大学物理真空中磁场的高斯定理

合集下载

大学物理真空中的磁场解读

大学物理真空中的磁场解读

B dB
dB
0 4
Idl
cos 3
dB 0I cosd
r sec
4r
B
dB 0I 4r
0 0
cosd
0I 4r
sin
0
B方向:与I方向成右手螺旋关系
[讨论] ①o点在导线上某一点
l dl
I
l
d I
or
0
o rP
1 P
B
0I 4r
(sin
1
sin
2
)
2 (1、2都取正值)
②o点在导线的延长线上
代数和.
③该定理表明,磁场不是保守场.
2.利求用B的安根培本环方路法定:理电求流B元 的磁场+叠加原理
但若电流分布的对称性很高(圆柱形电流、 平面电流、螺线管等),则可利用安培环路定 理简便求解.
[例3-4] 无限长圆柱面电流的磁场
设柱面上总电流为I,均匀分布.
第三章 真空中的磁场 (Magnetic Field in Vacuum)
内容: 毕奥-萨伐尔定律 磁场的高斯定理 安培环路定理 洛仑兹力 安培力
§3.1 基本磁现象(Elementary Magnetic
Phenomena)
⒈磁铁 磁铁
NS
I ⒉电流 磁铁
⒊电流 电流 I
I
磁现象的本质: 磁场1 运动电荷1
I
S1 S2
x x+dx X
解:建立X轴如图
域S1和S2 ,则通过这两 个区域的磁通量之比
m1 m2 =
.
设图中矩形区域的高为b 则通过x-x+dx面元的磁通量为
dm
B dS
BdS
0I 2x

大学物理-7-3 磁通量 磁场的高斯定理

大学物理-7-3 磁通量 磁场的高斯定理

B
磁通量:通过某一曲面 的磁感线数为通过此曲面 的磁通量.
Φ BS cosBS
Φ B S B enS dΦ B dS
B dΦ BdS cos
s
Φ s BdS
单位 1Wb 1T 1m2
B dS1
1 B1
S
B2
2
dS2
dΦ1 B1 dS1 0 dΦ2 B2 dS2 0
SB cosdS 0
S B d S 0
3a
2a 5a
l
Φ s BdS = 0
I
磁场高斯定理
S B d S 0
物理意义:通过任意闭合曲面的磁通量必等于零。
(故磁场是无源的.)
求磁通量(1)用磁通量的定义求(2)用高斯定理求
例1 如图载流长直导线的电流为
积的磁通量.
解 先求
,试I 求 通过矩形面 ,B对变磁场给出
B
后积B 分dΦ求0I
2π x
Φ
B // S
I
l
d1 d2
dΦ BdS 0I ldx
Φ
S
B
dS
2π x
0Il

d2
d1
dx x
o
x Φ 0Il ln d2
2π d1
例2 一半径为a的无限长直载流导线,沿轴向均
匀地流有电流I,若作一个半径为 R= 5a,高为l
的柱形曲面,已知此柱形曲面的轴与载流导线的 轴平行且相距3a(如图),则在圆柱侧面S上的 磁通量=?
第三节 磁场的高斯定理
一 磁感线
规定:曲线上每一点的切线方向就是该点的磁感
强度 B 的方向,曲线的疏密程度表示该点的磁感强 度 B 的大小.
I

大学物理 高斯定理

大学物理 高斯定理

引言概述:在大学物理中,高斯定理是一项重要的物理原理,它描述了电场和磁场的性质。

高斯定理由德国物理学家卡尔·弗里德里希·高斯于18世纪中叶提出,是电磁学的基础之一。

本文将介绍高斯定理的概念、原理及其在电场和磁场中的应用。

正文内容:1. 高斯定理的概念1.1 定义高斯定理是描述电场和磁场分布的一种数学工具,它通过计算电场或磁场通过一个闭合曲面(高斯面)的总通量来研究场的分布。

1.2 数学表达高斯定理可以用数学表达式表示为:∮E·dA = q/ε0,其中∮E·dA表示场在闭合曲面上的总通量,q表示闭合曲面内的电荷量,ε0为真空介电常数。

2. 高斯定理的原理2.1 高斯面的选择高斯定理中的高斯面是根据具体问题选择的,一般情况下我们选择对称性较高的闭合曲面,以简化计算。

2.2 电场线的特性高斯定理的基础是电场线的性质,电场线从正电荷流向负电荷,且与介质边界垂直,通过一个封闭曲面的电场线数目与该封闭曲面内的电荷量有关。

2.3 通量与电场强度高斯定理中的总通量与电场强度呈正相关关系,通过计算总通量可以得到闭合曲面内的电场强度大小。

3. 高斯定理在电场中的应用3.1 点电荷的场分布高斯定理可以用来研究点电荷周围的电场分布,通过选择以点电荷为中心的球面作为高斯面,可以计算出球面内外的电场强度大小。

3.2 均匀带电球壳的场分布对于均匀带电球壳,可以通过选择以球壳为中心的闭合曲面来计算球壳内外的电场分布,根据高斯定理可以得到球壳内外的电场强度大小。

4. 高斯定理在磁场中的应用4.1 磁场的总通量类似于电场,磁场也可以使用高斯定理来描述,通过计算磁场通过闭合曲面的总通量可以了解磁场的分布情况。

4.2 磁场的磁感应强度高斯定理在磁场中的应用可以得到磁场的磁感应强度大小,通过选择合适的闭合曲面,可以计算出曲面内外的磁感应强度。

5. 高斯定理的实际应用5.1 高斯定理在电容器中的应用电容器是电子器件中常见的元件,根据高斯定理,可以计算电容器两极板之间的电场强度,进而了解电容器的性能。

大学物理电磁学知识点总结

大学物理电磁学知识点总结

大学物理电磁学总结一、三大定律库仑定律:在真空中,两个静止的点电荷q1 和q2 之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。

uuu r q q ur F21 = k 1 2 2 er rur u r 高斯定理:a) 静电场:Φ e = E d S = ∫s∑qiiε0(真空中)b) 稳恒磁场:Φ m =u u r r Bd S = 0 ∫s环路定理:a) 静电场的环路定理:b) 安培环路定理:二、对比总结电与磁∫Lur r L E dl = 0 ∫ ur r B dl = 0 ∑ I i (真空中)L电磁学静电场稳恒磁场稳恒磁场电场强度:E磁感应强度:B 定义:B =ur ur F 定义:E = (N/C) q0基本计算方法:1、点电荷电场强度:E =ur r u r dF (d F = Idl × B )(T) Idl sin θ方向:沿该点处静止小磁针的N 极指向。

基本计算方法:urq ur er 4πε 0 r 2 1r ur u Idl × e r 0 r 1、毕奥-萨伐尔定律:d B = 2 4π r2、连续分布的电流元的磁场强度:2、电场强度叠加原理:ur n ur 1 E = ∑ Ei = 4πε 0 i =1r qi uu eri ∑ r2 i =1 inr ur u r u r 0 Idl × er B = ∫dB = ∫ 4π r 23、安培环路定理(后面介绍)4、通过磁通量解得(后面介绍)3、连续分布电荷的电场强度:ur ρ dV ur E=∫ e v 4πε r 2 r 0 ur σ dS ur ur λ dl ur E=∫ er , E = ∫ e s 4πε r 2 l 4πε r 2 r 0 04、高斯定理(后面介绍)5、通过电势解得(后面介绍)几种常见的带电体的电场强度公式:几种常见的磁感应强度公式:1、无限长直载流导线外:B = 2、圆电流圆心处:B = 3、圆电流轴线上:B =ur 1、点电荷:E =q ur er 4πε 0 r 2 10 I2R0 I 2π r2、均匀带电圆环轴线上一点:ur E=r qx i 2 2 32 4πε 0 ( R + x )R 2 IN 2 ( x 2 + R 2 )3 21 0α 23、均匀带电无限大平面:E =σ 2ε 0(N 为线圈匝数)4、无限大均匀载流平面:B =4、均匀带电球壳:E = 0( r < R )(α 是流过单位宽度的电流)ur E=q ur er (r > R ) 4πε 0 r 25、无限长密绕直螺线管内部:B = 0 nI (n 是单位长度上的线圈匝数)6、一段载流圆弧线在圆心处:B = (是弧度角,以弧度为单位)7、圆盘圆心处:B =r ur qr (r < R) 5、均匀带电球体:E = 4πε 0 R 3 ur E= q 4πε 0 r ur er (r > R ) 20 I 4π R0σω R2(σ 是圆盘电荷面密度,ω 圆盘转动的角速度)6、无限长直导线:E =λ 2πε 0 x λ 0(r > R ) 2πε 0 r7、无限长直圆柱体:E =E=λr (r < R) 4πε 0 R 2电场强度通量:N·m2·c-1)(磁通量:wb)(sΦ e = ∫ d Φ e = ∫ E cos θ dS = ∫s sur u r E d S通量u u r r Φ m = ∫ d Φ m = ∫ Bd S = ∫ B cos θ dS s s s若为闭合曲面:Φ e =∫sur u r E d S若为闭合曲面:u u r r Φ m = Bd S = B cos θ dS ∫ ∫s s均匀电场通过闭合曲面的通量为零。

磁高斯定理

磁高斯定理

磁高斯定理
磁高斯定理是一个重要的物理学理论,由哥本哈根大学的挪威物理学家,诺贝尔物理学家奥古斯特·磁高斯于1839年提出。

这个定理指出,任何给定的磁场,都可以由一个合适的磁向量场,即磁通量密度场来定义。

它表明,磁场是由磁向量场产生的,而不是由电荷分布引起的。

磁高斯定理的定义如下:对于任意闭合面S和其上的磁向量f,它们之间具有以下关系:
∫f•dl= ∫B•nds
其中f是内积,B是磁场,dl是封闭曲线的方向投影,nds是闭合面的法向量。

该定理的主要推论是,磁场的总流量,即数学上的积分,可以由已知的电荷分布来求得,而不必求出磁场本身。

这是一个非常重要的理论,因为它简化了对磁场的描述,而不必计算它的实际分布情况。

磁高斯定理表明,磁场是通过电流密度来描述的,而不是由电荷分布来描述。

这一定理最初是由磁高斯发现的,但是帕森斯在1860年重新分析并求得了该定理的希腊符号形式。

磁高斯定理在物理学,工程和其他应用领域有着广泛的应用,可以用来求出磁场的磁向量分布。

通过这种分布,我们可以知道磁场的方向和强度,从而估算磁场的复杂性。

此外,磁高斯定理在电力系统的设计以及磁学感测器的设计中也有重要的应用。

大学物理知识点归纳

大学物理知识点归纳

大学物理第十一章:真空中的静电场一、电场强度:数值上等于单位正电荷在该点受到的电场力的大小,也等于单位面积电通量的大小(即电场线密度);方向与该点的受力方向(或者说电场线方向)一致。

二、电场强度的计算:a)点电荷的电场强度:b)电偶极子中垂线上任意一点的电场强度:(表示点到电偶极子连线的距离)c)均匀带电直棒:i.有限长度:ii.无限长(=0,):iii.半无限长:(,或者,)或三、电通量a)电场线:电场线上任意一点的切线方向与该点的电场强度E的方向一致,曲线的疏密程度表示该点电场强度的大小,即该点附近垂直于电场方向的单位面积所通过的电场线条数满足:电场中某点的电场强度大小等于该处的电场线密度,即该点附近垂直于电场方向的单位面积所通过的电场线条数。

b)静电场电场线的特点:1.电场线起于正电荷(或无穷远),终于负电荷(或伸向无穷远),在无电荷的地方不会中断;2.任意两条电场线不相交,即静电场中每一点的电场强度只有一个方向;3.电场线不形成闭合回路;4.电场强处电场线密集,电场弱处电场线稀疏。

c)电通量i.均匀电场E穿过任意平面S的电通量:ii.非均匀电场E穿过曲面S的电通量:四、高斯定理a)b)表述:真空中任何静电场中,穿过任一闭合曲面的电通量,在数值上等于该闭合曲面内包围的电荷的代数和除以;c)理解:1.高斯定理表达式左边的E是闭合面上处的电场强度,他是由闭合面内外全部电荷共同产生的,即闭合曲面外的电荷对空间各点的E有贡献,要影响闭合面上的各面元的同量。

2.通过闭合曲面的总电量只决定于闭合面内包围的电荷,闭合曲面外部的电荷对闭合面的总电通量无贡献。

d)应用:1.均匀带电球面外一点的场强相当于全部电荷集中于球心的点电荷在该点的电场强度。

2.均匀带电球面内部的电场强度处处为零。

五、电势a)静电场环路定理:在静电场中,电场强度沿任意闭合路径的线积分等于零。

b)电场中a点的电势:1.无穷远为电势零点:2.任意b点为电势零点:六、电势能:电荷在电场中由于受到电场作用而具有电荷中的电荷比值决定位置的能叫做电势能,七、电势叠加定理:点电荷系电场中任意一点的电势等于各点电荷单独存在该点所产生的电势的代数和。

大学物理 磁场的高斯定理

大学物理  磁场的高斯定理
——称为磁场的高斯定理。
在静电场中,由于自然界有单独存在的正、负电 荷,因此通过一闭合曲面的电通量可以不为零,这反 映了静电场是有源场。而在磁场中,磁力线的连续性 表明,像正、负电荷那样的磁单极是不存在的,磁场 是无源场。
上页
下页
思考问题!!
求穿过旋转曲面的磁通量, 是否可以通过求穿过平面圆的
磁通量来求呢?
m BS cos B r 2cos
S
n
B
上页
下页
dS
对于闭合曲面 SB dS
(2)磁通量是标量,其正负由角确定。与电场中一样,
对闭合曲面来说,我们规定取向外的方向为法线的正方向。
这样:
磁力线穿入: 0 磁力线穿出: 0
上页
下页
二、.磁场的高斯定理
由于磁力线是闭合曲线,因此通过任一闭合曲 面磁通量的代数和(净通量)必为零,亦即
sB dS 0
典型载流体磁场分布
磁力线的特征:
1)无头无尾的闭合曲线 2)与电流相互套合,服从右手螺旋定则
3)磁力线不相交
上页
下页
2. 磁通量
磁场中,通过一给定曲面的磁力线数目,称为通过
Байду номын сангаас
该曲面的磁通量。
m
B dS
s
BdS cos
s
dS
B
在国际单位制中,磁通量的单位为韦伯(wb)。
说明
(1)对于有限曲面 B dS
为什么?
BB
上页
下页
例1 在匀强磁场B中,有一半径为r的半球面S,S 边线所在平面的法线方向的单位矢量n和B的夹角为
,如图所示,则通过半球面S的磁通量为
-B r2cos
将半球面和圆面组成一个闭 合面,则由磁场的高斯定理知, 通过此闭合面的磁通量为零。

7-5 磁通量 磁场的高斯定律7-6 安培环路定理

7-5  磁通量  磁场的高斯定律7-6 安培环路定理
l
r R, B d l 0 I
l
例5、同轴电缆的内导体圆柱半径为 R1,外导体圆筒内外 半径分别为R2、 R3,电缆载有电流I,求磁场的分布。 解:同轴电缆的电流分布具有轴对称 R3 I
R1
R2
性在电缆各区域中磁力线是以电缆轴线为
对称轴的同心圆。 r < R1时, 取沿半径 r 的磁感应线为环路
一、安培环路定理
1、内容
在真空稳恒电流的磁场中,磁感应强 度B沿任何闭合回路L的线积分,等 于穿过这回路的所有电流强度代数和 的μ 0倍,数学表达式:
I n 1
L
I2
B dl o Ii
L i
I1
Ii
I nk
电流正负的规定––– 按右手螺旋法则。
2、证明
(1)在围绕单根载流导线的垂直平面内的圆形回路。
0 I 0 d l l B dl 2 π Rdl cos0 o R l 0 I l B dl 2π R l dl 设闭合回路 l 为圆形 B d l I 0 l 回路( l 与 I成右螺旋)
0 I B 2π R
I
B
I
o
2 2
Bz
o R2 I
3
2
7-5 磁通量 磁场的高斯定理
一、磁感应线
1.磁感应线
•用来描述磁场分布的曲线。
•磁感应线上任一点切线的方向——B的方向。
•B的大小可用磁感应线的疏密程度表示。 磁感应线密度:在与磁感应线垂直的单位面积上的穿过 的磁感应线的数目。
dN B= dS
2、几种典型的磁感应线
B
R
若回路绕向化为顺时针时,则
dl
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I
O
0 I B 2π x
l
x x dx
x
穿过该矩形面积的磁通量为: 0 Il ab 1 0 Il a b dx ln Φm S dΦm a 2π b 2π x
2014-11(韦伯)
2014-11-4
11.4.3 真空中恒定磁场的高斯定理 磁感线都是闭合曲线
恒定电流与真空中的恒定磁 场
B
m B dS 0
S
——真空中恒定磁场的高斯定理
S
电流产生的磁感应线既没有起始点,也没有终止 点,即磁感线既没有源头,也没有尾闾. —— 磁场是无源场(涡旋场)
2014-11-4
11.4.2 磁通量 m
恒定电流与真空中的恒定磁 场
通过磁场中某一曲面的磁感线数.

dS
n
B
对于有限曲面: m B dS
对于闭合曲面: m B dS
S
S
n

规定: 磁力线穿入: m 0 磁力线穿出: m 0
2014-11-4
dN B dS
恒定电流与真空中的恒定磁 场
条形磁铁周围的磁感线
圆电流的磁感线
直线电流的磁感线 通电螺线管的磁感线 2. 磁感线的特征 (1) 无头无尾的闭合曲线; (2) 与电流相互套连,服从右手螺旋定则; (3) 磁感线永不相交.
2014-11-4
恒定电流与真空中的恒定磁 场
2014-11-4
例: 面积的磁通量.
恒定电流与真空中的恒定磁 场 无限长直导线通以电流I,求通过如图所示的矩形
a
b
B
解: 建立如图所示的坐标系 x 处磁感应强度的大小为: 在 x 处取面元dS,则 dS ldx 穿过该面元的磁通量为: 0 I ldx dΦm B dS BdS
11.4 真空中磁场的高斯定理
静电场: e SE dS qi / 0 磁 场: B dS ?
恒定电流与真空中的恒定磁 场
静电场是有源场
B
11.4.1 磁感应线 1. 规定 方向:磁感线切线方向为磁感应强度 B 的方向; 大小:垂直 B 的单位面积上穿过的磁感线条数为磁 感应强度 B 的大小. 即:
相关文档
最新文档