遥感影像识别-第三章 聚类分析 Part Ⅱ要点
如何进行遥感影像分类与识别

如何进行遥感影像分类与识别遥感影像分类与识别是一项被广泛应用于环境监测、农业发展、城市规划等领域的技术。
通过将遥感影像进行分类与识别,可以获取地表覆盖信息、监测资源利用情况以及坏境变化趋势等。
本文将探讨如何进行遥感影像分类与识别的相关方法和技术。
一、遥感影像分类与识别的基本原理遥感影像分类与识别的基本原理是基于遥感影像的光谱特征和空间结构特征来进行分类与识别。
光谱特征是指通过遥感技术获取到的不同波段的影像数据,而空间结构特征是指地物在影像上的分布、形状等信息。
通过综合利用这些特征,可以实现对遥感影像中不同地物的分类与识别。
二、遥感影像分类与识别的常用方法1. 基于像元的分类方法基于像元的分类方法是通过对遥感影像中的每个像元进行分类,即将每个像元划分到不同的地物类别中。
该方法的优点是简单而直观,但也存在不足之处,比如在复杂研究区域中,同一类地物的像元可能存在光谱变化、空间紧密等问题。
2. 基于目标的分类方法基于目标的分类方法是通过对遥感影像中的目标进行识别和分类。
该方法的优点是能够捕捉到地物的空间分布和形状信息,可以有效地解决像元分类方法的问题。
通过目标提取和形状识别等技术,可以将遥感影像中的目标进行分类与识别。
3. 基于纹理的分类方法基于纹理的分类方法是通过提取遥感影像中地物的纹理特征,实现对地物的分类与识别。
纹理特征描述了地物表面的复杂度和变化性,通过纹理特征的提取和分析,可以实现对遥感影像中的地物进行准确的分类与识别。
三、遥感影像分类与识别的技术挑战与解决方法遥感影像分类与识别在实际应用中面临一些技术挑战,如遥感影像的多光谱信息的充分利用、分类器的选择和优化等。
针对这些挑战,可以采取一些解决方法,如:1. 多光谱信息的融合通过将遥感影像中不同波段的光谱信息进行融合,可以提高分类与识别的准确性。
常用的融合方法有主成分分析法、综合概率法等。
2. 分类器的选择与优化选择合适的分类器对于分类与识别的准确性至关重要。
遥感影像解译-分类后处理及精度评价、分类新方法

三、分类新方法
• 随着模式识别与机器学习技术的不断发展,将先进的机器
学习技术应用到遥感影像分类中,并充分考虑影像本身的光
谱信息、空间信息、时间序列信息以及各类地理辅助信息可
以大大提高遥感影像分类的精度。
• 分类新方法
- 半监督分类;
- 面向对象分类;
- 分类器集成
- ……
26
1 半监督分类
• 机器学习 (Machine Learning)模式: - 监督学习:仅仅利用已标注类别的样本进行训练以确定 分类器; - 非监督学习:只利用未标注类别的数据进行聚类分析; - 半监督学习:利用已标注类别的样本+未标注样本来确 定分类器。
3×3窗口分析结果
(4) 分类后处理-平滑处理
• 针对问题 分类结果斑点噪声严重
• 解决方法: a. MRF随机场建模 b. Majority Voting 方法
原始多光谱遥感影像与地面真实值
(1) IKONOS 多光谱影像
原始多光谱遥感影像与地面真实值
(1) IKONOS 多光谱影像
(2) 地表真实值
25446 Aprod 52987 48.02% 1 Eo
(e) 用户精度(User’s Accuracy)
• 用户精度(User’s Accuracy): - 影像类中,某类像元被正确分类为该类的概率,利用 混淆矩阵的行来计算。如水的用户精度:
Auser
9180 56104
16.36%
a. SVM vs 高斯混合模型+MRF
(3) SVM 水体提取结果
a. SVM vs 高斯混合模型+MRF
(3) SVM 水体提取结果
(4) 高斯混合模型+MRF方法
遥感影像识别-第三章 聚类分析 Part Ⅱ要点

1.C-均值聚类算法(即:K-均值聚类算法) 2.ISODATA聚类算法
算法要解决的关键问题: ① 首先选择有代表性的点作为起始聚合中心。若 类型数目已知,则选择代表点的数目等于类型数 目;若未知,那么聚类过程要形成的类型数目, 就是一个值得研究的问题。 ② 代表点选择好之后,如何把所有样本区分到 以代表点为初始聚合中心的范围内,形成初始划 分,是算法的另一个关键问题。
1.C-均值聚类算法
C- 均值聚类算法使用的聚类准则函数是误差平方 和准则 : Jc
J c || xk m j ||
j 1 k 1
c
nj
2
为了使聚类结果优化,应该使准则 最小化。
Jc
(1)C-均值算法(一)
(1)C-均值算法(一)
(1)C-均值算法(一)
(1)C-均值算法(一)
聚类分析符合“物以类聚,人以群分“的原 则,它把相似性大的样本聚集为一个类型, 在特征空间里占据着一个局部区域。每个局 部区域都形成一个聚合中心,聚合中心代表 相应类型。 相似性准则:包括距离相似性度量和角度相似 性度量。 距离相似性度量:欧氏距离、马氏距离、明 氏距离。
De ( x, y) || x y ||
x2
Z1
D21
③按照某种聚类准则考察聚类结果,若不满意,则 重新选取距离阈值 、第一个聚合中心 ,返回 T ②,直到满意,算法结束。 Z1 在样本分布一定时,该算法的结果在很大程度上取 决于第一个聚合中心的选取和距离阈值的大小。♀ p66 该算法的优点是简单,如果有样本分布的先验知识 用于指导阈值和起始点的选取,则可较快得到合理 结果。对于高维的样本集来说,则只有经过多次试 探,并对聚类结果进行验算,从而选择最优的聚类 结果。
遥感图像分类

影像对象构建方法与参数优化
对象合并准则
在初始分割基础上,通过将 初始影像对象逐步合并为较 大的对象来实现多尺度对象 的构建,对象合并的停止条 件是由其尺度准则决定的
fw vah lv uael uw esh h aspheape
h va luw e c ( n 1 (m c1 c ) n 2 (m c2 c ))
1)分类前影像平滑 2)分类后小区合并—将小于一定面积的像元合并到邻近区
域
遥感影像分类后处理—误差分析
目的:检验分类效果 方法:抽样检验 抽样方法: 1)监督分类的样本区 2)试验场抽样 3)随机抽样 评价方式:混淆矩阵
辅助数据改进遥感分类的方法
地理分层 分类器操作 分类后处理
遥感信息与非遥感信息的复合
c
hsh a p w c emh p c m c t pw cstmh oso mth o o th
h cm pn c 1(t ln m mln 11)n 2(ln m mln 22)
hsmo on t1 h(b lm mb l1 1)n2(b lm mb l2 2)
37
影像对象构建方法
尺度为: 16 平均 面积: 867.6
• 基于统计的方法和基于规则的方法 • 监督分类和非监督分类 • 硬分类和软分类 • 逐像元分类和面向对象分类
分类标准
• 按照逻辑准则组织的信息类别正确的分类
学定义
• 参考标准: • 规划协会的土地分类标准(LBCS) • 国家植被分类系统
基于统计的分类方法
遥感影像光谱特征分布特点
遥感影像分类原理
μc4
人工神经网络分类
生物神经网络(biological neural network, BNN), 特别是人脑
聚类分析的基本概念与方法

聚类分析的基本概念与方法聚类分析(Cluster Analysis)是一种将数据分组或分类的统计学方法,通过将相似的对象归为同一组,使得组内的对象之间更加相似,而不同组之间的对象则差异较大。
它是数据挖掘和机器学习领域中常用的技术之一,被广泛应用于市场分析、生物信息学、图像处理等领域。
一、聚类分析的基本概念聚类分析基于相似性的概念,即认为具有相似特征的对象更有可能属于同一类别。
在聚类分析中,每个对象都被视为一个数据点,而聚类则是将这些数据点分组。
基本概念包括以下几点:1. 数据点:数据集中的每个样本或对象都被看作是一个数据点,它具有多个特征或属性。
2. 相似性度量:聚类分析的关键是如何计算数据点之间的相似性或距离。
常用的相似性度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。
3. 簇/类别:将相似的数据点归为一组,这个组被称为簇或类别。
簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。
4. 聚类算法:聚类分析依赖于具体的算法来实现数据点的分组。
常见的聚类算法有K均值聚类、层次聚类、密度聚类等。
二、聚类分析的方法1. K均值聚类(K-means Clustering):K均值聚类是一种迭代的聚类方法,它将数据点分成K个簇,每个簇代表一个样本集。
算法的基本思想是通过最小化簇内数据点与簇中心之间的平方误差来确定最优的簇中心位置。
2. 层次聚类(Hierarchical Clustering):层次聚类是一种基于树状结构的聚类算法,它根据数据点之间的相似性逐步合并或分割簇。
层次聚类分为凝聚型和分裂型两种方法,其中凝聚型方法从单个数据点开始,逐步合并最相似的簇;分裂型方法从所有数据点开始,逐步分割最不相似的簇。
3. 密度聚类(Density-Based Clustering):密度聚类基于密度可达的概念,将具有足够高密度的数据点归为一簇。
核心思想是在数据空间中通过密度连通性来确定簇的边界,相对于K均值聚类和层次聚类,密度聚类能够有效处理不规则形状和噪声数据。
如何进行遥感影像的目标识别与分类

如何进行遥感影像的目标识别与分类遥感影像的目标识别与分类在现代科技发展中扮演着重要的角色。
利用遥感技术,我们能够获取到大规模的影像数据,这些数据可以用来进行目标识别与分类,以支持各种应用领域,如环境监测、城市规划、农业管理等。
本文将探讨如何进行遥感影像的目标识别与分类。
一、遥感影像的目标识别遥感影像的目标识别是指从遥感影像中提取出特定目标的过程。
目标可以是建筑物、道路、农田等。
在进行目标识别之前,我们需要处理原始影像数据,进行预处理。
预处理包括辐射校正、几何校正等步骤,以确保影像数据的准确性和一致性。
接下来的关键步骤是特征提取。
特征提取是将影像数据转化为可量化的特征向量的过程。
常用的特征包括颜色、纹理、形状等。
在选择特征时,需要考虑目标的特点和任务需求。
例如,如果要进行建筑物的识别,可以考虑使用建筑物的形状和纹理作为特征。
特征提取后,我们可以使用机器学习算法进行目标的分类。
常用的机器学习算法包括支持向量机、随机森林、神经网络等。
这些算法可以根据提取的特征向量进行学习,构建分类模型,并对新的影像数据进行分类。
二、遥感影像的目标分类目标分类是将遥感影像中的特定目标分为不同的类别的过程。
例如,将影像中的土地分类为农田、水域、城市等。
目标分类与目标识别紧密相关,但目标分类更加注重对整个影像场景的分类。
对于目标分类,我们可以采用监督学习和无监督学习两种方法。
监督学习是指利用有标记的训练样本进行学习和分类。
在进行监督学习时,我们需要手动标记一部分影像数据,给出它们所属的类别。
然后,使用这些标记好的数据进行模型训练,构建分类器。
最后,使用分类器对未标记的数据进行分类。
无监督学习是指在没有标记的训练样本的情况下进行学习和分类。
该方法通常使用聚类算法,将影像数据分为不同的簇。
聚类算法通过计算数据点之间的相似性来划分簇,以实现目标分类。
除了监督学习和无监督学习,我们还可以采用半监督学习和深度学习等方法进行目标分类。
遥感影像分类方法

遥感影像分类方法1. 引言遥感影像分类是遥感技术的重要应用之一,它通过对遥感影像中的地物进行自动识别和分类,为地理信息系统、城市规划、农业等领域提供了重要数据支持。
本文将介绍遥感影像分类的基本概念和方法,并对常用的分类算法进行详细讨论。
2. 遥感影像分类概述遥感影像分类是指将遥感图像中的每个像素点或图像区域分配到预先定义的类别中。
这些类别通常代表不同的地物类型,如建筑物、水体、森林等。
遥感影像分类可以根据不同的目标进行不同尺度和精度的划分,从而满足不同应用需求。
3. 遥感影像分类方法3.1 监督学习方法监督学习是一种常用的遥感影像分类方法,它需要使用已标记好类别的样本数据作为训练集,并通过机器学习算法来构建分类模型。
常见的监督学习算法包括支持向量机(SVM)、随机森林(Random Forest)和深度学习等。
3.1.1 支持向量机(SVM)支持向量机是一种二分类模型,它基于统计学习理论和结构风险最小化原则进行模型训练。
在遥感影像分类中,支持向量机可以通过寻找最优的超平面来实现不同类别的分离。
3.1.2 随机森林(Random Forest)随机森林是一种集成学习方法,它通过构建多个决策树并进行投票来进行分类。
在遥感影像分类中,随机森林可以通过对决策树进行训练和组合来实现高精度的分类结果。
3.1.3 深度学习深度学习是一种基于神经网络的机器学习方法,它通过多层次的神经元网络结构来提取遥感影像中的特征,并进行分类。
深度学习在遥感影像分类中具有较好的性能,并且能够自动提取特征,无需手动设计特征。
3.2 无监督学习方法无监督学习是另一种常用的遥感影像分类方法,它不需要使用已标记好类别的样本数据进行训练。
无监督学习算法通常通过对图像进行聚类来实现分类,常见的算法包括K均值聚类和谱聚类等。
3.2.1 K均值聚类K均值聚类是一种简单且高效的无监督学习算法,它将遥感影像中的像素点划分为K个不同的类别。
K均值聚类通过迭代计算每个像素点与各个类别的距离,并将其划分到距离最近的类别中。
遥感影像识别-第三章 聚类分析 Part Ⅰ

(2)马氏(Mahalanobis)距离
定义:马氏距离的平方
2 ( x )T 1 ( x )
马氏距离排除了不同特征之间相关性的影响, 其关键在于协方差矩阵的计算。当∑为对角阵时 ,各特征之间才完全独立;当∑为单位矩阵时, 马氏距离等于欧氏距离。 马氏距离 比较适用于对样本已有初步分类的 情况,做进一步考核、修正。
从上图看出,(b)、(c)特征空间划分是不同的。 (b)中 x1 , x2 为一类,x3 , x4 为另一类,(c) 中 x1, x3 为一类,x2 , x4 为另一类。
欧氏距离具有旋转不变的特性,但对于一般的线性变换 不是不变的,此时要对数据进行标准化(欧氏距离使用 时,注意量纲,量纲不同聚类结果不同,克服这一缺点 ,要使特征数据标准化使之与量纲无关)。 另外,使用欧氏距离度量时,还要注意模式样本测量值 的选取,应该是有效反映类别属性特征(各类属性的代 表应均衡)。但马氏距离可解决不均衡(一个多,一个 少)的问题。 例如,取5个样本,其中有4个反映对分类有意义的特征 A,只有1个对分类有意义的特征B,欧氏距离的计算结 果,则主要体现特征A。
当预先不知道类型数目,或者用参数估计和非 参数估计难以确定不同类型的类概率密度函数 时,为了确定分类器的性能,可以利用聚类分 析的方法。 聚类分析无训练过程,训练与识别混合在一起 。
§ 3-1 相似性准则
xn} 设有样本集 X {x1, x2 ,...., ,要求按某种相似性把 X 分类,怎样实现?
1
2
n
1
2
c
c
J c || xk m j ||2
j 1 k 1
c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 | x y | i i i 1
d
课堂回顾
在样本相似性度量的基础上,聚类分析还需要 一定的准则函数,才能把真正属于同一类的样 本聚合成一个类型的子集,而把不同类的样本 分离开来。 聚类准则函数:包括误差平方和准则、加权平 均平方距离和准则、类间距离和准则。 误差平方和准则(最常用):
(1)C-均值算法(一)
(1)C-均值算法(一)
算法特点: ① 每次迭代中都要考查每个样本的分类是否正 确,若不正确,就要调整,在全部样本调整完之 后,再修改聚合中心,进入下一次迭代。如果在 某一个迭代运算中,所有的样本都被正确分类, 则样本不会调整,聚合中心也不会有变化,也就 是收敛了。 ② c个初始聚合中心的选择对聚类结果有较大影 响。 在算法迭代过程中,样本分类不断调整,因此 误差平方和 J c 也在逐步减小,直到没有样本调 整为止,此时 J c 不再变化,聚类达到最优。但 是上述算法中没有计算 J c 值,也就是说 J 不是 算法结束的明显依据。
2. 最大最小距离聚类算法
该算法以欧氏距离为基础,除首先辨识最远的聚 类中心外,与上述算法相似。用一个例子说明该 算法。 ♂以类间欧式距离最大作为选择聚类中心的条件 。
§ 3-4 动态聚类算法
在聚类分析中,动态聚类法是较普遍采用的方法 ,该算法首先选择某种样本相似性度量和适当的 聚类准则函数,使用迭代算法,在初始划分的基 础上,逐步优化聚类结果,使准则函数达到极值 。
采用最近邻规则的聚类算法 最大最小距离聚类算法
1. 采用最近邻规则的聚类算法
假设已有混合样本集 行聚类,算法如下:
,按照最近邻原则进
X {x1, x2 ,....,xn}
①选取距离阈值 ,并且任取一个样本作为第一 个聚合中心 ,如: 。 T ②计算样本 到 的距离 :
Z1
Z1 x1
ISODATA 算 法 : Iterative Self-Organizing Data Analysis Techniques Algorithm ,迭代自组织的数 据分析算法。 ISODATA算法特点:可以通过类的自动合并(两 类合一)与分裂(一类分为二),得到较合理的 类型数目c。
具体算法步骤: ⑴ 给定控制参数 K :预期的聚类中心数目。 n:每一聚类中最少的样本数目,如果少于此数 就不能作为一个独立的聚类。 s:一个聚类域中样本距离分布的标准差(阈值 )。 c:两个聚类中心之间的最小距离,如果小于此 数,两个聚类合并。 L:每次迭代允许合并的最大聚类对数目。 I :允许的最多迭代次数。 给定n个混合样本,令 J 1 (迭代次数),预选c个 ,...,c 起始聚合中心, Z j (, J ) j 1,2。
1.C-均值聚类算法(即:K-均值聚类算法) 2.ISODATA聚类算法
算法要解决的关键问题: ① 首先选择有代表性的点作为起始聚合中心。若 类型数目已知,则选择代表点的数目等于类型数 目;若未知,那么聚类过程要形成的类型数目, 就是一个值得研究的问题。 ② 代表点选择好之后,如何把所有样本区分到 以代表点为初始聚合中心的范围内,形成初始划 分,是算法的另一个关键问题。
,
具体算法步骤: D( xk , Z j ( J )) ⑵ 计算每个样本与聚合中心距离: 。 n} xk 。 wi 若:D( x , Z ( J )) min {D( x , Z ( J )), k 1,2,..., ,则: 把全部样本划分到c个聚合中去,且 n j 表示各子 集 X j 中的样本数目。 ⑶ 判断:若 ,则舍去子集 ,返 回②。 ⑷ 计算修改聚合中心: 。 ⑸ 计算类内距离平均值 D :
1.C-均值聚类算法
C- 均值聚类算法使用的聚类准则函数是误差平方 和准则 : Jc
J c || xk m j ||
j 1 k 1
c
nj
2
为了使聚类结果优化,应该使准则 最小化。
Jc
(1)C-均值算法(一)
(1)C-均值算法(一)
(1)C-均值算法(一)
(1)C-均值算法(一)
聚类分析符合“物以类聚,人以群分“的原 则,它把相似性大的样本聚集为一个类型, 在特征空间里占据着一个局部区域。每个局 部区域都形成一个聚合中心,聚合中心代表 相应类型。 相似性准则:包括距离相似性度量和角度相似 性度量。 距离相似性度量:欧氏距离、马氏距离、明 氏距离。
De ( x, y) || x y ||
J c || xk m j2
课后思考
线性判别函数的适用性? 聚类分析的优缺点?
ERDAS image Model 工具如何实现聚类?
§ 3-3 两种简单的聚类算法
本节介绍两种简单的聚类分析方法,它是对某些 关键性的元素进行试探性的选取,使某种聚类准 则达到最优,又称为基于试探的聚类算法。
遥感影像识别
第三章: 聚类分析
Part Ⅱ
主要内容
§ 3-1 § 3-2 § 3-3 § 3-4 § 3-5 相似性准则 聚类准则函数 两种简单的聚类算法 动态聚类算法 聚类的评价
课堂回顾
广义线性判别函数 x y 非线性判别函数 分段线性判别函数:距离均值 二次判别函数:判别方程
课堂回顾
x2
Z1
D21
③按照某种聚类准则考察聚类结果,若不满意,则 重新选取距离阈值 、第一个聚合中心 ,返回 T ②,直到满意,算法结束。 Z1 在样本分布一定时,该算法的结果在很大程度上取 决于第一个聚合中心的选取和距离阈值的大小。♀ p66 该算法的优点是简单,如果有样本分布的先验知识 用于指导阈值和起始点的选取,则可较快得到合理 结果。对于高维的样本集来说,则只有经过多次试 探,并对聚类结果进行验算,从而选择最优的聚类 结果。
c
(2)C-均值算法(二)
(2)C-均值算法(二)
(2)C-均值算法(二)
( 3) J 与 c C的关系曲线
(3) J c与C的关系曲线
图中,曲线的拐点A对应着接近最优的c值。 并非所有的情况都容易找到 J c -C关系曲线的拐 点,此时c值将无法确定。
2.ISODATA聚类算法