分析化学 第2章 误差与数据处理.
分析化学误差和分析数据处理2

15
(三)准确度与精密度的关系
1. 准确度高,要求精密度一定高,精密度高 是准确度高的前提,但精密度好,准确度不一 定高。 2. 准确度反映了测量结果的正确性,精密度 反映了测量结果的重现性。
12
例: 两人分析同一试样中Cu的含量,其结果ω如下: 甲 0.3610 0.3612 0.3608 乙 0.3641 0.3642 0.3643 已知其含Cu的量的真实值为0.3606,试问何人结果的准 确度高? 解:
x RE % 100% 100%
甲: X =0.3610
16
四、提高分析准确度的方法
1.选择恰当的分析方法 例:测全Fe含量 K2Cr2O7法 40.20% ±0.2%×40.20% 比色法 40.20% ±2.0%×40.20% (常量组分的分析,常采用化学分析,而微量和痕量分 析常采用灵敏度较高的仪器分析方法) 2.减小测量误差 1)称量 例:天平一次的称量误差为 0.0001g,两次的称量误差为 0.0002g,RE%≤ 0.1%,计算最少称样量?
n x
100%
10
滴定分析中时, R d 一般要求<0.2﹪
3. 标准偏差(standard deviation)与相对标准偏差 (1).标准偏差S
S
( xi x)
i 1
n
2
n 1
n
di
i 1
n
2
n-1=f
自由度
n 1
当n→∞,标准偏差用б表示
( xi ) 2 μ 为无限多次测定的平均值(总体平均值) 若无系统误差存在,µ 就是真实值 i 1 n
第2章 误差与数据处理

保留三位 有效数字
说明:
在计算过程中,由于普遍使用计算器运算,虽然在 运算过程中不必对每一步的计算结果进行修约,但 应根据其准确度要求,正确保留最后计算结果的有 效数字位数。
10.7456,10.745,10.2350,250.650 10.75 10.74 10.24 250.6
18.0850001,6.468501,5.73350
18.09 6.469 5.734
2.3.3 计算规则
几个数据相加或相减时,它们的和或差 只能保留一位可疑数字,即有效数字位数 的保留,应以小数点后位数最少的数字为 根据,即以绝对误差最大的数为准。 例:计算50.1+1.46+0.5812=? 50.1 ±0.1 1.46 ±0.01 + 0.5812 ±0.0001 52.1412
准确度与精密度的关系
x1
x2
x3
x4
1.精密度是保证准确度的先决条件; 2.精密度好,不一定准确度高.
作 业:
P30-31, 习题1,2
2.3 有效数字及其运算规则
2.3.1 有效数字
在分析工作中实际能测量到的有实际意义的数字,
包括所有的准确数字和一位可疑数字。
例如:读取滴定管上的刻度:
甲:21.34mL,乙:21.35mL,丙:21.33mL。 可疑数字 估计的数值:
过失
由粗心大意引起, 可以避免。
例:器皿洗涤不干净、加错试剂、 计算错误等。
重做!
课堂讨论
P29,思考题2
2.2
准确度( accuracy) 和精密度
(precision)
准确度:分析结果与真实值接近的程度(用误
差衡量) ;
精密度:几次分析测定结果数值接近的程度
分析化学中的误差及数据处理

0 0
0.0001 0.2176
100
0 0
=
0.05
0 0
(二)、精密度(precision)
精密度:几次平行测定结果之间的符合程度,用偏差衡量。 偏差:测定值与平均值的差值,用d 表示。
例如:在相同条件下,对某一量重复测定5次,结果如 偏下差:(1(绝相)2对对0).1偏偏00差差.,100,.200.,d0dr80,x.2xdx05i .,x0119x00,0.x1%205n.,120,.0dd08rx.n1,1,精1n精i密n密1 x度i度
E xT
100%
E ,准确度 Er ,准确度
例:用分析天平称量两物体的质量分别为2.1750g 、0.2175g, 若两者的真实质量各为2.1751g , 0.2176g, 则它们的E 和 Er?
解: 两者绝对误差都是 -0.0001g 相对误差:
0.0001 2.1751
100
0 0
=
0 .005
图 2-1 不同分析人员的分析结果
结论:
1. 精密度高是准确度高的前提; 2. 精密度高不一定准确度高;
系统误差!
精密度和准确度都高 — 结果可靠
例4 下面论述中正确的是( )B
A. 精密度高,准确度一定高 B. 准确度高,一定要求精密度高 C. 精密度高,系统误差一定小 D. 分析中,首先要求准确度,其次才是精密度
R2 A2 B2 C 2
四、提高分析结果准确度的方法
(一) 、选择合适的分析方法(灵敏度与准确度)
化学分析法:准确度较高,但灵敏度较低,适用 于常量组分的测定; 仪器分析方法:灵敏度较高,但准确度较低,适 用于微量组分的测定。
例如:测定某一铁含量为40.00%的标准试样,
第二章 误差与分析数据的统计处理

《分析化学》第二章
随机误差
1. 随机误差 由于某些难以控制和无法避免的原因所造成的
误差。如温度、湿度、电流强度等的偶然波动,给试验结果 带来的影响。
2. 随机误差的特点
①分布对称可抵偿:绝对值相同的正负误差出现机会相等, 它们的总代数和等于0; ②单峰且有界:小误差出现的机会大,大误差出现的机会小, 极大误差出现的机会趋于零。
《分析化学》第二章
分 析 化 学
Analytical Chemistry
西北大学化学与材料科学学院
《分析化学》第二章
第二章 误差与分析数据的统计处理
《分析化学》第二章
2-1 定量分析中的误差 2-2 分析结果的数据处理
内容
2-3 误差的传递 2-4 有效数字及其运算规则 2-5 标准曲线的回归分析
吸光度A
0 0.032
0.02 0.135
0.04 0.187
0.06 0.268
0.08 0.359
0.10 0.435
试列出标准曲线的回归方程并计算未知试样中Mn的含量。
0.5 0.4 0.3 0.2 0.1 0 0 0.05 0.1 0.15 y = 3.9543x + 0.0383 R 2 = 0.9953
《分析化学》第二章
第二章
小
结
2.1 误差的基本概念: 准确度与精密度、误差与 偏差、系统误 差与随机误差;
2.2 有限数据的统计处理:
异常值的检验(Q检验法,G检验法);
2.4 有效数字:定义、修约规则、运算规则 。 2.5 标准曲线的回归分析
《分析化学》第二章
本章作业
P27---P28
习题2、6、10、11
G计算 x x1 s
第2章 分析化学中的误差及数据处理

本章所要解决的问题:
对分析结果进行评价,判断误 差产生的原因,尽量采取措施减少 误差。
2013-6-28 1
2.1 定量分析中的误差
• • •
•
误差客观存在 定量分析数据的归纳和取舍(有效数字) 计算误差,评估和表达结果的可靠性和精密 度 了解原因和规律,减小误差,测量结果→真 值(true value)
19
1. 系统误差(systematic error)
由一些固定的原因所产生,其大小、正 负有重现性,也叫可测误差。 1.方法误差 分析方法本身所造成的 误差。 2.仪器和试剂误差 3.操作误差 4.主观误差
2013-6-28
20
系统误差的性质可归纳为如下三点:
1)重现性 2)单向性 3)数值基本恒定 系统误差可以校正。
2013-6-28 15
7、重复性
r 2 2Sr
R 2 2SR
8、再现性
SR
2013-6-28
j 1 i 1
m
n
( xij x j )
m( n 1)
16
2.1.3 准确度和精密度的关系
准确度(accutacy):测量值与真实值相接 近的程度。用误差来评估。 精密度(precision):各个测量值之间相 互接近的程度。用偏差来评估。 实际工作中并不知道真实值,又不刻意区 分误差和偏差,习惯把偏差称做误差。但 实际含义是不同的。 系统误差是分析误差的主要来源,影响结 果的准确度 偶然误差影响结果的精密度
4. 校正方法 (correction result ) 用其它方法校正某些 分析方法的系统误差。
化学分析 第二章 误差(第五版)

R E % =20.01100% 0.1% V
V20mL
h
22
[例]以K2Cr2O7标定0.02mol/L 的Na2S2O3要使VNa2S2O3 = 25 mL,称 mK2Cr2O7=?
[解] (1) Cr2O72++6I -+14H+=2Cr3++3I2+7H2O
I2+2S2O32-=2I -+S4O62 -
S = i=1 n -1
h
35
正态分布与 t 分布区别
1.正态分布——描述无限次测量数据 t 分布——描述有限次测量数据
2.正态分布——横坐标为 u ,t 分布——横坐标为 t
u = x-m s
m为总体均值 s为总体标准差
t= x-m s
s为有限次测量值的标准 差
3.两者所包含面积均是一定范围内测量值出现的概率P
2. 哪些操作影响准确度?
3. 哪些操作影响精密度?
h
25
实验四 明矾的含量测定
操作步骤:
精密称取明矾样品约1.4 g于50 ml烧杯中,用适量蒸馏水溶解后 转移至100 ml容量瓶中,稀释至刻线,摇匀。用移液管吸取 25.00 ml上述溶液于250 ml锥形瓶中,加蒸馏水25 ml,然后精密 加入EDTA标准液(0.05 mol/L)25.00 ml,在沸水浴中加热10分 钟,冷至室温,再加蒸馏水10 ml及HAc – NaAc缓冲液5 ml,二 甲酚橙指示剂4 ~ 5滴,用ZnSO4标准液滴定至溶液由黄色变为橙 色,即为终点。 1. 为什么用容量瓶配制样品溶液?
(5) 为使 RE<0.1%,加大称样,扩大10倍,配置
250mL(取25mL即为0.024g的量)
第二章 误差和分析数据的处理

第二章误差和分析数据的处理第一节误差及其产生的原因定量分析的任务是准确测定试样中各组分的含量,因此必须使分析结果具有一定的准确度。
不准确的分析结果将会导致生产上的损失、资源上的浪费和科学上的错误结论。
在定量分析中,由于受到分析方法、测量仪器、所用试剂和分析人员主观条件等方面的限制,故使测定的结果不可能和真实含量完全一致;即使是分析技术非常熟练的分析人员,用最完善的分析方法、最精密的仪器和最纯的试剂,在同一时间,同样条件下,对同一试样进行多次测定,其结果也不会完全一样。
这说明客观存在着难于避免的误差。
因此,人们在进行定量分析时,不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。
分析结果与真实结果之间的差值称为误差。
分析结果大于真实结果,误差为正;分析结果小于真实结果,误差为负。
一、误差的分类根据误差的性质与产生的原因,可将误差区分为系统误差和偶然误差两类。
(一)系统误差系统误差(systematic error)也叫可定误差(determination error),它是由某种确定的原因引起的,一般有固定的方向(正或负)和大小,重复测定可重复出现。
根据系统误差的来源,可区分为方法误差、仪器误差、试剂误差及操作误差等四种。
(1)方法误差:由于分析方法本身的缺陷或不够完善所引起的误差。
例如,在质量分析法中,由于沉淀的溶解或非被测组分的共沉淀;在滴定分析法中,由于滴定反应进行不完全,干扰离子的影响,测定终点和化学计量点不符合等,都会产生这种误差。
(2)仪器误差:由于所用仪器本身不够准确或未经校正所引起的误差。
例如,天平两臂不等长,砝码、滴定管刻度不够准确等,会使测定结果产生误差。
(3)试剂误差:由于试剂不纯和蒸馏水中含有杂质引入的误差。
(4)操作误差:由于操作人员的习惯与偏向而引起的误差。
例如,读取滴定管的读数时偏高或偏低,对某种颜色的变化辨别不够敏锐等所造成的误差。
分析化学第二章误差与分析数据处理

根据待测组分的性质和含量选择合适的分析 方法。
空白实验
通过扣除空白值来减小误差。
标准化样品分析
使用标准样品对实验过程进行质量控制。
回收率实验
通过添加已知量的标准物质来评估分析方法 的准确性。
04
有效数字及其运算规则
有效数字的定义与表示
01
有效数字是指测量或计算中能够反映被测量大小的部分数字 ,其位数与被测量的精密度有关。
数据统计
计算平均值、中位数、众数等统计量,以反映数据的集 中趋势和离散程度。
实验结果的评价与表达
误差分析
计算误差、偏差、相对误差 等,评估实验结果的可靠性
。
1
精密度与偏差
通过多次重复实验,评估实 验结果的精密度和偏差。
置信区间
根据实验数据,计算结果的 置信区间,反映结果的可靠 性。
结果表达
选择合适的单位和量纲,将 实验结果以表格、图表等形 式表达,便于分析和比较。
02
表示有效数字时,需保留一位不确定位,采用指数或修约的 形式表示。
03
有效数字的表示方法:科学记数法(a x 10^n)或一般表示法。
有效数字的运算规则
加减法
以小数点后位数最少的数字为标准,对 其他数字进行修约,然后再进行运算。
乘方和开方
运算结果的有效数字位数与原数相同。
乘除法
以有效数字位数最少的数为标准,对 其他数字进行修约,然后再进行运算。
THANKS
准确度检验
通过标准物质或标准方法对比,检验分析结 果的准确性。
线性检验
验证测量系统是否符合线性关系,确保数据 在一定范围内准确可靠。
范围检验
评估分析方法在一定浓度或含量范围内的适 用性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(x
i 1
n
i
x)2
n -1
(n-1) 表示 n 个测定值中具有独立偏差的数目,又称为自由度。
2018/10/6
用下式计算标准偏差更为方便:
s
xi n i 1 2 x n i 1 n 1
n
2
s与平均值之比称为相对标准偏差,以 sr 表示:
书上给出的数值、或多次测定结果的平均值当作真值;
2018/10/6
2.1.2 偏差(Deviation)与精密度(Precision)
1. 偏差 个别测定结果 xi 与几次测定结果的平均值的差。 绝对偏差 di:测定结果与平均值之差;
相对偏差 dr :绝对偏差在平均值中所占的百分率或
千分率。
d i xi x
不同;在一般情况下,对测定数据应表示出标准偏差
或变异系数。
2018/10/6
2.1.3 准确度与精密度的关系
精密度 好 好 准确度 好 稍差
差
很差
差
偶然性
精密度是保证准确度的先决条件; 精密度高不一定准确度高; 两者的差别主要是由于系统误差的存在。
2018/10/6
例 2:
分析铁矿中铁含量,得如下数据: 37.45% , 37.20% , 37.50% , 37.30% , 37.25% 计算此结果的平均值、平均偏差、标准偏差、变异系数。 计算:
第二章 定量分析中 §2.2 分析结果的数据处理 的误差与数 §2.3 误差的传递 据处理
§2.4 有效数字及其运算规则 §2.5 标准曲线的回归分析
2018/10/6
§2.1 定量分析中的误差
§2.1 定量分析中的误差
2.1.1 误差(Error)与准确度(Accuracy)
1. 误差——测定值xi与真实值μ之差(真实值True Value: 在观测的瞬时条件下,质量特性的确切数值) 误差的大小可用绝对误差 E(Absolute Error) 和相对误 差 RE (Relative Error)表示。
定两者的真实质量分别为1.6381 g 和0.1638 g,则两者称量的
绝对误差分别为: (1.6380-1.6381) g = -0.0001 g
(0.1637-0.1638) g = -0.0001 g
两者称量的相对误差分别为: 0.0001 100% 0.006% 1.6381 0.0001 100% 0.06% 0.1638 绝对误差相等,相对误差并不一定相同。
2018/10/6
2. 标准偏差(Standard Deviation)
又称均方根偏差,当测定次数趋於无限多时,称为总体标准 偏差,用σ表示如下:
2 ( x ) i 1 n
n
μ为总体平均值,在校正了系统误差情况下,μ即代表真值; n 为测定次数。 有限次测定时,标准偏差称为样本标准差,以 s 表示:
( 2 )精密度的高低还常用重复性( Repeatability)和再现性 (Reproducibility)表示。 重复性 ( r):同一操作者,在相同条件下,获得一系列结果 之间的一致程度。 再现性(R):不同的操作者,在不同条件下,用相同方法获 得的单个结果之间的一致程度。
(3)用标准偏差比用算术平均偏差更合理。
dr
2018/10/6
xi x x
100%
各偏差值的绝对值的平均值,称为单次测定的平均
ห้องสมุดไป่ตู้
偏差,又称算术平均偏差(Average Deviation):
1 n 1 n d d i xi x n i 1 n i 1
单次测定的相对平均偏差表示为:
d d r 100% x
s s r 100% x
也可用千分率表示 ( 即式中乘以 1000‰ )。如以百分率表示又称 为变异系数 CV (Coefficient of Variation)。
2018/10/6
3. 精密度
(1)精密度:在确定条件下,将测试方法实施多次,求出
所得结果之间的一致程度。精密度的大小常用偏差表示。
2 i
s 0.13 CV 100% 0.35% x 37.34
2018/10/6
2.1.4 误差的分类及减免误差的方法
• 系统误差或称可测误差(Determinate Error) • 偶然误差或称未定误差、随机误差(Indeterminate Errors)
1. 系统误差产生的原因、性质及减免
2018/10/6
3. 讨论
(1) 绝对误差相等,相对误差并不一定相同;
(2) 同样的绝对误差,被测定的量较大时,相对误差就比较小 ,
测定的准确度也就比较高; (3) 用相对误差来表示各种情况下测定结果的准确度更为确切; (4) 绝对误差和相对误差都有正值和负值。正值表示分析结果 偏高,负值表示分析结果偏低; (5) 实际工作中,真值实际上是无法获得; 常用纯物质的理论值、国家标准局提供的标准参考物质的证
x
d
37.45% 37.20% 37.50% 37.30% 37.25% 37.34% 5
d
i 1
n
i
n
0.11 0.14 0.16 0.04 0.09 % 0.11% 5
s
d
i 1
n
(0.11) 2 (0.14) 2 (0.16) 2 (0.04) 2 (0.09) 2 100% 0.13% n 1 5 1
E = xi-μ
RE
xi
相对误差表示误差占真值的百分率或千分率。
2018/10/6
100%
2. 准确度
(1) 测定平均值与真值接近的程度;
(2) 准确度高低常用误差大小表示,
误差小,准确度高。
2018/10/6
例 1:
分析天平称量两物体的质量各为1.6380 g 和0.1637 g,假
2018/10/6
对比:
有两组测定值,判断精密度的差异。 甲组 2.9 2.9 3.0 3.1 3.1 乙组 2.8 3.0 3.0 3.0 3.2 计算: 平均值x 平均偏差 d 标准偏差 s
甲组 乙组 3.0 3.0 0.08 0.08 0.08 0.14
平均偏差相同;标准偏差不同,两组数据的离散程度