八年级数学上学期易错计算题专练(精心整理)含答案

合集下载

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .2.下列四个实数:223,0.1010017π,3,,其中无理数的个数是( ) A .1个B .2个C .3个D .4个3.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .4.如图,将边长为1的正方形OABC 沿x 轴正方向连续翻转2020次,点A 依次落在点1A 、2A 、3A 、4A …2020A 的位置上,则点2020A 的坐标为( )A .2019,0()B .2019,1()C .2020,0()D .2020,1()5.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43B .13C .43±D .13±6.20.3•、227-38( )A .1个B .2个C .3个D .4个7.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( ) A .a >bB .a =bC .a <bD .以上都不对8.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( ) A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--9.下列交通标志图案是轴对称图形的是( )A .B .C .D .10.在平面直角坐标系xOy 中,线段AB 的两个点坐标分别为A (﹣1,﹣1),B (1,2).平移线段AB ,得到线段A ′B ′.已知点A ′的坐标为(3,1),则点B ′的坐标为( ) A .(4,4)B .(5,4)C .(6,4)D .(5,3)二、填空题11.已知实数x 、y 满足|3|20x y ++-=,则代数式()2019x y +的值为______.12.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______. 13.4的平方根是 .14.如图,在ABC ∆中,90C =∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=,2CD =,则ABC ∆周长等于__________.15.等边三角形有_____条对称轴.16.如图,在Rt ABC △中,90B ∠=︒,30A ∠=︒,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若1BD =,则AC 的长是__________.17.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.18.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____. 19.一次函数y =2x -4的图像与x 轴的交点坐标为_______.20.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F ,点点F 作DE ∥BC ,交AB 于点D ,交AC 于点E 。

人教版数学八年级上册易错题难题整理含答案+易错题及答案

人教版数学八年级上册易错题难题整理含答案+易错题及答案

人教版数学八年级上册易错题难题整理含答案+易错题及答案人教版数学八年级上册易错题整理一、选择题3、正确说法的个数有(C)3个。

改写:在一组数据中,中位数只有一个;中位数可能是这组数据中的数,也可能不是;一组数据的众数可能有多个;众数是这组数据中出现次数最多的数据的次数;众数一定是这组数据中的数。

5、正确说法的个数有(D)4个。

改写:数轴上的点要么表示有理数,要么表示无理数;实数a的倒数是1/a;带根号a的数都是无理数;两个绝对值不相等的无理数,其和、差、积、商仍是无理数。

6、答案为(B)m2+1.改写:设自然数为n,则n的算术平方根为m,即m^2≤n<(m+1)^2,因此n的范围为m^2≤n≤m^2+2m,与n相邻的下一个自然数为m^2+2m+1=(m+1)^2.二、填空题11、样本容量为(240÷100)×=7500,正常视力的初中生人数为(0.16÷100)×=48.12、b(10+a)的值为(根号10-3)×(根号10+3)=10-9=1.13、-.36-1/2=-1.86.14、该图形的面积为∆ABC的面积减去∆ADC的面积,即(1/2)×12×5-(1/2)×3×4=21.15、根据勾股定理,BD=5,所以该图形的面积为(1/2)×12×5=30.16、解方程可得x=2.17、由不等式组得x>a且x>b,所以a<b。

18、甲管的注水速率为1/6,乙管的注水速率为1/x,两管同时开的注水速率为1/3,因此1/6+1/x=1/3,解方程可得x=9.三、解答题20、计算:1)因式分解题略。

2)已知$\frac{a-b}{a+b}=9$,$\frac{a-b}{a+b}=49$,求$a+b$和$ab$的值。

由$\frac{a+b}{a-b}=\frac{1}{9}$,得$a+b+2ab=9$(1)。

人教版八年级上册数学易错题(含解析)

人教版八年级上册数学易错题(含解析)

八年级数学上册易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。

【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。

部编数学八年级上册期末真题必刷易错60题(32个考点专练)(解析版)含答案

部编数学八年级上册期末真题必刷易错60题(32个考点专练)(解析版)含答案

期末真题必刷易错60题(32个考点专练)一.科学记数法—表示较小的数(共1小题)1.(2022秋•孝昌县期末)某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为( )A.1.64×10﹣6B.1.64×10﹣5C.16.4×10﹣7D.0.164×10﹣5【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:0.00000164=1.64×10﹣6,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.二.同底数幂的乘法(共1小题)2.(2022秋•开福区校级期末)已知x+y﹣3=0,则2y•2x的值是( )A.6B.﹣6C.D.8【分析】根据同底数幂的乘法求解即可.【解答】解:∵x+y﹣3=0,∴x+y=3,∴2y•2x=2x+y=23=8,故选:D.【点评】此题考查了同底数幂的乘法等知识,解题的关键是把2y•2x化为2x+y.三.同底数幂的除法(共2小题)3.(2022秋•榆树市校级期末)已知2x=3,则22x﹣3= .【分析】利用同底数幂的除法的法则及幂的乘方的法则对所求的式子进行整理,再代入相应的值运算即可.【解答】解:当2x=3时,22x﹣3=22x÷23=(2x)2÷23=32÷8=.故答案为:.【点评】本题主要考查同底数幂的除法及幂的乘方,解答的关键是对相应的运算法则的掌握与运用.4.(2022秋•花都区期末)计算:a3•a+(﹣a2)3÷a2.【分析】根据同底数幂的乘法和除法的运算法则,幂的乘方的运算法则解答即可.【解答】解:原式=a4+(﹣a6)÷a2=a4﹣a6÷a2=a4﹣a4=0.【点评】本题主要考查了同底数幂的乘法和除法的运算法则,幂的乘方的运算法则,熟记幂的运算法则是解答本题的关键.四.单项式乘单项式(共2小题)5.(2022秋•龙江县校级期末)下列运算正确的是( )A.3a+a=4a2B.(﹣2a)3=﹣8a3C.(a3)2÷a5=1D.3a3•2a2=6a6【分析】根据合并同类项法则、积的乘方法则、同底数幂的除法法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:A、3a+a=4a,本选项计算错误,不符合题意;B、(﹣2a)3=﹣8a3,本选项计算正确,符合题意;C、(a3)2÷a5=a6÷a5=a,本选项计算错误,不符合题意;D、3a3•2a2=6a5,本选项计算错误,不符合题意;故选:B.【点评】本题考查的是单项式乘单项式、幂的乘方与积的乘方、合并同类项,掌握它们的运算法则是解题的关键.6.(2022秋•南阳期末)下列计算中,正确的是( )A.x•(﹣x)=x2B.(﹣x)2=x2C.(2x)3=6x3D.x4÷x=x4【分析】根据同底数幂的除法法则、同底数幂的乘法及合并同类项的法则,分别进行各选项的判断即可.【解答】解:A、x•(﹣x)=﹣x2,故本选项错误;B、(﹣x)2=x2,故本选项正确;C、(2x)3=8x3,故本选项错误;D、x4÷x=x3,故本选项错误;故选:B.【点评】本题考查了同底数幂的乘除法则、合并同类项的法则,解答本题的关键是掌握各部分的运算法则.五.完全平方公式(共3小题)7.(2022秋•长沙期末)已知(a﹣b)2=13,ab=6,则a2+b2= 25 .【分析】根据完全平方公式解答即可.【解答】解:∵(a﹣b)2=13,ab=6,∴a2+b2=(a﹣b)2+2ab=13+12=25.故答案为:25.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.8.(2022秋•西山区期末)下列运算正确的是( )A.a2•a5=a10B.(3a2)2=6a4C.a3÷a=a2D.(a﹣b)2=a2﹣b2【分析】根据同底数幂的乘法法则、积的乘方的运算法则、同底数幂的除法法则、完全平方公式计算得到结果,即可作出判断.【解答】解:A、原式=a7,原计算错误,故此选项不符合题意;B、原式=9a4,原计算错误,故此选项不符合题意;C、原式=a2,原计算正确,故此选项符合题意;D、原式=a2﹣2ab+b2,原计算错误,故此选项不符合题意.故选:C.【点评】此题考查了同底数幂的乘除法法则、积的乘方的运算法则、完全平方公式,熟练掌握运算法则和公式是解本题的关键.9.(2022秋•大安市期末)已知m﹣n=6,mn=4.(1)求m2+n2的值.(2)求(m+2)(n﹣2)的值.【分析】(1)根据完全平方公式即可求出答案;(2)将原式展开后,再将m﹣n,mn代入即可求出答案.【解答】解:(1)因为m﹣n=6,mn=4,所以m2+n2=(m﹣n)2+2mn=62+2×4=36+8=44;(2)因为m﹣n=6,mn=4,所以(m+2)(n﹣2)=mn﹣2m+2n﹣4=mn﹣2(m﹣n)﹣4=4﹣2×6﹣4=﹣12.【点评】本题考查了整式的运算.熟练掌握完全平方公式、多项式乘以多项式的运算法则是解题的关键.六.完全平方公式的几何背景(共1小题)10.(2022秋•湖里区期末)在一个面积为36cm2正方形纸板中剪下边长为a cm大正方形和边长为b cm的小正方形(如图1),再在大正方形沿一个顶点剪下一个边长为b cm的小正方形(如图2),得到一个周长为16cm的六边形ABCDEF,则原大正方形中剩下的两个长方形的面积和为 16 cm2.【分析】先分别求得a+b,a和b的值,再分别代入求解.【解答】解:由题意得,解得或(舍去),∴原大正方形中剩下的两个长方形的面积和为:4×2×2=16,故答案为:16.【点评】此题考查了完全平方公式几何背景问题的解决能力,关键是能结合几何图形进行准确列式、运算.七.完全平方式(共3小题)11.(2022秋•内江期末)已知关于x的二次三项式x2+2kx+16是完全平方式,则实数k的值为 4或﹣4 .【分析】利用完全平方公式的结构特征判断即可求出k的值.【解答】解:∵关于字母x的二次三项式x2+2kx+16是完全平方式,∴k=4或﹣4.故答案为:4或﹣4.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.完全平方公式:(a±b)2=a2±2ab+b2.12.(2022秋•三河市校级期末)多项式x2﹣8x+k是一个完全平方式,则k= 16 .如果x2+mx+16是完全平方式,则m的值是 ±8 .【分析】利用完全平方公式的结构特征判断即可得解.【解答】解:∵多项式x2﹣8x+k是一个完全平方式,∴k=()2=16,∵x2+mx+16是完全平方式,∴,即m2=64,又∵(±8)2=64,∴m=±8.故答案为:16,±8.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.(2022秋•路南区校级期末)已知多项式A=x2+2x+n2,多项式B=2x2+4x+3n2+3.(1)若多项式x2+2x+n2是完全平方式,则n= ±1 ;(2)有同学猜测B﹣2A的结果是定值,他的猜测是否正确,请说明理由;(3)若多项式x2+2x+n2的值为﹣1,求x和n的值.【分析】(1)根据完全平方式的定义计算即可;(2)把A=x2+2x+n2,B=2x2+4x+3n2+3代入B﹣2A计算即可;(3)由题意可得x2+2x+n2=﹣1,整理后利用非负数的性质求解即可.【解答】解:(1)∵x2+2x+n2是一个完全平方式,∴x2+2x+n2=(x+1)2,∴n2=1,∴n=±1.故答案为:±1;(2)猜测不正确,理由:∵A=x2+2x+n2,B=2x2+4x+3n2+3,∴B﹣2A=2x2+4x+3n2+3﹣2(x2+2x+n2)=2x2+4x+3n2+3﹣2x2﹣4x﹣2n2=n2+3,∵结果含字母n,∴B﹣2A的结果不是定值;(3)由题意可得x2+2x+n2=﹣1,∴x2+2x+n2+1=0,∴(x+1)2+n2=0,∴x+1=0,n=0,∴x=﹣1.【点评】本题考查了完全平方式以及整式的加减,记住完全平方式的特征是解题的关键,形如a2±2ab+b2这样的式子是完全平方式.八.平方差公式(共2小题)14.(2022秋•河北区期末)计算982﹣99×97= 1 .【分析】根据平方差公式解答即可.【解答】解:982﹣99×97=982﹣(98+1)(98﹣1)=982﹣(982﹣1)=982﹣982+1=1.故答案为:1.【点评】本题主要考查平方差公式,熟练掌握平方差公式是解决本题的关键.15.(2022秋•舒兰市期末)计算:(a+1)2+(3﹣a)(3+a).【分析】根据完全平方公式和平方差公式计算即可.【解答】解:原式=a2+2a+1+9﹣a2=2a+10.【点评】本题考查了完全平方公式和平方差公式.能够灵活运用完全平方公式和平方差公式是解题的关键.九.整式的除法(共1小题)16.(2022秋•内乡县期末)下列计算正确的是( )A.12a2÷3a=4B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab2【分析】利用单项式除以单项式,同底数幂的除法,幂的乘方与积的乘方的法则,进行计算逐一判断即可解答.【解答】解:A、12a2÷3a=4a,故A不符合题意;B、a3•a3=a6,故B不符合题意;C、(a3)2=a6,故C符合题意;D、(ab)2=a2b2,故D不符合题意;故选:C.【点评】本题考查了整式的除法,同底数幂的除法,幂的乘方与积的乘方,准确熟练地进行计算是解题的关键.一十.因式分解的意义(共2小题)17.(2022秋•渝北区校级期末)下列从左边到右边的变形中,是因式分解的是( )A.a2﹣9=(a﹣3)(a+3)B.(x﹣y)2=x2﹣y2C.x2﹣4+4x=(x+2)(x﹣2)+4xD.x2+3x+1=x(x+3+)【分析】多项式的因式分解是将多项式变形为几个整式的乘积形式,由此解答即可.【解答】解:A、符合因式分解的定义,故本选项符合题意;B、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意;C、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意;D、右边不是整式的积的形式(含有分式),不符合因式分解的定义,故本选项不符合题意.故选:A.【点评】本题考查因式分解的定义.解题的关键是掌握因式分解的定义,属于基础题型.18.(2022秋•临县校级期末)若(x+2)是多项式4x2+5x+m的一个因式,则m等于( )A.﹣6B.6C.﹣9D.9【分析】根据因式分解是把一个多项式转化成几个整式积的形式,设4x2+5x+m=(x+2)(4x+b)=4x2+(b+8)x+2b,可得答案.【解答】解:设4x2+5x+m=(x+2)(4x+b)=4x2+(b+8)x+2b,则b+8=5,m=2b,解得:b=﹣3,m=﹣6,故选:A.【点评】本题考查了因式分解的意义,由十字相乘法得因式分解,由因式分解得出m的值.一十一.提公因式法与公式法的综合运用(共3小题)19.(2022秋•内乡县期末)把多项式2x2﹣8分解因式,正确的是( )A.2(x2﹣4)B.(x+2)(x﹣2)C.2(x+2)(x﹣2)D.(2x+4)(x﹣2)【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2),故选:C.【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.20.(2022秋•离石区期末)因式分解:﹣3a2x2+24a2x﹣48a2= ﹣3a2(x﹣4)2 .【分析】先提公因式,再利用完全平方公式继续分解即可解答.【解答】解:﹣3a2x2+24a2x﹣48a2=﹣3a2(x2﹣8x+16)=﹣3a2(x﹣4)2,故答案为:﹣3a2(x﹣4)2.【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.21.(2022秋•嘉峪关期末)整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2,再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2.问题:(1)该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果 (x+1)4 ;(2)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.【分析】(1)利用完全平方公式继续分解,即可解答;(2)按照例题的解题思路,进行计算即可解答.【解答】解:(1)该同学没有完成因式分解,设x2+2x=y,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)4,故答案为:(x+1)4;(2)设x2﹣4x=y,原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4.【点评】本题考查了提公因式法与公式法的综合运用,理解例题的解题思路是解题的关键.一十二.分式有意义的条件(共1小题)22.(2022秋•射阳县校级期末)若分式有意义,则x的取值范围是 x≠1 .【分析】根据分式有意义的条件可知x﹣1≠0,再解不等式即可.【解答】解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.一十三.分式的值为零的条件(共1小题)23.(2022秋•和硕县校级期末)如果分式的值为0,那么x的值为 1 .【分析】根据分式的值为零的条件解决此题.【解答】解:如果分式的值为0,则,解得:x=1.故答案为:1.【点评】本题主要考查分式的值为零的条件,熟练掌握分式的值为零的条件是解决本题的关键.一十四.分式的加减法(共1小题)24.(2022秋•磁县期末)阅读下面的材料,并解答问题:分式的最大值是多少?解:,因为x≥0,所以x+2的最小值是2,所以的最大值是2,所以的最大值是4,即的最大值是4.根据上述方法,试求分式的最大值是 5 .【分析】按照例题的解题思路,进行计算即可解答.【解答】解:===2+,∵x2≥0,∴x2+2的最小值为2,∴的最大值为3,∴2+的最大值为5,∴分式的最大值是5,故答案为:5.【点评】本题考查了分式的加减法,理解例题的解题思路是解题的关键.一十五.分式的混合运算(共1小题)25.(2022秋•高邑县期末)下列四个分式的运算中,其中运算结果正确的有( )①+=;②a÷b×=a③;④A.3个B.2个C.1个D.0个【分析】根据分式的加减法,乘除法,分式的约分法则,进行计算逐一判断即可解答.【解答】解:①+=,故①不正确;②a÷b×=a••=,故②不正确;③,故③正确;④==a+b,故④不正确;所以,上列四个分式的运算中,其中运算结果正确的有1个,故选:C.【点评】本题考查了分式的混合运算,准确熟练地进行计算是解题的关键.一十六.分式的化简求值(共2小题)26.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【分析】根据分式的混合运算法则把原式化简,根据分式有意义的条件确定x的值,代入计算即可.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.【点评】本题考查的是分式的化简求值、分式有意义的条件,掌握分式的混合运算法则是解题的关键.27.(2022秋•龙亭区校级期末)化简并求值:,其中a﹣2023=0.【分析】先利用同分母分式加减法法则计算括号里,再算括号外,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:=•=a+1,∵a﹣2023=0,∴a=2023,∴当a=2023时,原式=2023+1=2024.【点评】本题考查了分式的化简求值,准确熟练地进行计算是解题的关键.一十七.分式方程的解(共1小题)28.(2022秋•龙江县校级期末)已知关于x的方程的解为正数,则m的取值范围是 m>3且m≠9 .【分析】根据解分式方程的一般步骤,可得分式方程的解,根据解为正数,可得不等式,解不等式即可得答案.【解答】解:去分母,得2x﹣m﹣(x﹣3)=﹣x,解得:x=,∵关于x的方程的解为正数,∴x=>0且x≠3,∴m>3且m≠9;故答案为:m>3且m≠9.【点评】此题主要考查了分式方程的解,解出分式方程,根据解为正数列出不等式是解题关键.一十八.解分式方程(共2小题)29.(2022秋•济宁期末)解方程:.【分析】按照解分式方程的步骤,进行计算即可解答.【解答】解:,3﹣x=2(x﹣3),解得:x=3,检验:当x=3时,x(x﹣3)=0,∴x=3是原方程的增根,∴原方程无解.【点评】本题考查了解分式方程,一定要注意解分式方程必须检验.30.(2022秋•东昌府区校级期末)解方程:(1);(2).【分析】(1)按照解分式方程的步骤,进行计算即可解答;(2)按照解分式方程的步骤,进行计算即可解答.【解答】解:(1),x2+x﹣1=x(x﹣1),解得:x=,检验:当x=时,x(x﹣1)≠0,∴x=是原方程的根;(2),2(x﹣2)+x+2=4,解得:x=2,检验:当x=2时,(x+2)(x﹣2)=0,∴x=2是原方程的增根,∴原方程无解.【点评】本题考查了解分式方程,一定要注意解分式方程必须检验.一十九.分式方程的增根(共1小题)31.(2022秋•莱州市期末)若关于x的分式方程有增根,则实数m的值是 2 .【分析】根据题意可得x=2,然后把x=2代入整式方程中进行计算,即可解答.【解答】解:,=﹣﹣2,m=﹣2(1﹣x)﹣4(x﹣2),解得:x=,∵分式方程有增根,∴x﹣2=0,∴x=2,把x=2代入x=中得:2=,解得:m=2,故答案为:2.【点评】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键.二十.三角形的角平分线、中线和高(共1小题)32.(2022秋•天山区校级期末)在△ABC中作AB边上的高,下图中不正确的是( )A.B.C.D.【分析】过三角形的顶点向对边作垂线,顶点与垂足之间的线段叫做三角形的高,据此判断即可.【解答】解:由题可得,过点C作AB的垂线段,垂足为H,则CH是BC边上的高,∴A、B、D选项正确,C选项错误.故选:C.【点评】本题考查了三角形的高线,熟记概念是解题的关键.解题时注意:钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.二十一.三角形三边关系(共1小题)33.(2022秋•宁明县期末)在下列长度的三条线段中,能组成三角形的是( )A.2cm,2cm,4cm B.3cm,4cm,6cmC.1cm,4cm,6cm D.2cm,5cm,7cm【分析】根据三角形三边关系定理(①三角形两边之和大于第三边,②三角形的两边之差小于第三边)逐个判断即可.【解答】解:A、2+2=4,不符合三角形三边关系定理,故本选项错误;B、3+4>6,符合三角形三边关系定理,故本选项正确;C、1+4<6,不符合三角形三边关系定理,故本选项错误;D、2+5=7,不符合三角形三边关系定理,故本选项错误.故选:B.【点评】本题主要考查了三角形的三边关系,解题时注意:判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.二十二.全等三角形的性质(共1小题)34.(2022秋•南关区校级期末)如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF= 70° .【分析】根据三角形内角和定理求出∠ACB,根据全等三角形的性质解答.【解答】解:∵∠A=30°,∠B=80°,∴∠ACB=180°﹣30°﹣80°=70°,∵△ABC≌△FED,∴∠EDF=∠ACB=70°,故答案为:70°.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.二十三.全等三角形的判定(共1小题)35.(2022秋•忻府区期末)根据下列已知条件,不能画出唯一△ABC的是( )A.∠A=60°,∠B=45°,AB=4B.∠A=30°,AB=5,BC=3C.∠B=60°,AB=6,BC=10D.∠C=90°,AB=5,BC=3【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A.∠A=60°,∠B=45°,AB=4,符合全等三角形的判定定理ASA,能画出唯一的△ABC,故本选项不符合题意;B.∠A=30°,AB=5,BC=3,不符合全等三角形的判定定理,不能画出唯一的△ABC,故本选项符合题意;C.∠B=60°,AB=6,BC=10,符合全等三角形的判定定理SAS,能画出唯一的△ABC,故本选项不符合题意;D.∠C=90°,AB=5,BC=3,符合全等直角三角形的判定定理HL,能画出唯一的△ABC,故本选项不符合题意;故选:B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.二十四.全等三角形的判定与性质(共2小题)36.(2022秋•无为市期末)如图,AD是△ABC的角平分线,DF⊥AB于点F,DE=DG,△ADG和△AED 的面积分别为10和4.(1)过点D作DH⊥AC于H,则DF = DH(填“<、=、>”);(2)△EDF的面积为 3 .【分析】(1)利用角平分线的性质,即可解答;(2)利用(1)的结论,可证Rt△DFE≌△DHG,从而可得Rt△DFE的面积=Rt△DHG的面积,再利用HL证明Rt△AFD≌Rt△AHD(HL),从而可得Rt△AFD的面积=Rt△AHD的面积,然后结合图形利用面积的和差关系进行计算即可解答.【解答】解:(1)如图:∵AD平分∠BAC,DF⊥AB,DH⊥AC,∴DF=DH,故答案为:=;(2)在Rt△DFE和△DHG中,,∴Rt△DFE≌△DHG(HL),∴Rt△DFE的面积=Rt△DHG的面积,在Rt△AFD和Rt△AHD中,,∴Rt△AFD≌Rt△AHD(HL),∴Rt△AFD的面积=Rt△AHD的面积,∵△ADG和△AED的面积分别为10和4,∴△ADH的面积+△DHG的面积=10,∴△ADF的面积+△DHG的面积=10,∴△AED的面积+△DFE的面积+△DHG的面积=10,∴2△DFE的面积=6,∴△EDF的面积=3,故答案为:3.【点评】本题考查了全等三角形的判定与性质,角平分线的性质,熟练掌握全等三角形的判定与性质是解题的关键.37.(2022秋•和平区校级期末)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:AB=AE.【分析】根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形,即可得出结论.【解答】证明:∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS),∴AB=AE.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.二十五.角平分线的性质(共5小题)38.(2022秋•昆明期末)点P在∠ABC的平分线上,点P到BA边的距离等于3,点D是BC边上的任意一点,则下列选项正确的是( )A.PD>3B.PD≥3C.PD<3D.PD≤3【分析】利用角平分线的性质可得点P到BC边的距离等于3,然后再根据垂线段最短,即可解答.【解答】解:∵点P在∠ABC的平分线上,点P到BA边的距离等于3,∴点P到BC边的距离等于3,∵点D是BC边上的任意一点,∴PD≥3,故选:B.【点评】本题考查了角平分线的性质,垂线段最短,熟练掌握角平分线的性质是解题的关键.39.(2022秋•昆明期末)如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S=30,DE=4,BC=△ABC10,则AC的长是( )A.3B.4C.5D.6【分析】过点D作DF⊥AC,垂足为F,根据角平分线的性质可得DE=DF=4,然后利用面积法,进行计算即可解答.【解答】解:过点D作DF⊥AC,垂足为F,∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF=4,=30,BC=10,∵S△ABC∴△ADC的面积+△CDB的面积=30,∴AC•DF+BC•DE=30,∴AC•4+×10×4=30,∴AC=5,故选:C.【点评】本题考查了角平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.40.(2022秋•长沙期末)如图,O是△ABC内一点,且O到三边AB、AC、BC的距离OF=OE=OD,若∠BAC=70°,则∠BOC=( )A.110°B.115°C.120°D.125°【分析】先利用三角形内角和定理可得∠ABC+∠ACB=110°,然后利用角平分线性质定理的逆定理可得BO平分∠ABC,CO平分∠ACB,从而利用角平分线的定义可得∠OBC=∠ABC,∠OCB=∠ACB,最后利用三角形内角和定理进行计算即可解答.【解答】解:∵∠BAC=70°,∴∠ABC+∠ACB=180°﹣∠BAC=110°,由题意得:OD⊥BC,OE⊥AC,OF⊥AB,∵OF=OE=OD,∴BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣55°=125°,故选:D.【点评】本题考查了角平分线的性质,熟练掌握角平分线性质定理的逆定理是解题的关键.41.(2022秋•宛城区校级期末)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S=15,△ABC DE=3,AB=6,则AC的长是( )A.4B.4.5C.5D.6【分析】过点D作DF⊥AC,垂足为F,利用角平分线的性质可得DE=DF=3,然后利用△ABD的面积+△ADC的面积=△ABC的面积,进行计算即可解答.【解答】解:过点D作DF⊥AC,垂足为F,∵AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=3,∵S=15,AB=6,△ABC∴△ABD的面积+△ADC的面积=15,∴AB•DE+AC•DF=15,∴×6×3+AC•3=15,∴AC=4,故选:A.【点评】本题考查了角平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.42.(2022秋•和平区校级期末)如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为( )A.1B.6C.3D.12【分析】由三角形的内角和定理和角的和差求出∠ABD=∠CBD,角平分线的性质定理得AD=DH,垂线段定义证明DH最短,求出DP长的最小值为3.【解答】解:过点D作DH⊥BC交BC于点H,如图所示:∵BD⊥CD,∴∠BDC=90°,又∵∠C+∠BDC+∠DBC=180°,∠ADB+∠A+∠ABD=180°∠ADB=∠C,∠A=90°,∴∠ABD=∠CBD,∴BD是∠ABC的角平分线,又∵AD⊥AB,DH⊥BC,∴AD=DH,又∵AD=3,∴DH=3,又∴点D是直线BC外一点,∴当点P在BC上运动时,点P运动到与点H重合时DP最短,其长度为DH长等于3,即DP长的最小值为3.故选:C.【点评】本题综合考查了三角形的内角和定理,角的和差,角平分线的性质定理,垂线段的定义等知识点,重点掌握角平分线的性质定理,难点是作垂线段找线段的最小值.二十六.线段垂直平分线的性质(共2小题)43.(2022秋•安次区期末)如图,BC=4,△BCE的周长为9,AB的垂直平分线DE交AC于点E,垂足为D,则AC=( )A.6B.5C.4D.9【分析】根据三角形的周长可得BE+CE=5,然后利用线段垂直平分线的性质可得EB=EA,从而可得AC=EB+EC=5,即可解答,【解答】解:∵BC=4,△BCE的周长为9,∴BE+CE=9﹣4=5,∵ED是AB的垂直平分线,∴EB=EA,∴AC=EA+EC=EB+EC=5,故选:B.【点评】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.44.(2023春•定边县校级期末)如图,在△ABC中,DE垂直平分BC,分别交BC、AB于D、E,连接CE,BF平分∠ABC,交CE于F,若BE=AC,∠ACE=20°,则∠EFB的度数为( )A.56°B.58°C.60°D.63°【分析】利用线段垂直平分线的性质可得EB=EC,从而可得∠EBC=∠ECB,再根据已知可得CE=AC,从而利用等腰三角形的性质以及三角形内角和定理可得∠A=∠AEC=80°,然后利用三角形的外角性质可得∠EBC=∠ECB=40°,再利用角平分线的定义∠FBC=20°,最后利用三角形的外角性质进行计算即可解答.【解答】解:∵DE垂直平分BC,∴EB=EC,∴∠EBC=∠ECB,∵BE=AC,∴CE=AC,∵∠ACE=20°,∴∠A=∠AEC=(180°﹣∠ACE)=80°,∵∠AEC=∠EBC+∠ECB=80°,∴∠EBC=∠ECB=40°,∵BF平分∠ABC,∴∠FBC=∠EBC=20°,∴∠EFB=∠FBC+∠ECB=60°,故选:C.【点评】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.二十七.等腰三角形的性质(共3小题)45.(2022秋•门头沟区期末)一个等腰三角形的两条边分别是2cm和5cm,则第三条边的边长是( )A.2cm B.5cm C.2cm或5cm D.不能确定【分析】分两种情况:当等腰三角形的腰长为2cm,底边长为5cm时,当等腰三角形的腰长为5cm,底边长为2cm时,然后分别进行计算即可解答.【解答】解:分两种情况:当等腰三角形的腰长为2cm,底边长为5cm时,∵2+2=4<5,∴不能组成三角形;当等腰三角形的腰长为5cm,底边长为2cm时,∴等腰三角形的三边长分别为5cm,5cm,2cm,综上所述:等腰三角形的第三条边的边长是5cm,故选:B.【点评】本题考查了等腰三角形的性质,三角形三边关系,分两种情况讨论是解题的关键.46.(2022秋•番禺区校级期末)等腰三角形的一条边长为6,另一边长为14,则它的周长为( )A.26B.26或34C.34D.20【分析】分两种情况:当等腰三角形的腰长为6,底边长为14时;当等腰三角形的腰长为14,底边长为6时,然后分别进行计算即可解答.【解答】解:分两种情况:当等腰三角形的腰长为6,底边长为14时,∵6+6=12<14,∴不能组成三角形;当等腰三角形的腰长为14,底边长为6时,∴它的周长=14+14+6=34;综上所述:它的周长为34,故选:C.【点评】本题考查了等腰三角形的性质,三角形的三边关系,分两种情况讨论是解题的关键.47.(2022秋•南宫市期末)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若在等腰△ABC中,∠A=50°,则它的特征值k等于( )A.B.C.或D.或【分析】分两种情况:当等腰三角形的顶角为50°;当等腰三角形的一个底角为50°时,然后分别进行计算即可解答.【解答】解:分两种情况:当等腰三角形的顶角为50°,∴等腰三角形的两个底角都=×(180°﹣50°)=65°,∴这个等腰三角形的“特征值”k==;当等腰三角形的一个底角为50°时,那么另一个底角也是50°,∴等腰三角形的顶角=180°﹣2×50°=80°,∴这个等腰三角形的“特征值”k==;综上所述:或,故选:D.【点评】本题考查了等腰三角形的性质,三角形内角和定理,分两种情况讨论是解题的关键.二十八.等腰三角形的判定与性质(共1小题)48.(2023春•南明区校级期末)如图,在△ABC中,AB=3,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为( )A.4B.6C.7D.8【分析】利用角平分线的定义和平行线的性质可证△MEB和△NEC是等腰三角形,从而可得MB=ME,NE=NC,然后利用等量代换可得△AMN的周长=AB+AC,进行计算即可解答.【解答】解:∵BE平分∠ABC,CE平分∠ACB,∴∠ABE=∠EBC,∠ACE=∠ECB,∵MN∥BC,∴∠MEB=∠EBC,∠NEC=∠ECB,∴∠ABE=∠MEB,∠ACE=∠NEC,∴MB=ME,NE=NC,∵AB=3,AC=4,∴△AMN的周长=AM+MN+AN=AM+ME+EN+AN。

八年级上册数学常见易错题(内含答案解析)

八年级上册数学常见易错题(内含答案解析)

八年级数学上册常见易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。

【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。

八年级数学上册 全册全套试卷易错题(Word版 含答案)

八年级数学上册 全册全套试卷易错题(Word版 含答案)

八年级数学上册全册全套试卷易错题(Word版含答案)一、八年级数学三角形填空题(难)1.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.2.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.3.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=_____.【答案】40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°.故答案为:40°.4.已知等腰三角形的两边长分别为3和5,则它的周长是____________【答案】11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC 外,若∠2=20º,则∠1的度数为 _______.【答案】100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【详解】如图,∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°-80°=100°.故答案是:100°.【点睛】考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.6.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若长方形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2,则∠2-∠1=____.【答案】90°【解析】【分析】【详解】如图:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为90°.二、八年级数学三角形选择题(难)7.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()A.120°B.135°C.150°D.不能确定【答案】B【解析】【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选B.【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.8.一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有()A.104条B.90条C.77条D.65条【答案】C【解析】【分析】n边形的内角和是(2)180n-︒,即内角和一定是180度的整数倍,即可求解,据此可以求出多边形的边数,在根据多边形的对角线总条数公式()32n n-计算即可.【详解】解:22100180113÷=,则正多边形的边数是11+2+1=14.∴这个多边形的对角线共有()()314143==7722n n--条.故选:C.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理;要注意每一个内角都应当大于0︒而小于180度.同时要牢记多边形对角线总条数公式()32n n-.9.如图,ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到111A B C.再分别倍长A1B1,B1C1,C1A1得到222A B C.…… 按此规律,倍长2018次后得到的201820182018A B C的面积为()A.20176B.20186C.20187D.20188【答案】C【解析】分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A1B1C1的面积是△ABC的面积的7倍,依此类推写出即可.详解:连接AB1、BC1、CA1,根据等底等高的三角形面积相等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1=72S△ABC,依此类推,S△AnBnCn=7n S△ABC.∵△ABC的面积为1,∴S△AnBnCn=7n,∴S△A2018B2018C2018=72018.故选C.点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.10.如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A.∠1=∠2+∠A B.∠1=2∠A+∠2C.∠1=2∠2+2∠A D.2∠1=∠2+∠A【答案】B【解析】试题分析:如图在∆ABC中,∠A+∠B+∠C=180°,折叠之后在∆ADF中,∠A+∠2+∠3=180°,∴∠B+∠C=∠2+∠3,∠3=180°-∠A-∠2,又在四边形BCFE中∠B+∠C+∠1+∠3=360°,∴∠2+∠3+∠1+∠3=360°∴∠2+∠1+2∠3=∠2+∠1+2(180°-∠A-∠2)=360°,∴∠2+∠1-2∠A-2∠2=0,∴∠1=2∠A+∠2.故选B点睛:本题主要考查考生对三角形内角和,四边形内角和以及三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角和的理解及掌握。

八年级数学上期中易错题精选习题及解析

八年级数学上期中易错题精选习题及解析

一.选择题(共16 小题)1.如图,要测量河两岸相对两点A、B 的距离,可以在AB 的垂线BF 上取两点C 、D,使CD=BC,再作BF 的垂线DE,且使A、C、E 在同一条直线上,可得△ABC≌△EDC.用于判定两三角形全等的最佳依据是( )A.ASA B.SAS C.SSS D.AAS2.如图,点M 在线段BC 上,点E 和N 在线段AC 上,EM∥AB,BE 和MN 分别平分∠ABC 和∠EMC.下列结论中不正确的是( )A.∠MBE=∠MEB B.MN∥BE C.S△BEM=S△BEN D.∠MBN=∠MNB3.如图,D 为∠BAC 的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC 于E,DF⊥AB 交BA 的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有( )个B.2 个C.3 个D.4 个4.在平面直角坐标系内,点O 为坐标原点,A(﹣4,0),B(0,3).若在该坐标平面内有以点P(不与点A、B、O 重合)为一个顶点的直角三角形与Rt△ABO 全等,且这个以点P 为顶点的直角三角形与Rt△ABO 有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7 C.5 D.35.如图所示,已知在△ABC 中,∠C=90°,AD=AC,DE⊥AB 交BC 于点E,若∠ B=28°, 则∠AEC=( )A.28° B.59° C.60° D.62°6.下列语句中,正确的有( )(1)一条直角边和斜边上的高对应相等的两个直角三角形全等(2)有两边和其中一边上的高对应相等的两个三角形全等(3)有两边和第三边上的高对应相等的两个三角形全等.A.1 个B.2 个C.3 个D.4 个7.如图,AB=AC,AD=AE,BE、CD 交于点O,则图中全等三角形共有( )A.五对B.四对C.三对D.二对8.如图,已知:AD∥BC,AB∥DC,AC 与BD 交于点O,AE⊥BD 于点E,CF⊥ BD 于点F,那么图中全等的三角形有( )A.8 对B.7 对C.6 对D.5 对9.在如图所示的5×5 方格中,每个小方格都是边长为1 的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是( )A.1 B.2 C.3 D.410.如图,△ABC 的3 个顶点分别在小正方形的顶点上,这样的三角形叫做格点三角形,在图中再画格点三角形(位置不同于△ABC),使得所画三角形与△ABC全等,则这样的格点三角形能画( )A.1 个B.2 个C.3 个D.4 个11.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.12.不能用尺规作出唯一三角形的是( )A.已知两角和夹边B.已知两边和夹角C.已知两角和其中一角的对边D.已知两边和其中一边的对角13.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A 放在角的顶点 ,AB和AD 沿着角的两边放下,沿AC 画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS14.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<1915.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=37°,则∠E 的度数是( ) A.37° B.53° C.37°或63°D.37°或53°16.如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C 在一条直线上.下列结论: ①BD 是∠ABE 的平分线;②AB⊥AC;③∠C=30°;④线段DE 是△BDC 的中线;⑤AD+BD=AC其中正确的有( )个.A.2 B.3 C.4 D.5参考答案与试题解析一.选择题(共16 小题)1.如图,要测量河两岸相对两点A、B 的距离,可以在AB 的垂线BF 上取两点C 、D,使CD=BC,再作BF 的垂线DE,且使A、C、E 在同一条直线上,可得△ABC≌△EDC.用于判定两三角形全等的最佳依据是( )A.ASA B.SAS C.SSS D.AAS[解答]解:在△ABC 和△EDC 中,∴△ABC≌△EDC(ASA),她的依据是两角及这两角的夹边对应相等即ASA 这一方法.故选:A.2.如图,点M 在线段BC 上,点E 和N 在线段AC 上,EM∥AB,BE 和MN 分别平分∠ABC 和∠EMC.下列结论中不正确的是( )A.∠MBE=∠MEB B.MN∥BE C.S△BEM=S△BEN D.∠MBN=∠MNB[解答]解:∵EM∥AB,BE 和MN 分别平分∠ABC 和∠EMC,∴∠MEB=∠ABE,∠ABC=∠EMC,∠ABE=∠MBE,∠EMN=∠NMC,∴∠MEB=∠MBE(故A 正确),∠EBM=∠NMC,∴MN ∥BE (故 B 正确),∴MN 和 BE 之间的距离处处相等,∴S △BEM =S △BEN (故 C 正确),∵∠MNB=∠EBN ,而∠EBN 和∠MBN 的关系不知,∴∠MBN 和∠MNB 的关系无法确定,故 D 错误,故选:D .3. 如图,D 为∠BAC 的外角平分线上一点并且满足 BD=CD ,∠DBC=∠DCB ,过 D 作 DE ⊥AC 于 E ,DF ⊥AB 交 BA 的延长线于 F ,则下列结论:①△CDE ≌△BDF ;②CE=AB +AE ;③∠BDC=∠BAC ;④∠DAF=∠CBD . 其中正确的结论有( )个B .2 个C .3 个D .4 个[解答]解:∵AD 平分∠CAF ,DE ⊥AC ,DF ⊥AB ,∴DE=DF ,在 Rt △CDE 和 Rt △BDF 中,,∴Rt △CDE ≌Rt △BDF (HL ),故①正确;∴CE=AF ,在 Rt △ADE 和 Rt △ADF 中,,∴Rt △ADE ≌Rt △ADF (HL ),∴AE=AF ,∴CE=AB +AF=AB +AE ,故②正确;∵Rt△CDE≌Rt△BDF,∴∠DBF=∠DCE,∴A、B、C、D 四点共圆,∴∠BDC=∠BAC,故③正确;∠DAE=∠CBD,∵Rt△ADE≌Rt△ADF,∴∠DAE=∠DAF,∴∠DAF=∠CBD,故④正确;综上所述,正确的结论有①②③④共 4个.故选:D.4.在平面直角坐标系内,点O 为坐标原点,A(﹣4,0),B(0,3).若在该坐标平面内有以点P(不与点A、B、O 重合)为一个顶点的直角三角形与Rt△ABO 全等,且这个以点P 为顶点的直角三角形与Rt△ABO 有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7 C.5 D.3[解答]解:如图:分别以OA、OB、AB 为边作与Rt△ABO 全等的三角形各有3 个,则所有符合条件的三角形个数为9.故选:A.5.如图所示,已知在△ABC 中,∠C=90°,AD=AC,DE⊥AB 交BC 于点E,若∠B=28°, 则∠AEC=( )A.28° B.59° C.60° D.62°[解答]解:∵在△ABC 中,∠C=90°,AD=AC,DE⊥AB 交BC 于点E,∴△CAE≌△DAE,∴∠CAE=∠DAE= ∠CAB,∵∠B+∠CAB=90°,∠B=28°,∴∠CAB=90°﹣28°=62°,∵∠AEC=90°﹣∠CAB=90°﹣31°=59°.故选:B.6.下列语句中,正确的有( )(1)一条直角边和斜边上的高对应相等的两个直角三角形全等(2)有两边和其中一边上的高对应相等的两个三角形全等(3)有两边和第三边上的高对应相等的两个三角形全等.A.1 个B.2 个C.3 个D.4 个[解答]解:①有一条直角边和斜边上的高对应相等的两个直角三角形全等,正确; 有两边和其中一边上高对应相等的两个三角形不一定全等,所以②错误;③有两边和第三边上的高对应相等的两个三角形全等,错误;故选:A.7.如图,AB=AC,AD=AE,BE、CD 交于点O,则图中全等三角形共有( )A.五对B.四对C.三对D.二对[解答]解:∵AB=AC,AD=AE,∴∠ABC=∠ACB,BD=EC.∵在△BDC 和△CEB 中, ,∴△BDC≌△CEB.∴∠EBC=∠DCB,∴∠ABO=∠ACO.在△DBO 和△ECO 中, ,∴△DBO≌△ECO.∵∠EBC=∠DCB,∴OB=OC.∵在△ABO 和△ACO 中, ,∴△ABO≌△ACO.∴∠DAO=∠EAO.∵在△DAO 和△EAO 中, ,∴△DAO≌△EAO.∵在△DAC 和△EAB 中, ,∴△DAC≌△EAB.故选:A.8.如图,已知:AD∥BC,AB∥DC,AC 与BD 交于点O,AE⊥BD 于点E,CF⊥ BD 于点F,那么图中全等的三角形有( )A.8 对B.7 对C.6 对D.5 对[解答]解:由平行四边形的性质可知:△ABD≌△CDB,△ABO≌△CDO,△ADE≌△CBF,△AOE≌△CFO,△AOD≌△COB,△ABC≌△CDA,△ABE 和△CDF故选:B.9.在如图所示的5×5 方格中,每个小方格都是边长为1 的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是( )A.1 B.2 C.3 D.4[解答]解:以BC 为公共边的三角形有3 个,以AB 为公共边的三角形有0 个, 以AC 为公共边的三角形有1 个,共3+0+1=4 个,故选:D.10.如图,△ABC 的3 个顶点分别在小正方形的顶点上,这样的三角形叫做格点三角形,在图中再画格点三角形(位置不同于△ABC),使得所画三角形与△ABC全等,则这样的格点三角形能画( )A.1 个B.2 个C.3 个D.4 个[解答]解:如图所示可作 3 个全等的三角形.故选:C.11.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.[解答]解:A、由全等三角形的判定定理SAS 证得图中两个小三角形全等, 故本选项不符合题意;B、由全等三角形的判定定理SAS 证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE 和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意; D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=FC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选:C.12.不能用尺规作出唯一三角形的是( )A.已知两角和夹边B.已知两边和夹角C.已知两角和其中一角的对边D.已知两边和其中一边的对角[解答]解:A、已知两角和夹边,满足ASA,可知该三角形是唯一的; B、已知两边和夹角,满足SAS,可知该三角形是唯一的;C、已知两角和其中一角的对边,满足AAS,可知该三角形是唯一的;D、已知两边和其中一边的对角,满足SSA,不能确定三角形是唯一的.故选:D.13.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A 放在角的顶点 ,AB和AD 沿着角的两边放下,沿AC 画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS[解答]解:在△ADC 和△ABC 中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC 就是∠DAB 的平分线.故选:A.14.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19[解答]解:如图,延长AD 至E,使DE=AD,∵AD 是△ABC 的中线,∴BD=CD,在△ABD 和△ECD 中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=7,∴AE=7+7=14,∵14+5=19,14﹣5=9,∴9<CE<19,即9<AB<19.故选:D.15.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=37°,则∠E 的度数是( ) A.37° B.53° C.37°或63°D.37°或53°[解答]解:在△ABC 中,∠C=180°﹣∠A﹣∠B=53°.∵△ABC 与△DEF 全等,∴当△ABC≌△DEF 时,∠E=∠B=37°,当△ABC≌△DFE 时,∠E=∠C=53°.∠E 的度数是37 度或53度.故选:D.16.如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C 在一条直线上.下列结论: ①BD 是∠ABE 的平分线;②AB⊥AC;③∠C=30°;④线段DE 是△BDC 的中线;⑤AD+BD=AC其中正确的有( )个.A.2 B.3 C.4 D.5[解答]解:①∵△ADB≌△EDB,∴∠ABD=∠EBD,∴BD 是∠ABE 的平分线,故①正确;②∵△BDE≌△CDE,∴BD=CD,BE=CE,∴DE⊥BC,∴∠BED=90°,∵△ADB≌△EDB,∴∠A=∠BED=90°,∴AB⊥AD,∵A、D、C 可能不在同一直线上∴AB 可能不垂直于AC,故②不正确;③∵△ADB≌△EDB,△BDE≌△CDE,∴∠ABD=∠EBD,∠EBD=∠C,∵∠A=90°若A、D、C 不在同一直线上,则∠ABD+∠EBD+∠C≠90°, ∴∠C≠30°,故③不正确;④∵△BDE≌△CDE,∴BE=CE,∴线段DE 是△BDC 的中线,故④正确;⑤∵△BDE≌△CDE,∴BD=CD,若A、D、C 不在同一直线上,则AD+CD>AC,∴AD+BD>AC,故⑤不正确.故选:A.。

人教版,数学八年级上册易错题难题整理含答案,精品系列

人教版,数学八年级上册易错题难题整理含答案,精品系列

人教版,数学八年级上册易错题难题整理含答案,精品系列一、选择题3、正确说法的个数有(C)3个改写:一组数据的中位数可能是这组数据中的数,也可能不是这组数据中的数;一组数据的众数可能有多个;一组数据的众数是这组数据中出现次数最多的数据的值。

5、下列说法正确的有(B)2个改写:数轴上的点要么表示有理数,要么表示无理数;实数a的倒数是1/a;带根号的数不一定是无理数;两个绝对值不相等的无理数,其和、差、积、商仍是无理数。

6、一个自然数的算术平方根为m,则与这个自然数相邻的下一个自然数是(A)m+1改写:一个自然数的算术平方根为m,则这个自然数的范围是[m^2.(m+1)^2),与这个自然数相邻的下一个自然数是m+1.二、填空题11、所选取样本的容量是();全市大约有()名初中生视力是正常的。

12、代数式b(10+a)的值等于(1)。

13、-.36-1/2<0,填-1/2.15、该图形的面积等于(84)。

16、已知x满足(x-1)^3=-8,则x=(-1/2)。

17、若不等式组{x>a。

x≠b}的解集为x>a,则a与b的关系是(a≤b)。

18、设乙管单独开x小时注满全池,则甲管单独开6小时注满全池,两管同时开3小时注满全池,由此得到方程6+6/(x-3)=3x。

三、解答题20、(每小题4分,共16分)计算:1)略2)已知 $\frac{a+b}{2}=9$,$\frac{a-b}{2}=49$,求$a+b$ 和 $ab$ 的值。

解:由 $\frac{a+b}{2}=9$ 得 $a+b=18$,代入 $\frac{a-b}{2}=49$ 中得 $a-b=-98$,解得 $a=-40$,$b=58$。

所以$ab=-2320$。

3)已知 $\frac{xy^2}{2x+3y-2y^2}=-1$,求$\frac{2x+3xy-2y^2}{x-3y}$ 的值。

解:由 $\frac{xy^2}{2x+3y-2y^2}=-1$ 得 $xy^2=2x+3y-2y^2$,代入 $\frac{2x+3xy-2y^2}{x-3y}$ 中得 $\frac{2x+3xy-2y^2}{x-3y}=\frac{2x+3(2x+3y-2y^2)-2y^2}{x-3y}=-3-2y$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档