一元二次方程的解法习题课课件

合集下载

一元二次不等式的解法-PPT课件

一元二次不等式的解法-PPT课件
b x x a
一元一次不等式 b b x x x x ax+b>0的解集 a a 一元一次不等式 x x b b x x a a ax+b<0的解集
3、2 一元二次不等式的解法
解不等式 (写出相应的一元二次方程及一元二次不等式的解集) 方程 的解集为 不等式 的解集为 求不等式 的解集 2 不等式 的解集为 x x 6 0 2 x 2 x 3 观察函数 y x x 6 0 的图象
yx x6
2
-2
的解集
不等式 2
ax bx cx x x x 1 2


<0的解集


3、2 一元二次不等式的解法
例1 求不等式 解:注意到
4 x 4 x 1
2
>0的解集
1 x x 2
2 4 x 4 x 1= 2x 1 2≥0
所以原不等式的解集为
x 例2 求不等式 解:不等式可化为
2 (3) 4 x 4 x 1 <0 2 2、若代数式 6 的值恒取非负数,则实数x的 x x 2 取值范围是 2 1
1 x x 2 0 , 开口向上 , 图象与 x 轴无交点 ,x R 3
x 3 x 5>0
2

x x 或 x 3 2
0
3
x
3、2 一元二次不等式的解法
讨论一元二次不等式 与 (a>0) 如果相应的一元二次方程 分 别有两个不等实根、两个相等实根、无实根, 其对应的二次函数 的 图象与x轴的位置关系如何? 二次函数的图象开口向上且分别与x轴交于两 点、一点及无交点.

一元二次方程解法习题课(公开课)

一元二次方程解法习题课(公开课)

通过本次课程,我掌握了一元二次方程的三种解法,并 能够灵活运用这些方法解决问题。
配方法原理及步骤
配方法原理:通过配方,将一元二次方程转化 为完全平方的形式,从而求解。
01
配方法步骤
02
04
将二次项系数化为1;
05
加上并减去一次项系数一半的平方,使左 边成为完全平方;
将原方程化为一般形式;
03
06
开方求解。
典型例题分析与解答
例题1
01 解方程 $x^2 + 6x + 9 = 0$
02
4. 对等式左边进行完全平方,得到 $left(x + frac{b}{2a}right)^2 = frac{b^2 - 4ac}{4a^2}$。
03
5. 开平方,得到 $x + frac{b}{2a} = pm sqrt{frac{b^2 4ac}{4a^2}}$。
04
6. 解得 $x_1, x_2 = frac{-b pm sqrt{b^2 - 4ac}}{2a}$。
一元二次方程根的性质
根的存在性
当判别式 $Delta = b^2 - 4ac geq 0$ 时,一元二次方程有两个实根。
根的和与积
对于一元二次方程 $ax^2 + bx + c = 0$($a neq 0$),若其两个根为 $x_1$ 和 $x_2$, 则有 $x_1 + x_2 = -frac{b}{a}$,$x_1 times x_2 = frac{c}{a}$。
2. 将方程两边同时除以 $a$($a neq 0$),得到 $x^2 + frac{b}{a}x = frac{c}{a}$。
直接开平方法原理及步骤

一元二次不等式及其解法(习题课)

一元二次不等式及其解法(习题课)

∴原不等式解集为x|x<-12或x>13. 答案:A
2.若集合 A={x|-1≤2x+1≤3},B=x|x-x 2≤0,则 A∩B=(
)
A.{x|-1≤x<0}
B.{x|0<x≤1}
C.{x|0≤x≤2}
D.{x|0≤x≤1}
解析:∵A={x|-1≤x≤1},B={x|0<x≤2},
∴A∩B={x|0<x≤1}.

m>-16. 3
- b =-2m>2 2a 2
m<-2
解得-16<m≤-4. 3
总结:
设关于 x 的一元二次方程 ax2+bx+c=0(a>0)对应的二次函数为: f(x)=ax2+bx+c(a>0),结合二次函数的图象的开口方向、对称轴位 置,以及区间端点函数值的正负,可以得到以下几类方程根的分布问 题(此时Δ=b2-4ac).
∴7m-6<0,解得 m<67. ∴0<m<6.
7
∴m<0.
综上所述,m
的取值范围为
-∞,6 7
.
探究二 不等式中的恒成立问题
[典例 2] 设函数 f(x)=mx2-mx-1.
(2)对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取值范围.
法二:f(x)<-m+5 恒成立, 即 m(x2-x+1)-6<0 恒成立.
Δ≥0, (1)方程 f(x)=0 在区间(k,+∞)内有两个实根的条件是- fk2ba>>0k. ,
(2)方程 f(x)=0 有一根大于 k,另一根小于 k 的条件是 f(k)<0.
(3) 方 程 f(x) = 0 在 区 间 (k1 , k2) 内 有 两 个 实 根 的 条 件 是

人教版九年级数学上册《一元二次方程的解法——因式分解法》PPT

人教版九年级数学上册《一元二次方程的解法——因式分解法》PPT

简记歌诀: 右化零 左分解
三化-----方程化为两个一元一次方程; 两因式 各求解
四解-----写出方程两个解;
试一试:下列各方程的根分别是多少?
(1) x(x-2)=0; (2) (y+2)(y-3)=0; (3) (3x+6)(2x-4)=0; (4) x2=x.
(1) x1=0,x2=2; (2) y1=-2,y2=3 ; (3) x1=-2,x2=2; (4) x1=0,x2=1.
• 3.二次三项式x²+20x+96分解因式的结
果为
;如果令x²+20x+96=0,
那么它的两个根是

4.选择适当的方法解下列方程:
• (1)(x-5)²=4; • (2)x²=8x; • (3)3x²-x-1=0; • (4)(2x+1)²=-6x-3; • (5)(2x-1)²=(3-x).²
1.下面的解法正确吗?如果不正确,错误在哪?并请改正过来.
解方程 (x-5)(x+2)=18.
解: 原方程化为: (x-5)(x+2)=18 . ①
由x-5=3, 得x=8; ② 由x+2=6, 得x=4; ③
解: 原方程化为: x2 - 3x -28= 0, (x-7)(x+4)=0, x1=7,x2=-4.
第二十一章 一元二次方程
21.2 解一元二次方程
21.2.3 因式分解法
学习目标 1.理解用因式分解法解方程的依据. 2.会用因式分解法解一些特殊的一元二次方程.(重点) 3.会根据方程的特点选用恰当的方法解一元二次方程.(难点)
情境引入 我们知道ab=0,那么a=0或b=0, 类似的解方程(x+1)(x-1)=0时, 可转化为两个一元一次方程x+1=0或x-1=0来解, 你能求(x+3)(x-5)=0的解吗?

新教材人教版B版必修一 一元二次不等式及其解法 课件(42张)

新教材人教版B版必修一   一元二次不等式及其解法   课件(42张)

1.若集合 A=xx-x 1≤0,B={x|x2<2x},则 A∩B=(
(教材习题改编)不等式 2x2-x-3>0 的解集为( )
A.x-1<x<32 B.xx>32或x<-1 C.x-32<x<1 D.xx>1或x<-32
解析:选 B.2x2-x-3>0⇒(x+1)(2x-3)>0, 解得 x>32或 x<-1. 所以不等式 2x2-x-3>0 的解集为xx>32或x<-1.
解得 x≥3 或 x≤2. 【答案】 {x|x≥3 或 x≤2}
(1)解一元二次不等式的方法和步骤
(2)解含参数的一元二次不等式的步骤 ①二次项若含有参数应讨论是等于 0,小于 0,还是大于 0, 然后将不等式转化为二次项系数为正的形式.
②判断相应方程的根的个数,讨论判别式Δ与 0 的关系.
③确定无根时可直接写出解集,确定方程有两个根时,要讨论 两根的大小关系,从而确定解集形式.
一元二次不等式及其解法
1.一元一次不等式 ax>b(a≠0)的解集 b
(1)当 a>0 时,解集为__x__x_>_a___; b
(2)当 a<0 时,解集为__x__x_<_a____.
2.一元二次不等式的解集
判别式Δ=b2
Δ>0 -4ac
二次函数 y= ax2+bx+
c(>0)的图象
而 y=x2+2x-3 的图象开口向上,可得原不等式-x2-2x+ 3≥0 的解集是{x|-3≤x≤1}. (2)由题意xx≥2+02,x>3或x-<x02,+2x>3,解得 x>1. 故原不等式的解集为{x|x>1}.

3.2.2_一元二次不等式及其解法习题课_课件(人教A版必修5)

3.2.2_一元二次不等式及其解法习题课_课件(人教A版必修5)
栏目 导引
第 三章 不等式
乙车的刹车距离略超过10 m,又知甲、乙两 种车型的刹车距离s(m)与车速x(km/h)之间 分别有如下关系:s甲=0.1x+0.01x2,s乙= 0.05x+0.005x2. 问:甲、乙两车有无超速现象? 解:由题意知,对于甲车,有0.1x+0.01x2 >12,即x2+10x-1200>0,解得x>30或x <-40(不合实际意义,舍去),
第 三章 不等式
3.某工厂生产商品M,若每件定价80元, 则每年可销售80万件,税务部门对市场销售 的商品要征收附加费,为了既增加国家收入, 又有利于市场活跃,必须合理确定征收的税 率.据市场调查,若政府对商品M征收的税 率为P%(即每百元征收P元)时,每年的销售 量减少10P万件,据此,问:
栏目 导引
集是全体实数(或恒成立)的条件是当 a=0 时,
b=0,c>0;

a≠0
时a>0 Δ<0
.
(2)不等式 ax2+bx+c<0 的解集是全体实数
(或恒成立)的条件是当 a=0 时,b=0,c<0;

a≠0
时,a<0 Δ<0
.
类似地有 f(x)≤a 恒成立⇔[f(x)]max≤a;f(x)≥a 恒成立⇔[f(x)]min≥a.
栏目 导引
第 三章 不等式
∵Δ=36>0,方程R2-10R+16=0的两个 实数根为R1=2,R2=8. 9分 然后画出二次函数y=R2-10R+16的图象, 由图象得不等式的解集为{R|2≤R≤8}. 10分 即当2≤R≤8时,每年在此项经营中所收附 加税金不少于112万元. 12分 名师微博 正确列出不等式是关键.
栏目 导引
第 三章 不等式
②若 a2-1≠0,即 a≠±1 时, 原不等式解集为 R 的条件是 a2-1<0, Δ=[-a-1]2+4a2-1<0, 解得-35<a<1. 综上所述,符合条件的实数 a 的取值范围是(- 35,1].

高中数学《一元二次不等式及其解法习题课》课件

高中数学《一元二次不等式及其解法习题课》课件

(1)求矩形 ABCD 的面积 S 关于 x 的函数解析式;
(2)要使仓库占地 ABCD 的面积不少于 144 平方米,则
AB 的长度应在什么范围内?
30
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5

(1)根据题意,得△NDC
与△NAM
相似,所以DC= AM
ND,即 x =20-AD,解得 NA 30 20
∵x∈[-2,2],x-212+34max=7,
∴x2-6x+1min=67,∴m<67.
25
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
拓展提升
有关不等式恒成立问题的等价转化方式
(1)不等式 ax2+bx+c>0 的解集是全体实数(或恒成立)
的条件是当 a=0 时,b=0,c>0;
23
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(2)将 f(x)<-m+5 变换成关于 m 的不等式:m(x2-x+ 1)-6<0.则命题等价于:m∈[-2,2]时,g(m)=m(x2-x+1) -6<0 恒成立.
∵x2-x+1>0,∴g(m)在[-2,2]上单调递增. ∴只要 g(2)=2(x2-x+1)-6<0,即 x2-x-2<0, ∴-1<x<2.∴x 的取值范围为-1<x<2.
①式的解集为 x≤-2 或 0≤x≤3.由②式知 x≠3, ∴原不等式的解集为{x|x≤-2 或 0≤x<3}.
18
课前自主预习
课堂互动探究

公式法 解一元二次方程优秀课件

公式法 解一元二次方程优秀课件
数学
新课标(HS) 九年级上册
22.2 一元二次方程的解法
3.公式法
学习目标: 1.让学生熟练应用一元二次方程求根 公式解一元二次方程; 2.通过公式的引入,培养学生抽象思 维能力.
情景引入
问题 1 用配方法解方程:x2-4x+2=0. 问题 2 思考如何用配方法解下列方程? (1)4x2-12x-1=0,(2)3x2+2x-3=0
[解析] 方程(1)可用因式分解法来解;方程(2)可用求根 公式法来解.
3.公式法
解:(1)3x+15=-2x2-10x, 移项,得3x+15+2x2+10x=0, 提公因式,得3(x+5)+2x(x+5)=0, 即(x+5)(3+2x)=0,∴x+5=0或3+2x=0, ∴x1=-5,x2=-32. (2)4x2-12x+9=0. ∵a=4,b=-12,c=9, ∴b2-4ac=(-12)2-4×4×9=0, ∴x=122×±40,即x1=x2=32.
3.公式法
(3)∵a=1,b=- 2,c=0.5,
∴b2-4ac=(- 2)2-4×1×0.5=0,
∴x=
22×±10,∴x1=x2=
2 2.
(4)将方程化为一般形式为3x2-7x+8=0,
∵a=3,b=-7,c=8,
∴b2-4ac=(-7)2-4×3×8=-47<0,
∴原方程无实数根.
3.公式法
不解方程,判断下列方程的根的情况
(1)x2+4x-6=0; (2)2x2+6x=-7; (3)2x2+4x-2=0; (4)4x2+4x+5=1-8x.
3.公式法
[归纳总结] 配方法要先配方,再降次;公式法直接利用求根 公式;因式分解法要先使方程一边为两个一次因式的积,另 一边为0,再分别使各一次因式等于0.配方法、公式法适用于 所有的一元二次方程,解方程时应观察方程的特点,灵活选 择方法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档