),=4xy;(2)(x+y﹣2)(x﹣y+2),=[x+(y﹣2)][x﹣(y﹣2)],=x2﹣y2+4y﹣4;(3)×,=(80﹣)(80+),=;(4)=(20﹣)2=400﹣2×20×+,=.点评:本题主要考查平方差公式和完全平方公式的运用,利用完全平方公式以及平方差公式可以使计算更加简便.10.化简:(m+n﹣2)(m+n+2).考点:平方差公式.分析:把(m+n)看作整体,m+n是相同的项,互为相反项是﹣2与2,然后利用平方差公式和完全平方公式计算即可.解答:解:(m+n﹣2)(m+n+2),=(m+n)2﹣22,=m2+n2+2mn﹣4.点评:本题主要考查了平方差公式的应用.运用平方差公式(a+b)(a﹣b)=a2﹣b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.11.(x﹣2y﹣m)(x﹣2y+m)考点:平方差公式.专题:计算题.分析:把x﹣2y当成一个整体,利用两数的和乘以这两数的差,等于它们的平方差计算即可.解答:解:(x﹣2y﹣m)(x﹣2y+m),=(x﹣2y)2﹣m2,=x2﹣4xy+4y2﹣m2.点评:本题主要考查了平方差公式,整体思想的利用比较关键.12.计算(1)(a﹣b+c﹣d)(c﹣a﹣d﹣b);(2)(x+2y)(x﹣2y)(x4﹣8x2y2+16y4).考点:平方差公式.专题:计算题.分析:根据平方差公式以及完全平方公式即可解答本题.解答:解:(1)原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=c2+b2+d2+2bd﹣2bc﹣2cd﹣a2,(2)∵x4﹣8x2y2+16y4=(x2﹣4y2)2∴原式=(x2﹣4y2)(x2﹣4y2)2=(x2﹣4y2)3=(x2)3﹣3(x2)2(4y2)+3x2?(4y2)2﹣(4y2)3=x6﹣12x4y2+48x2y4﹣64y6.点评:本题考查了平方差公式以及完全平方公式的运用,难度适中.13.计算:20082﹣20072+20062﹣20052+…+22﹣12.考点:平方差公式.分析:分组使用平方差公式,再利用自然数求和公式解题.解答:解:原式=(20082﹣20072)+(20062﹣20052)+…+(22﹣12),=(2008+2007)(2008﹣2007)+(2006+2005)(2006﹣2005)+(2+1)(2﹣1),=2008+2007+2006+2005+…+2+1,=2017036.点评:本题考查了平方差公式的运用,注意分组后两数的差都为1,所有两数的和组成自然数求和.14.利用乘法公式计算:①(a﹣3b+2c)(a+3b﹣2c)②472﹣94×27+272.考点:平方差公式;完全平方公式.分析:①可用平方差公式计算:找出符号相同的项和不同的项,结合再按公式解答,②把94写成2×47后,可用完全平方公式计算.解答:解:①原式=[a﹣(3b﹣2c)][a+(3b﹣2c)]=a2﹣(3b﹣2c)2=9b2+12bc﹣4c2;②原式=472﹣2×47×27+272=(47﹣27)2=400.点评:本题考查了平方差公式,完全平方公式,熟记公式是解题的关键.①把(3b﹣2c)看作一个整体是运用平方差公式的关键;②把94写成2×47是利用完全平方公式的关键.15.已知:x2﹣y2=20,x+y=4,求x﹣y的值. 5考点:平方差公式.分析:本题是平方差公式的应用.解答:解:a2﹣b2=(a+b)(a﹣b),x2﹣y2=(x+y)(x﹣y)=20把x+y=4代入求得x﹣y=5.点评:运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.把x+y=4代入求得x﹣y的值,为5.16.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1…(1)根据上面各式的规律得:(x﹣1)(x m﹣1+x m﹣2+x m﹣3+…+x+1)= x m﹣1 ;(其中n为正整数);(2)根据这一规律,计算1+2+22+23+24+…+268+269的值.考点:平方差公式.分析:(1)认真观察各式,等式右边x的指数比左边x的最高指数大1,利用此规律求解填空;(2)先根据上面的式子可得:1+x+x2+x3+…+x n=(x n+1﹣1)÷(x﹣1),从而得出1+2+22+…+268+269=(269+1﹣1)÷(2﹣1),再进行计算即可.解答:解:(1)(x﹣1)(x m﹣1+x m﹣2+x m﹣3+…+x2+x+1)=x m﹣1;(2)根据上面的式子可得:1+x+x2+x3+…+x n=(x n+1﹣1)÷(x﹣1),∴1+2+22+…+268+269=(269+1﹣1)÷(2﹣1)=270﹣1.点评:本题考查了平方差公式,认真观察各式,根据指数的变化情况总结规律是解题的关键.17.先观察下面的解题过程,然后解答问题:题目:化简(2+1)(22+1)(24+1).解:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=28﹣1.问题:化简(3+1)(32+1)(34+1)(38+1)…(364+1).考点:平方差公式.分析:根据题意,整式的第一个因式可以根据平方差公式进行化简,然后再和后面的因式进行运算.解答:解:原式=(3﹣1)(3+1)(32+1)(34+1)(364+1),(38+1)(4分)=(32﹣1)(32+1)(34+1)(38+1)(364+1),=(34﹣1)(34+1)(38+1)(364+1),=(38﹣1)(364+1),(38+1)=(364﹣1)(364+1),(8分)=(3128﹣1).(10分)点评:本题主要考查了平方差公式,关键在于把(3+1)化简为(3﹣1)(3+1)的形式,18..考点:平方差公式.专题:计算题.分析:由平方差公式,(1+)(1﹣)=1﹣,(1﹣)(1+)=1﹣,依此类推,从而得出结果.解答:解:原式=(1﹣)(1+)(1+)(1+)(1+)=(1﹣)(1+)(1+)(1+)=(1﹣)(1+)(1+)=(1﹣)(1+)=1﹣.点评:本题考查了平方差公式的反复应用,是基础知识要熟练掌握.19.(2012?黄冈)已知实数x满足x+=3,则x2+的值为7 .考点:完全平方公式.专题:计算题.分析:将x+=3两边平方,然后移项即可得出答案.解答:解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.点评:此题考查了完全平方公式的知识,掌握完全平方公式的展开式的形式是解答此题的关键,属于基础题.20.(2007?天水)若a2﹣2a+1=0.求代数式的值.考点:完全平方公式.分析:根据完全平方公式先求出a的值,再代入求出代数式的值.解答:解:由a2﹣2a+1=0得(a﹣1)2=0,∴a=1;把a=1代入=1+1=2.故答案为:2.点评:本题考查了完全平方公式,灵活运用完全平方公式先求出a的值,是解决本题的关键.21.(2009?佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.考点:完全平方公式.专题:阅读型.分析:(1)(2)本题考查对完全平方公式的灵活应用能力,由题中所给的已知材料可得x2﹣4x+2和a2+ab+b2的配方也可分别常数项、一次项、二次项三种不同形式;(3)通过配方后,求得a,b,c的值,再代入代数式求值.解答:解:(1)x2﹣4x+2的三种配方分别为:x2﹣4x+2=(x﹣2)2﹣2,x2﹣4x+2=(x+)2﹣(2+4)x,x2﹣4x+2=(x﹣)2﹣x2;(2)a2+ab+b2=(a+b)2﹣ab,a2+ab+b2=(a+b)2+b2;(3)a2+b2+c2﹣ab﹣3b﹣2c+4,=(a2﹣ab+b2)+(b2﹣3b+3)+(c2﹣2c+1),=(a2﹣ab+b2)+(b2﹣4b+4)+(c2﹣2c+1),=(a﹣b)2+(b﹣2)2+(c﹣1)2=0,从而有a﹣b=0,b﹣2=0,c﹣1=0,即a=1,b=2,c=1,∴a+b+c=4.点评:本题考查了根据完全平方公式:a2±2ab+b2=(a±b)2进行配方的能力.22.(2004?太原)已知实数a、b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.考点:完全平方公式.分析:先由已知条件展开完全平方式求出ab的值,再将a2+b2+ab转化为完全平方式(a+b)2和ab的形式,即可求值.解答:解:∵(a+b)2=1,(a﹣b)2=25,∴a2+b2+2ab=1,a2+b2﹣2ab=25.∴4ab=﹣24,ab=﹣6,∴a2+b2+ab=(a+b)2﹣ab=1﹣(﹣6)=7.点评:本题考查了完全平方公式,利用完全平方公式展开后建立方程组,再整体代入求解.23.(2001?宁夏)设a﹣b=﹣2,求的值.考点:完全平方公式.分析:对所求式子通分,然后根据完全平方公式把分子整理成平方的形式,把a﹣b=﹣2代入计算即可.解答:解:原式==,∵a﹣b=﹣2,∴原式==2.点评:本题考查了完全平方公式,利用公式整理成已知条件的形式是解题的关键,注意整体思想的利用.24.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.考点:完全平方公式.分析:根据完全平方公式把(x+y)2和(x﹣y)2展开,然后相加即可求出x2+y2的值,相减即可求出xy的值.解答:解:由题意知:(x+y)2=x2+y2+2xy=49①,(x﹣y)2=x2+y2﹣2xy=1②,①+②得:(x+y)2+(x﹣y)2,=x2+y2+2xy+x2+y2﹣2xy,=2(x2+y2),=49+1,=50,∴x2+y2=25;①﹣②得:4xy=(x+y)2﹣(x﹣y)2=49﹣1=48,∴xy=12.点评:本题考查了完全平方公式,灵活运用完全平方公式,熟记公式是解题的关键.25.已知x+=4,求x﹣的值.考点:完全平方公式.分析:把已知条件两边平方求出x2+的值,再根据完全平方公式整理成(x﹣)2的形式并代入数据计算,然后进行开方运算.解答:解:∵,∴,∴x2+=14,∵(x﹣)2=x2+﹣2=12,∴x﹣=.点评:本题考查了完全平方公式,灵活运用完全平方公式,利用好乘积二倍项不含字母是常数是解题的关键.26.已知:x+y=3,xy=2,求x2+y2的值.考点:完全平方公式.分析:利用完全平方公式巧妙转化即可.解答:解:∵x+y=3,∴x2+y2+2xy=9,∵xy=2,∴x2+y2=9﹣2xy=9﹣4=5.点评:本题考查了利用完全平方公式恒等变形的能力.27.已知a+b=3,ab=2,求a2+b2,(a﹣b)2的值.考点:完全平方公式.分析:先把a+b=3两边平方,然后代入数据计算即可求出a2+b2的值,根据完全平方公式把(a﹣b)2展开,再代入数据求解即可.解答:解:∵a+b=3,∴a2+2ab+b2=9,∵ab=2,∴a2+b2=9﹣2×2=5;∴(a﹣b)2=a2﹣2ab+b2=5﹣2×2=1.点评:本题主要考查完全平方公式,熟记公式结构是解题的关键,整体代入思想的利用使计算更加简便.28.若x+y=2,且(x+2)(y+2)=5,求x2+xy+y2的值.考点:完全平方公式.专题:整体思想.分析:先根据多项式乘多项式的法则把(x+2)(y+2)展开并代入数据求出xy的值,再根据完全平方公式把x+y=2两边平方,整理并代入数据即可求出x2+xy+y2的值.解答:解:∵(x+2)(y+2)=5,∴xy+2(x+y)+4=5,∵x+y=2,∴xy=﹣3,∴x2+xy+y2=(x+y)2﹣xy=22﹣(﹣3)=7.点评:本题考查了完全平方公式,运用整体代入思想,熟练对代数式进行变形是解题的关键.29.x2﹣11x+1=0,求x2+的值.考点:完全平方公式.分析:先把x2﹣11x+1=0两边同除x(由题意可知x≠0),得到x+=11,然后把该式子两边平方即可得到x2+的值.解答:解:∵x≠0,∴x+,(x+)2=121,∴x2+2+,∴x2+.点评:本题考查了完全平方公式,关键是知道隐含条件x≠0,x2﹣11x+1=0两边同除x得到x+=11,利用x和互为倒数乘积是1,利用完全平方公式来进行解题.30.已,求下列各式的值:(1);(2).考点:完全平方公式.分析:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.使分式中含有的形式,代入求值.解答:解:(1),=(x﹣)2﹣2,=42﹣2,=14;(2),=,=,=.点评:本题主要考查完全平方公式,解题的关键是灵活运用完全平方公式,并利用好乘积二倍项不含字母是常数的特点.。
完全平方公式专项练习50题(有答案)ok

13. 20022;
14. 15.
992-98×100; 49×51-2499.
2
16.(x-2y) (x+2y)-(x+2y) 17.(a+b+c) (a+b-c) 18.(2a+1) -(1-2a)
2 2 2 2
31.已知 a b 6, ab 4 ,求 a b 3a b ab 的值。
2 2 2 2
32. 已知 x y 2 x 4 y 5 0 ,求
2 2
1 ( x 1) 2 xy 的值。 2
33.已知 x
1 1 6 ,求 x 2 2 的值。 x x
专项练习:
1.(a+2b)2 2.(3a-5)2 3.. (-2m-3n)2 4. (a2-1)2-(a2+1)2
5.(-2a+5b)2
1 2 2 ab - c)2 2 3 7.(x-2y) (x2-4y2) (x+2y) 2 8.(2a+3) +(3a-2)2 9.(a-2b+3c-1) (a+2b-3c-1) ;
4.
(a2-1)2-(a2+1)2 =[(a2-1)+(a2+1)][(a2-1)-(a2+1)] =-4a² =4a²-20ab+25b²
5.(-2a+5b)2
6.(-
1 2 2 2 1 4 ab - c)2 = a²b 4 + ab2c+ c² 4 9 2 3 3
4 4
完全平方公式专项练习 50 题(有答案)
知识点:
完全平方公式:(a+b) 2 =a 2 +2ab+b 2 (a-b) 2 =a 2 -2ab+b 2
湘教版数学七年级下2.2.2完全平方公式培优练习(含答案)

湘教版七年级下册 2.2.2完全平方公式培优练习一、选择题1. 如图是一个正方形,分成四部分,其面积分别是a 2,ab,ab,b 2,则原正方形的边长是( ) A. a 2+b2B.a+bC.a-bD.a 2-b 22.下面各运算中,结果正确的是( ) A.2a 3+3a 3=5a6B.-a 2•a 3=a 5C.(a +b )(-a -b )=a 2-b 2D.(-a -b )2=a 2+2ab +b 23.若(2x -5y )2=(2x +5y )2+m ,则代数式m 为( ) A.-20xy B.20xy C.40xy D.-40xy 4. 若a+=7,则a 2+的值为( ) A.47B.9C.5D.515. 不论x ,y 为何有理数,x 2+y 2-10x +8y +45的值均为( )A.正数B.零C.负数D.非负数 6.已知(a+b)2-2ab=5,则a 2+b 2的值为( ) A.10 B.5 C.1 D.不能确定 7. 如图,将完全相同的四个长方形纸片拼成一个正方形,则可得出一个等式为( ) A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b) D .(a +b)2=(a -b)2+4ab 8.下列运算中,正确的运算有( )①(x +2y)2=x 2+4y 2;②(a-2b)2=a 2-4ab +4b 2;③(x+y)2=x 2-2xy +y 2;④(x-14)2=x 2-12x +116.A .1个B .2个C .3个D .4个二、填空题9.已知:a -b =3,ab =1,则a 2-3ab +b 2=_____. 10. 填上适当的整式,使等式成立:(x -y )2+_____=(x +y )2.11.若a +b =4,则a 2+2ab +b 2的值为_____. 12.已知x 2-4=0,则代数式x (x +1)2- x (x 2+ x )-x -7的值是 .13.若a 2b 2+a 2+b 2+1-2ab =2ab ,则a +b 的值为_____. 14.请看杨辉三角(1),并观察下列等式(2):(1) (a +b)1=a +b ; (a +b)2=a 2+2ab +b 2; (a +b)3=a 3+3a 2b +3ab 2+b 3; (a +b)4=a 4+4a 3b +6a 2b 2+4ab 2+b 4;…(2)根据前面各式的规律,则(a +b)6=__________. 三、计算题15.计算:(a -2b +3c )(a +2b -3c ).16.已知(a +b )2=24,(a -b )2=20,求: (1)ab 的值是多少? (2)a 2+b 2的值是多少?17. (1)已知a -b =3,求a(a -2b)+b 2的值; (2)已知ab =2,a +b =5,求a 3b +2a 2b 2+ab 3的值.18.在三个整式x 2+2xy ,y 2+2xy ,x 2中,请你任意选出两个进行加(或减)法运算,使所得整式可以因式分解,并进行因式分解.参考答案:一、选择题1.D2.D3.D4.A5. A6.B7. D8.B二、填空题9.分析:应把所给式子整理为含(a-b)2和ab的式子,然后把值代入即可.解:∵(a-b)2=32=9,∴a2-3ab+b2=(a-b)2-ab=9-1=810.分析:所填的式子是:(x+y)2-(x-y)2,化简即可求解.解:(x+y)2-(x-y)2=(x2+2xy+y2)-(x2-2xy+y2)=4xy.11.分析:原式利用完全平方公式化简,将a+b的值代入计算即可求出值.解:∵a+b=4,∴a2+2ab+b2=(a+b)2=16.12.分析:分析:因为x2-4=0,∴x2=4,根据完全平方公式和单项式乘多项式的法则化简原式后,再代入求值.解:x(x+1)2-x(x2+x)–x-7=x3+2x2+x-x3-x2-x-7=x2-7.当x2-4=0时,x2=4,原式=-3.13.分析:首先把2ab移到等式的左边,然后变为a2b2+a2+b2+1-2ab-2ab=0,接着利用完全平方公式分解因式,最后利用非负数的性质即可求解.解:∵a2b2+a2+b2+1-2ab=2ab,∴a2b2+a2+b2+1-2ab-2ab=0,∴a2b2-2ab+1+a2+b2-2ab=0,∴(ab-1)2+(a-b)2=0,∴ab=1,a-b=0,∴a=b=1或-1,∴a+b=2或-2.14.解:a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6三、计算题(本大题共4小题)15.分析:首先将原式变为:[a-(2b-3c)][a+(2b-3c)],然后利用平方差公式,即可得到a2-(2b-3c)2,求出结果.解:(a-2b+3c)(a+2b-3c)=[a-(2b-3c)][a+(2b-3c)]=a2-(2b-3c)2=a2-(4b2-12bc+9c2)=a2-4b2+12bc-9c2.16.分析:由(a+b)2=24,(a-b)2=20,可以得到:a2+b2+2ab=24…①,a2+b2-2ab=20…②,通过两式的加减即可求解.解:∵(a+b)2=24,(a-b)2=20,∴a2+b2+2ab=24…①,a2+b2-2ab=20…②,(1)①-②得:4ab=4,则ab=1;(2)①+②得:2(a2+b2)=44,则a2+b2=22.17.分析:(1)首先对a(a-2b)+b2进行转化成(a -b)的形式,再利用已知条件就可以了;(2)同理可解。