2019年秋八年级数学上册第14章勾股定理14.2勾股定理的应用第1课时勾股定理在生活中的应用作业(新版)华东

合集下载

勾股定理(第一课时)教学设计

勾股定理(第一课时)教学设计

勾股定理(第一课时)教学设计一、教案背景(一)教材分析这节课是九年制义务教育初级中学教材华师大版八年级上册第十四章第一节《勾股定理》第一课时:直角三角形三边的关系。

勾股定理是反映自然界基本规律的一条重要结论,它是直角三角形的一条重要性质,揭示了一个直角三角形三边之间的数量关系。

它把三角形有一个直角的“形”的特点,转化为三边之间的“数”的关系,它是数形结合的典范。

它可以解决许多直角三角形中的计算问题,勾股定理有着悠久的历史,在数学发展中起过重要的作用,在现实世界中有着广泛的作用。

是初中数学教学内容重点之一。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

也可了解我国古代在勾股定理研究方面的成就,激发热爱祖国,热爱祖国悠久文化的思想感情。

(二)学情分析1.通过初一一年的数学学习,初二学生能积极参与数学学习活动,对数学学习有较强的好奇心和求知欲,他们能探索具体问题中的数量关系和变化规律,也能较清楚地表达解决问题的过程及所获得的解题经验,他们愿意对数学问题进行讨论,并敢于对不懂的地方和不同的观点提出自己的疑问。

2.考虑到三角尺学生天天在用,较为熟悉,但真正仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。

3.以与勾股定理有关的人文历史知识为背景展开对勾股定理的认识,能激发学生的学习兴趣。

(三)教学设想1.课型:新授课2.设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。

3.教学思路:探索结论-得出结论-历史介绍-初步应用结论-应用结论解决简单的实际问题。

最新华师版八年级数学上第14章《勾股定理》小结与复习ppt公开课优质课件

最新华师版八年级数学上第14章《勾股定理》小结与复习ppt公开课优质课件

∴△ABC是直角三角形,
∴∠B=90°.
方法总结 勾股定理及其逆定理均体现了数形结合思想 . 勾股定理是 由图形的特征(三角形中有一个角是直角)得到数量之间的关 系(三角形的三边长 a , b , c 满足 a2+b2=c2 ) ; 勾股定理的逆定
理由数量之间的关系(a2+b2=c2)得到图形的特征(以a,b,c
第14章 勾股定理
小结与复习
要点梳理
考点讲练
课堂小结
课后作业
要点梳理
1.勾股定理 勾股定理:直角三角形两条直角边的平方和等于斜边的 平方 . 即:对于任意的直角三角形,如果它的两条直角边分别 为a、b,斜边为c ,那么一定有 a2+b2=c2 . 勾股定理表达式的常见变形:a2=c2-b2, b2=c2-a2, .a 2 c a 2 b2 , a c 2 b2 , b c 2 勾股定理分类计算:如果已知直角三角形的两边是a、 b(且a>b),那么,当第三边c是斜边时,c=_________ a 2 b2 ; a 2 b2 . 当a是斜边时,第三边c=_________ [注意] 只有在直角三角形里才可以用勾股定理,运用时要 分清直角边和斜边.
解:①在 Rt△ABC1 中, 2 2 2 2 2 AC2 1 =AB + BC 1=4 + 3 =5 , ∴AC1 = 25. ②在 Rt△ACC1 中, 2 2 2 2 AC2 1 = AC + CC 1=6 +1 =37, ∴AC1 = 37. ③在 Rt△AB1 C1 中, 2 2 2 2 AC2 1 = AB 1+ B1 C1 =5 +2 =29, ∴AC1 = 29. ∵25<29<37, ∴沿图①的方式爬行路线最短,最短路线长是 5.
1 ∴4× 2ab+(b-a)2=c2,

八年级数学上册第14章勾股定理14.2勾股定理的应用(第1课时)教案华东师大版(2021年整理)

八年级数学上册第14章勾股定理14.2勾股定理的应用(第1课时)教案华东师大版(2021年整理)

八年级数学上册第14章勾股定理14.2 勾股定理的应用(第1课时)教案(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册第14章勾股定理14.2 勾股定理的应用(第1课时)教案(新版)华东师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册第14章勾股定理14.2 勾股定理的应用(第1课时)教案(新版)华东师大版的全部内容。

勾股定理的应用活动二:实践探究交流新知【探究】如右图,蚂蚁在点A处观察到点B处有食物,于是它想从A处爬向B处,蚂蚁怎么走最近呢?回忆圆柱的展开图,并尝试利用“两点之间线段最短”找出最短路线.活动三:开放训练体现应用【应用举例】图14-2-例1 如图14-2-,一圆柱体的底面周长为20 cm,高AB为4 cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路径.(精确到0.01 cm)变式变形:如图14-2-,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.在训练学生的读题能力和规范书写解题过程的能力的基础上,使学生进一步理解勾股定理,体会数学与现实世界的联系。

实际问题的过程,体会转化思想及数学和生活的密切联系.作业:1.课本P121中的随堂练习1和22。

课本P123中的习题14。

2中的1、2、3。

【知识网络】14。

2 勾股定理的实际应用(1)勾股定理实际应用常见题型框架图式总结,更容易形成知识网络【教学反思】①[授课流程反思]兴趣是最好的老师---学生只有对数学感兴趣,才想学、乐学,最后学会、学好.这就要求老师从“入趣点”着手,通过学生身边熟悉的问题引入,本节课的“入趣点”为“咱们学校”---亲切熟悉的环境,“不走寻常路”---学生中流行的广告词,这反思,更进一步提升。

《勾股定理》优秀说课稿(精选5篇)

《勾股定理》优秀说课稿(精选5篇)

《勾股定理》优秀说课稿(精选5篇)《勾股定理》优秀说课稿篇1一、说教材勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。

2、能够灵活地运用勾股定理及其计算。

3、培养学生观察、比较、分析、推理的能力。

4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

教学重点:勾股定理的证明和应用。

教学难点:勾股定理的证明。

二、说教法和学法教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让同学们主动参与学习全过程。

2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

三、教学程序本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。

这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。

【推荐】八年级数学上册第14章勾股定理14.1勾股定理1直角三角形三边的关系第2课时勾股定理的验证及简单应用

【推荐】八年级数学上册第14章勾股定理14.1勾股定理1直角三角形三边的关系第2课时勾股定理的验证及简单应用

14.1 勾股定理
2.勾股定理在四边形中的应用: (1)梯形的问题,通常通过作高,构造直角三角形,利用勾股定理 求解. (2)有内角为直角的四边形的问题,通常连结对角线等,转化成直 角三角形的问题,再应用勾股定理求解.
14.1 勾股定理
例 3 如图 14-1-7 是一个蔬菜大棚的简单示意图,大棚宽为 6 m,高为 8 m,大棚的斜面是一个长方形,将该长方形用塑料薄膜 遮盖,求所需塑料薄膜的面积.
2019/8/3
最新中小学教学课件
20
谢谢欣赏!
2019/8/3
最新中小学教学课件
21
(2)如果MB=a,BQ=b,AB=c,那么利用这个图形中的面积 关系,你能得到勾股定理吗?请说明理由.
图14-1-5
14.1 勾股定理
解:(1)正方形 ABCD 的面积=正方形 MNPQ 的面积-4×三角形 BCM 的面积= 7×7-4×12×3×4=25. (2)能.理由如下:正方形 MNPQ 的面积=(a+b)2 =a2 +b2 +2ab, 正方形 MNPQ 的面积=4×12×ab+c2=2ab+c2, 所以 a2+b2+2ab=2ab+c2, 得 a2+b2=c2.
14.1 勾股定理
【归纳总结】拼图法是探索勾股定理的有效方法,一般应遵循以 下步骤: 拼出图形→写出图形面积的表达式→找出等量关系→恒等变形→ 导出勾股定理.
14.1 勾股定理
目标二 能用勾股定理解决简单问题
例 四边形 ABCD 中,∠B =∠D=90°,BC=2,CD=3,AD=4,求 AB 的长.
14.1 勾股定理
【归纳总结】勾股定理在三角形及四边形中的应用: 1.勾股定理在三角形中的应用: (1)添线应用. 应用勾股定理的前提条件是在直角三角形中,当题目中没有直角 三角形时,可以通过作高等方式,把非直角三角形的问题转化为 直角三角形的问题,应用勾股定理求解.

单元整体教学的一次尝试——“勾股定理(第1课时)”的课堂实录

单元整体教学的一次尝试——“勾股定理(第1课时)”的课堂实录

案例赏析2023年12月下半月㊀㊀㊀单元整体教学的一次尝试勾股定理(第1课时) 的课堂实录◉江苏省无锡市连元英和双语实验学校㊀王㊀俊㊀㊀摘要:新课标指出,数学教学需要推进单元整体教学设计,体现数学知识之间的内在逻辑关系,加强学习内容与核心素养表现的关联,促进学生对教学内容的整体理解和把握,逐步培养学生的核心素养.本文中基于一线教师的视角来尝试单元整体教学,以苏科版八年级上册 勾股定理 起始课的课堂教学实录及评析,体现单元整体教学理念.关键词:单元整体教学;章起始课;勾股定理㊀㊀作为单元的起始课,对整章知识起着统领与导向作用.做好单元整体教学,需要教师很好地做到三个理解(理解教材,理解学生,理解教学),然后落实到每个具体的教学活动环节,整体设计,再分步骤实施,在整个过程中培养学生的核心素养.下面结合 勾股定理第一课时 的课堂实录及分析,来探讨一下单元整体教学.1教材分析勾股定理(第1课时) 教学目标主要有两个:(1)经历探索勾股定理的过程,发展合情推理的能力,体会数形结合的思想;(2)能应用勾股定理求直角三角形中未知边的长.前者需要花时间让学生去探索,所以设计了让学生在纸上多次操作验证㊁观看视频等活动,引导学生去发现勾股定理蕴含的数与形的关系,以及学会如何发现与探索,形成学习的能力,这也是本课重点.2设计思路与意图本节课分六个环节来具体实施:(1)导入直角三角形边角的内部关系,让学生建立形与数之间的对应关系.(2)利用面积割补法解决问题,实现直角三角形面积与边边关系的转化,初步感受三边关系;进一步在网格中验证其他直角三角形中相同结论的存在,实现特殊到一般的探索.(3)运用类比思想,技能迁移,验证锐角三角形和钝角三角形中是否有同样的三边关系.这既是对前面勾股定理探索过程的再一次经历,而且是主动经历,也引出大胆猜想(勾股定理的逆定理),为后续学习作铺垫.(4)关于勾股定理的课外知识介绍,在传播数学文化的同时,激发学生的兴趣.(5)利用勾股定理完成练习.(6)师生小结,为下一课时作铺垫.3课堂实录及分析3.1导入直角三角形,建立对应关系师:特殊的图形其边角具备特殊的内部关系,例如,直角三角形,我们已经学过它的内角之间的关系是什么呢?生1:两锐角互余.师:除了角与角之间的关系,我们还能研究直角三角形各元素的什么关系呢生2:边边关系,边角关系.师:很好.关于直角三角形的边角关系我们留待初三去探讨.这一章,我们将探索直角三角形边与边的内部关系.你已经知道直角三角形的边有什么样的关系呢生3:两边之和大于第三边.师:很好.可是这一事实对所有三角形都适用,作为特殊的直角三角形,是否有更特殊的边边关系呢?3.2利用面积割补法实现面积与边边关系的转化在下列网格中,将小方格边长看作1,完成下列问题:图1㊀㊀备用图图1中,四边形A B MN是什么形状?你会计算它的面积吗?有哪些方法?生1和生2上黑板讲解 割 与 补 两种方法.师:刚刚两位同学发现不能直接利用边长的平方832023年12月下半月㊀案例赏析㊀㊀㊀㊀求正方形面积后,采用了割补法将面积进行转化,这一转化思想在后续第五章 函数 中也会经常用到.下面请大家利用割补法,完成探索部分的第1,2题.3.3运用类比思想,迁移技能图2师:利用上面预习中的方法,计算图2中正方形A B MN ㊁正方形B C D E ㊁正方形A C F G 的面积,其面积依次是,猜想它们之间有何关系?生1:分别算出三个正方形的面积,得出9+16=25.教师板书S 1+S 2=S 3后,追问:线段A B ,B C ,A C 之间有何关系?生2继续转化,直至写出B C 2+A C 2=B A 2(板书).师:大家通过数量关系,利用面积实现了边边关系的转化.这很好地体现了转化思想和数形结合思想(板书).那么,大家能否用语言组织一下B C 2+A C 2=B A 2这一结论呢?生3:直角三角形的两直角边的平方和等于斜边的平方.是否所有的直角三角形都具备这样的三边关系呢?如何验证?师:对于所有直角三角形,都能在网格中利用面积法来验证 直角边的平方和等于斜边的平方 这一结论.3.4介绍勾股定理,传播数学文化师:其实,我们不仅可以在网格中探索这一结论,还可以利用现代化实验来验证.下面请同学们观看视频实验(以直角三角形三边为边往外作正多边形探索面积的变化),进一步提出猜想 以直角三角形的两直角边为边长的两个正多边形的面积和等于以斜边为边长的正多边形的面积.3.5利用勾股定理完成练习黑板上出示问题,用勾股定理小试牛刀.学生通过小组合作来回答:在әA B C 中,已知øC =90ʎ及两边的长如下,求第三边:①a =3,b =4;②a =3,c =5;③b =40,c =41.(学生合作探究过程略.)如图3,锐角三角形和钝角三角形的三边是否也具备这样的关系呢模仿前面的方法,思考并探索.如果不符合,三边又有怎样的关系?图3师:刚刚我们发现并在网格中验证了勾股定理的正确性,大家有没有想过,勾股定理是否也适用于锐角三角形和钝角三角形呢(教师停留几秒.)生1:不一定,有可能 师:怎么才能确定呢?生2:画一画,验一验,像刚刚那样画图验证.师:请大家在网格纸中加以验证,并组内讨论.学生尝试画图并组内讨论(大部分同学还是可以独立完成的).师:结论是什么呢?生4:锐角三角形中是B C 2+A C 2>B A 2,钝角三角形中是B C 2+A C 2<B A 2.师:同学们很厉害!看来勾股定理确实只适用于直角三角形.我们又可以做怎样的大胆猜想呢?生5:反过来,如果三边满足B C 2+A C 2=B A 2,可以得到әA B C 是直角三角形.师:确实,这就是勾股定理的逆定理(板书),这也是第三课时我们将要去深入研究的.师:同学们通过在网格中构建图形,或者用实验去演示,发现了勾股定理.其实,早在五百多年前,就有古人研究并发现了勾股定理.老师介绍毕达哥拉斯定理和我国的勾股弦以及勾3股4弦5 的历史.(展示毕达哥拉斯邮票图片,板书.)师:下面我们就用这个发现,去解决问题吧.利用勾股定理,完成书本第79页练习1,2.3.6师生小结师:通过上面的练习,我们再次发现,有了勾股定理,就能实现直角三角形图形内部的数量关系,解决三角形边边关系,这正是勾股定理的重要应用(板书),这也为以后用代数方法解决几何问题提供了有效的工具.4对单元整体设计的认识单元整体教学是一种教学理念,目的是让教师从高处俯视教学的每一个触角,将它们用一条无形的线串联起来,形成一个有机整体.在实施 单元整体 教学的过程中,教师要注重对教学内容进行结构化整合,探索㊁铺设适合发展学生核心素养的路径.根据新课程标准的要求,尤其要重视数学结果的探索和形成过程.漫漫教学路,教师唯有不断探索创新,才能与时俱进,与学生共成长.只有教师有整体的的眼光㊁更大的视野,才能引领学生一起走进数学的世界,打开数学之门.Z93。

2019秋八年级数学上册北师大版同步学案全辑(精致WORD)

第一章勾股定理1探索勾股定理第1课时勾股定理1第2课时勾股定理的验证及其应用2 2一定是直角三角形吗33勾股定理的应用4第二章实数1认识无理数52平方根63立方根74估算85用计算器开方96实数107二次根式第1课时二次根式的概念及性质11 第2课时二次根式的运算12第三章位置与坐标1确定位置132平面直角坐标系第1课时平面直角坐标系14第2课时点的坐标15第3课时建立直角坐标系16 3轴对称与坐标变化17第四章一次函数1函数182一次函数与正比例函数193一次函数的图象204一次函数的应用第1课时求一次函数的表达式21 第2课时单个一次函数的应用22 第3课时两个一次函数的应用23 第五章二元一次方程组1认识二元一次方程组242求解二元一次方程组第1课时代入消元法25第2课时加减消元法263应用二元一次方程组——鸡兔同笼274应用二元一次方程组——增收节支285应用二元一次方程组——里程碑上的数296二元一次方程与一次函数307用二元一次方程组确定一次函数表达式31*8三元一次方程组32第六章数据的分析1平均数332中位数与众数343从统计图分析数据的集中趋势354数据的离散程度第1课时极差、方差和标准差36第2课时极差、方差、标准差的应用37第七章平行线的证明1为什么要证明382定义与命题393平行线的判定404平行线的性质415三角形内角和定理第1课时三角形内角和定理42 第2课时三角形的外角43第一章勾股定理1探索勾股定理第1课时勾股定理知识点1、2认识勾股定理及其简单应用定义:直角三角形两直角边的平方和等于斜边的平方.如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.(总分30分)1.(知识点1)(3分)已知直角三角形两直角边的长分别为9,12,则其斜边长为(C)A.13 B.14C.15 D.162.(知识点1)(3分)在△ABC中,∠A=90°,则下列式子中,错误的是(C)A.∠B+∠C=90°B.AB2+AC2=BC2C.BC2=AC2-AB2D.AC2=BC2-AB23.(知识点2)(3分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是(C)第3题A.48 B.60C.76 D.804.(知识点2)(3分)如图所示,直角三角形ABC的两直角边BC=12,AC=16,则三角形ABC的斜边AB上的高CD的长是(C)第4题A.20 B.10C.9.6 D.85.(知识点1)(3分)如图所示,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,以点A为圆心,AC长为半径画弧,交AB于点D,则BD= 4 .6.(知识点2)(8分)如图,已知等腰三角形的底边长为6,底边上的高AD 长为4,且D 点为BC 的中点,求等腰三角形的腰长.解:因为D 是BC 的中点,所以BD =12BC =3,AD ⊥BC .在Rt △ABD中,由勾股定理,得AB 2=AD 2+BD 2=42+32=25.所以AB =5,即腰长为5.7.(知识点2)(7分)在△ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,若a ∶b =3∶4,c =25,求a ,b .解:设a =3k ,b =4k .因为在△ABC 中,∠C =90°,c =25,所以由勾股定理,得(3k )2+(4k )2=252.因为k >0,所以k =5.所以a =3×5=15,b =4×5=20.第2课时 勾股定理的验证及其应用知识点1、2 勾股定理的验证及其应用验证勾股定理⎩⎪⎪⎪⎨⎪⎪⎪⎧思路:拼图面积法注意事项:拼图时要做到 不重不漏 .关键:运用不同方法表示图形的 面积 .等量关系:整个图形的面积=每个小的图形的面积之 和 .(总分30分)1.(知识点1)(3分)如图,下列选项中,不能用来证明勾股定理的是( C)2.(知识点2)(3分)已知x ,y 为正数,且|x 2-4|+(y 2-3)2=0,如果以x ,y 为直角边长作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( C )A .5B .25C.7 D.153.(知识点2)(4分)如图,小明将升旗的绳子拉到底端,绳子末端刚好接触到地面,然后将绳子末端拉到旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12m B.13mC.16m D.17m4.(知识点1)(4分)如图,把长、宽、对角线的长分别是a,b,c的长方形沿对角线剪开,与一个直角边长为c的等腰直角三角形拼接成右边的图形,用面积割补法能够得到的一个等式是a2+b2=c2.5.(知识点2)(4分)如图,直角三角形三边上的半圆面积之间的关系是S1+S2=S3.第5题6.(知识点2)(4分)如图,在海上观察所A处,我边防海警发现正北6km 的B处有一可疑船只正在向正东方向8km的C处行驶.我边防海警即刻派船只前往拦截.若可疑船只的行驶速度为40km/h,则我边防海警船的速度为50km/h 时,才能恰好在C处将可疑船只截住.第6题7.(知识点2)(8分)如图,以等腰直角三角形ABC的斜边AB为一边作正方形ABMN,且AC=3.(1)求正方形ABMN的面积;(2)求对角线BN的长.解:(1)因为△ABC 为等腰直角三角形,AC =3,所以AB 2=AC 2+BC2=32+32=18,又因为S 正方形AQMN =AB 2,所以S 正方形ABMN =18. (2)因为四边形ABMN 为正方形,所以BN 2=AB 2+AN 2,即BN 2=18+18=36,所以BN =6.2 一定是直角三角形吗知识点1 勾股定理的逆定理如果三角形的三边长a ,b ,c 满足 a 2+b 2=c 2,那么这个三角形是直角三角形.知识点2 勾股数满足a 2+b 2=c 2的三个 正整数 ,称为勾股数.(总分30分)1.(知识点1)(3分)下列四组线段能组成直角三角形的是( C ) A .a =1,b =2,c =3 B .a =2,b =3,c =4 C .a =3,b =4,c =5D .a =4,b =5,c =62.(知识点2)(3分)在下列各组数中,是勾股数的一组是( C )A.35,45,1 B.0.3,0.4,0.5C.6,8,10 D.4,5,63.(知识点1)(3分)如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)第3题A.10 B.11C.12 D.134.(知识点1)(3分)如图,在4×5的方格中,A,B为两个格点,再选一个格点C,使∠ACB为直角,则满足条件的点C的个数为(D)第4题A.3个B.4个C.5个D.6个5.(知识点1)(3分)五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是(C)6.(知识点1)(3分)已知a,b,c是△ABC的三边长,且满足关系式(a2+b2-c2)2+|a-b|=0,则△ABC的形状为等腰直角三角形.7.(知识点1)(3分)一个三角形的三边长之比为5∶12∶13,周长为90cm,则它的面积是270cm2.8.(知识点1)(9分)如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,已知每平方米蔬菜可售30元.爸爸让小明计算一下土地的面积,以便计算产量.小明找了一把卷尺,测得AD=3m,AB=4m,BC=12m,CD=13m,且∠BAD=90°,求四边形土地上的蔬菜全部售出可得多少钱?解:连接BD.在△ABD中,因为AD=3m,AB=4m,∠BAD=90°,所以由勾股定理得BD2=AD2+AB2=32+42=52.所以BD=5m.在△BCD 中,因为BD=5m,BC=12m,CD=13m,所以BD2+BC2=CD2.所以△BCD是直角三角形.所以四边形ABCD的面积为S△ABD+S△BCD=12×3×4+12×5×12=36(m2).则蔬菜全部售出后可得,36×30=1080(元).3勾股定理的应用知识点1确定几何体上的最短路线在平面上寻找两点之间的最短路线是根据线段的性质:两点之间,线段最短.在立体图形上,由于受物体与空间的阻隔,两点间的最短路线不一定是两点间的线段长,应将其展开成平面图形,利用平面图形中线段的性质确定最短路线.知识点2利用勾股定理解决生活中的长度问题在实际生活中常用于判断两直线是否垂直,解决问题的一般方法:实际问题→数学问题→利用勾股定理的逆定理判定垂直.(总分30分)1.(知识点2)(3分)为迎接国庆的到来,同学们做了许多拉花布置教室,准备召开联欢晚会.小刘搬来一架长5米的木梯,准备把拉花挂到3米高的墙上,则梯子底端与墙脚之间的距离应为(A)A.4米B.3米C.5米D.6米2.(知识点2)(3分)一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大伸长为13米,则云梯可以达到该建筑物的最大高度是(A)A.12米B.13米C.14米D.15米3.(知识点2)(3分)在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米,请你帮张大爷分析一下,大树倒下时能砸到张大爷的房子吗?(A)A.一定不会B.可能会C.一定会D.以上答案都不对4.(知识点1)(4分)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是(A)A.12≤a≤13 B.12≤a≤15C.5≤a≤12 D.5≤a≤135.(知识点1)(4分)如图,长方体的高为3cm,底面是边长为2cm的正方形,现用绳子从A开始缠绕,沿长方体表面经BD到达C处,则需要绳子的最短长度是(B)A.4cm B.5cmC.5.5cm D.6cm6.(知识点2)(4分)如图,一个游泳爱好者要横跨一条宽AC=8m的河流,由于水流速度的原因,这位游泳爱好者向下游偏离了BC=6m,这位游泳爱好者在横跨河流时的实际游泳距离为10 m.7.(知识点1)(9分)有一个圆柱,它的高为9厘米,底面周长为24厘米,在圆柱下底面的A点有一只蚂蚁要沿侧面到上底面B点取食物,问它爬行的最短路程是多少厘米?解:画圆柱侧面展开图如图,依题意得AD=12厘米,BD=9厘米,在Rt△ABD中,AB2=BD2+AD2=92+122=225,所以AB=15厘米,所以蚂蚁需要爬行的最短路程是15厘米.第二章实数1认识无理数知识点1非有理数的存在整数和分数统称为有理数.随着研究的深入,人们发现,现实生活中还存在着大量的不是有理数的数.知识点2估计数值的大小用x表示正方形的边长,若x2=2,则x既不是整数,也不是分数,我们可以用无限逼近的方法估计x的值,从而求出x的近似值.知识点3无理数的概念无限不循环小数称为无理数.(总分30分)1.(知识点3)(3分)下列各数中,是无理数的是(C)A.-1 B.0C.πD.1 32.(知识点1、3)(3分)在等式x2=7中,下列说法中正确的是(D)A.x可能是整数B.x可能是分数C.x可能是有理数D.x是无理数3.(知识点1、3)(3分)下列说法正确的是(C) A.分数是无理数B.无限小数是无理数C.不能写成分数形式的数是无理数D.不能在数轴上表示的数是无理数4.(知识点1、3)(3分)在13,3.1415926,0.9090090009…(每两个9之间0的个数逐次加1),0.8,3π中,无理数有(B) A.1个B.2个C.3个D.4个5.(知识点3)(3分)半径为20的圆的面积是(D) A.整数B.分数C.有理数D.无理数6.(知识点1、3)(3分)在数227,0,3.6·6·,-13,π2,0.232332…(2个2之间依次多1个3),32中,有理数有227,0,3.6·6·,-13,32,无理数有π2,0.232332…(2个2之间依次多1个3) .7.(知识点2、3)(6分)已知半径为1的圆.(1)它的周长l是有理数还是无理数?说说你的理由;(2)估计l的值;(结果精确到十分位)(3)如果结果精确到百分位呢?解:(1)它的周长l=2π是无理数,理由如下:2π是无限不循环小数.(2)结果精确到十分位,2π≈6.28≈6.3.(3)结果精确到百分位,2π≈6.283≈6.28.8.(综合题)(6分)如图所示,把16个边长为1cm的正方形拼在一起.(1)连接A和B,C,D的线段,哪几条是无理数?请说明理由;(2)判断△BCD是什么三角形?请说明理由.解:(1)AC,AD的长是无理数,理由如下:因为AC2=10,AD2=13,AC,AD的长既不是整数,也不是分数,所以AC,AD的长是无理数.(2)△BCD是等腰三角形,理由如下:因为BC2=5,CD2=5,BD=2,所以BC=CD≠BD,所以△BCD是等腰三角形.2平方根知识点1算术平方根的概念与性质一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,记为a,读作“根号a”.知识点2平方根的概念与性质(1)定义:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫做二次方根).(2)性质:一个正数有两个平方根;0 只有一个平方根,它是0本身;负数没有平方根.知识点3开平方求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数.知识点4a2与(a)2(a≥0)的性质(1)a2=|a| ,即当a≥0时,a2=a,当a<0时,a2=-a.(2)(a)2=a(a≥0).(总分30分)1.(知识点1)(3分)数7的算术平方根为(A) A.7 B.49 C.±49 D.±72.(知识点1)(3分)一个数的算术平方根是34,这个数是(C)A.32B.34C.916D.不能确定3.(知识点2)(3分)16的平方根是(A)A.±4 B.±1 4C.4 D.-44.(知识点4)(3分)下列各式中,正确的是(B) A.(-5)2=-5 B.-52=-5 C.(±5)2=-5 D.52=±55.(知识点2)(3分)关于平方根,下列说法正确的是(B) A.任何一个数有两个平方根,并且它们互为相反数B.负数没有平方根C.任何一个数只有一个算术平方根D.以上都不对6.(知识点2)(3分)如果a,b分别是17的两个平方根,那么ab=-17 .7.(知识点2、3)(3分)若25x2=9,则x的值为±35.8.(知识点2、3)(4分)求式子中x的值:x2-16=25.解:±419.(综合题)(5分)已知2a-1的平方根是±3,4是3a+b-1的算术平方根,求a+2b的值.解:因为2a-1的平方根是±3,所以2a-1=9,解得a=5.因为4是3a+b-1的算术平方根,所以3a+b-1=16,所以14+b=16,解得b=2,所以a+2b=5+2×2=9.3立方根知识点1立方根的概念与性质(1)立方根的概念:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根或三次方根.(2)立方根的性质:正数有一个正的立方根;负数有一个负的立方根;0 的立方根是0.知识点2开立方(1)定义:求一个数a的立方根的运算叫做开立方,a叫做被开方数.开立方与立方互为逆运算.(2)重要公式:①(3a)3=3a3=a;②3-a=-3a.知识点3立方根与平方根的区别与联系(1)区别:①平方根的根指数是 2 ,能省略,立方根的根指数是 3 ,不能省略.②平方根只有对非负数才有意义,而立方根对任何数都有意义,且每个数都只有一个立方根.③正数的平方根有两个,而正数的立方根只有一个.(2)联系:都与相应的乘方运算互为逆运算.(总分30分)1.(知识点1)(2分)64的立方根是(A)A.4 B.±4C.8 D.±82.(知识点2)(2分)化简327的结果是(C)A.±3 B.-3C .3D .2 33.(知识点1、2)(3分)下列说法中正确的是( D ) A .-5没有立方根B .2的立方根是±32 C .136的立方根是16D .-5的立方根是3-54.(知识点2)(3分)127的立方根是 13.5.(知识点3)(3分)一个数的平方等于164,则这个数的立方根是 ±12.6.(知识点2)(3分)若-3a =378,则a 的值是 -78. 7.(知识点2)(4分)求下列式子的立方根: (1)16164;(2)(-1)2021.解:(1)54(2)-18.(知识点1)(4分)求下列式子的值.(1)3-64;(2)(3-1)3.解:(1)-4(2)-19.(知识点2)(6分)已知第一个立方体纸盒的棱长是6厘米,第二个立方体纸盒的体积比第一个立方体纸盒的体积大127立方厘米,求第二个立方体纸盒的棱长.解:因为第一个立方体的体积是63=216,所以第二个立方体的体积是216+127=343,所以第二个立方体的棱长是343的立方根,即棱长为7厘米.4估算知识点1估算法确定无理数的大小估算是现实生活中一种常用的解决问题的方法.很多情况下需要去估算无理数的近似数,估算无理数经常用到“夹逼法”,即通过平方运算或立方运算,通过两边无限逼近,逐渐夹逼,确定其所在范围.知识点2比较两个无理数的大小的方法(1)估算法:用估算法比较两个数的大小,一般至少有一个是无理数,在比较大小时,一般先采用分析的方法,估算出无理数的大致范围,再作具体比较.(2)求差法:若a-b>0;若a-b<(3)平方法(或立方法):当比较两个带根号的无理数的大小时可用如下结论:若a>b≥0a>b(总分30分)1.(知识点1)(2分)估计13的值在(C)A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间2.(知识点1、2)(2分)若k<87<k+1(k是整数),则k的值是(D) A.6 B.7C.8 D.93.(知识点2)(2分)比较下列各组数的大小,正确的是(C)A.1.7> 3 B.π<3.14C.-5>- 6 D.5<3 1004.(知识点1)(2分)17的整数部分是 4 .5.(知识点2)(3分)如图,M,N,P,Q是数轴上的四个点,这四个点中最适合表示7的点是点P.6.(知识点1)(3分)若正方形ABCD的面积为57,则边AB的长介于连续整数7 和8 之间.7.(知识点1、2)(3分)试写出-2与3之间的所有整数:-1,0,1 .8.(知识点1)(8分)估算下列各数的大小(结果精确到1):(1)99;(2)26.3;(3)3 120;(4)-319.8.解:(1)10(2)5(3)5(4)-39.(知识点1)(5分)某商厦今年一月份的销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份销售额平均每月增长的百分率.(精确到0.1%)解:设三、四月份销售额平均每月增长的百分率是x .由题意,得60(1-10%)·(1+x )2=96,所以(1+x )2≈1.7778,1+x ≈± 1.7778.因为 1.3333< 1.7778<1.3334,所以 1.7778≈1.333,所以x 1≈0.333=33.3%,x 2≈-2.333(舍去).即该商厦三、四月份销售额平均每月增长的百分率约是33.3%.5 用计算器开方知识点1、2 利用计算器开方及进行较复杂的计算用计算器开方⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧开平方⎩⎪⎪⎨⎪⎪⎧先按“□”键再输入 被开方数 再按“=”键最后按“S ⇔D ”键开立方 ⎩⎪⎪⎨⎪⎪⎧先按“SHIFT ”键再按“□”键再输入被开方数最后“=”键利用计算器进行较复杂的计算时要注意根号下相乘除(或相加减)的按键顺序,切记“π”的按键顺序.(总分30分)1.(知识点1)(2分)用计算器求2021的平方根时,下列四个键中,必须按的键是(C)2.(知识点2)(2分)在计算器上按键□16⊳-5=S⇔D显示的结果是(C)A.3 B.-3C.-1 D.13.(知识点2)(3分)式子23+2的结果精确到0.01为(可用计算器计算或笔算)(C)A.4.9 B.4.87C.4.88 D.4.894.(知识点1)(3分)用计算器计算:2028≈45.0 .(结果精确到0.1)5.(知识点1)(3分)用计算器比较52,43,35(用“<”符号连接)6.(知识点2)(3分)用计算器比较大小:3(填“>”“<”或“=”)7.(知识点1)(4分)用计算器求下列各式的近似值(精确到0.01): (1) 3.62; (2)-78; (3)3-0.81; (4)3327.8.解:(1)1.90 (2)-0.94 (3)-0.93 (4)6.908.(知识点2)(4分)利用计算器计算(结果精确到0.01): (1)12+3×6; (2)320×13- 3.6÷2. 解:(1)4.74 (2)0.629.(知识点2)(6分)在某项工程中,需要一块面积为5平方米的正方形钢板,应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么请你算一算:(1)如果精确到十分位,正方形的边长是多少? (2)如果精确到百分位呢? 解:(1)2.2米 (2)2.24米6 实 数知识点1 实数的概念、分类(1)实数的概念:有理数和 无理数 统称为实数.(2)实数的分类⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧按定义分⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧有理数⎩⎪⎪⎪⎨⎪⎪⎪⎧⎭⎪⎪⎪⎬⎪⎪⎪⎫整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎨⎧正分数负分数有限小数和无限循环小数无理数→无限不循环小数按大小分⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧正实数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数正无理数零负实数⎩⎪⎨⎪⎧负有理数⎩⎨⎧ 负整数 负分数负无理数 知识点2 实数的相关概念在实数范围内,一个数的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样,即这些有理数中的概念在 实数范围 内仍适用.知识点3 实数的运算与比较有理数的运算法则与运算律在实数范围内仍然适用.正数大于负数;正数大于0 ;0大于负数;两个负数相比较,绝对值大的反而小.知识点4实数与数轴上点的关系实数与数轴上的点是一一对应的关系.在数轴上,右边的数总比左边的数大.(总分30分)1.(知识点2)(3分)3的相反数是(A)A.- 3 B. 3C.13D.32.(知识点4)(3分)实数a,b在数轴上的对应的点的位置如图所示,计算|b-a|的结果为(B)A.a+b B.a-bC.b-a D.-a-b3.(知识点3)(3分)比较大小:填“>”“<”或“=”).4.(知识点2)(3分)化简:|3-2|5.(知识点2)(6分)求下列各数的相反数、倒数和绝对值: (1)-15;(2)3278; (3)3-π.解:(1)-15的相反数是15,倒数是-115,绝对值为|-15|=15.(2)因为3278=32,所以3278的相反数是-32,倒数为23,绝对值为32. (3)3-π的相反数为-(3-π)=π-3,倒数为13-π,绝对值为|3-π|=π-3.6.(知识点3)(6分)计算: (1)|6-3|-|3-6|; (2)|1-2|+|2-3|+|3-2|.解:(1)原式=(6-3)-(6-3)=0. (2)原式=2-1+3-2+2-3=1.7.(知识点1、3)(6分)已知下列7个实数:0,π,-2,23,-1.1,38,17,试解决下列问题:(1)将它们分成有理数和无理数两组;(2)将7个实数按从小到大的顺序排列,用“<”号连接.解:(1)有理数:0,23,-1.1,38;无理数:π,-2,17. (2)大小关系为:-2<-1.1<0<23<38<π<17.7 二次根式第1课时 二次根式的概念及性质知识点1 二次根式的概念及性质(1)定义:一般地,形如a (a ≥0)的式子叫做 二次根式 ,a 叫做被开方数.(2)性质:①a 2= |a | =⎩⎨⎧a (a ≥0),-a (a <0).②aba ≥0,b ≥0). ③a b =a b( a ≥0,b >0 ). 知识点2 最简二次根式的概念及其化简(1)定义:被开方数不含 分母 ,也不含能开得尽方的 因数或因式 ,这样的二次根式,叫做最简二次根式.(2)化简二次根式的方法:①被开方数是整数的,先分解因数,再利用积的算术平方根的性质化简;②被开方数是分数或小数的,利用商的算术平方根的性质化简.(总分30分)1.(知识点1)(2分)下列式子中,不是二次根式的是(B)A.45 B.-3C.a2+3 D.2 32.(知识点1)(2分)已知m和-m都有意义,则(C) A.m≥0 B.m≤0C.m=0 D.m≠03.(知识点2)(3分)下列二次根式中的最简二次根式是(A) A.30 B.12C.8 D.1 24.(知识点2)(3分)下列各式正确的是(D) A.(-4)×(-9)=-4×-9B.16+94=16×94C .449=4×49D .4×9=4×95.(知识点2)(3分)把2006.(知识点2)(3分)若x <0,y >0,化简x 2y 2= -xy . 7.(知识点1)(6分)当a 为何值时,下列各式在实数范围内有意义? (1)2a 2+1; (2)-a 2; (3)a -12-a.解:(1)a 为任意实数. (2)a =0. (3)a ≥1且a ≠2. 8.(知识点2)(8分)化简:(1)3×25×225; (2)(-12)×(-8); (3)2514; (4)(45)2+(25)2. 解:(1)原式=75 3. (2)原式=4 6. (3)原式=1012. (4)原式=255.第2课时 二次根式的运算知识点1二次根式的乘除(1)乘法法则:a·ba≥0,b≥0);(2)除法法则:ab=a≥0,b>0).知识点2二次根式的加减及混合运算(1)几个二次根式化成最简二次根式后,如果它们的被开方数相同,那么这几个二次根式叫做同类二次根式.(2)一般地,二次根式相加减,先把各个二次根式分别化成最简二次根式,然后再将同类二次根式分别合并.有括号时,要先去括号.(3)二次根式的混合运算顺序与实数中的运算顺序一致,也是先乘方,再乘除,最后加减,有括号的先算括号内的.(总分30分)1.(知识点2)(2分)下列各数中与2是同类二次根式的是(A)A.8 B.32C. 4 D.12 2.(知识点2)(2分)计算32-2的值是(D) A.2 B.3C. 2 D.2 23.(知识点1)(2分)计算3×5的结果是(B) A.8 B.15 C.3 5 D.5 34.(知识点2)(3分)计算(515-245)÷(-5)的结果为(A)A.5 B.-5C.7 D.-75.(知识点2)(3分)若最简二次根式3a-8与17-2a可以合并,则a = 5 .6.(知识点1、2)(3分)把22+2进行化简,得到的最简结果是(结果保留根号)7.(知识点1、2)(3分)计算:(27-13)×3=8 .8.(综合题)(12分)计算:(1)15 3;(2)6×15×10;(3)-212+(613-348);(4)-4318÷(218×1354).解:(1)原式= 5.(2)原式=900=30.(3)原式=-43+23-123=-14 3.(4)原式=-42÷(62×6)=-42÷123=-6 9.第三章位置与坐标1确定位置知识点1、2位置的确定及有序数对定位法和方位角加距离定位法要确定平面内一个物体的位置,一般需要两个独立的数据,常见的表示方法有:行列定位法、经纬定位法、区域定位法、有序数对定位法、方位角加距离定位法.(总分30分)1.(知识点1)(3分)电影院的第4排第8座表示为(4,8),如果某同学的座位号为(4,9),那么该同学所坐的位置是(B)A.第2排第4座B.第4排第9座C.第4排第4座D.无法确定2.(知识点1)(3分)气象台为预测台风,首先要确定台风中心的位置,下列说法能确定台风中心位置的是(C)A.距台湾200海里B.位于台湾和海口之间C.位于东经120.8°,北纬32.8°D.位于太平洋3.(知识点1)(3分)下列数据中,不能确定物体位置的是(D)A.某市新华书店位于人民路18号B.吴刚家位于某小区6号楼308号C.某渔船位于东经116.2°,北纬31.5°D.电影票的座位号是15排4.(知识点2)(3分)安徽省蒙城县板桥中学办学特色好,“校园文化”建设,主体鲜明新颖:“国学引领,孝老敬亲,家校一体,爱满乡村.”如图所示,若用“C4”表示“孝”,则“A5—B4—C3—C5”表示(D)A.爱满乡村B.孝老敬亲C.国学引领D.板桥中学5.(知识点2)(3分)生态园位于县城东北方向6公里处,如图表示准确的是(B)6.(知识点2)(3分)如图是小刚画的一张脸,他对妹妹说,“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成(2,1) ”.7.(知识点2)(12分)如图所示.(1)电影院在学校南偏东70°的方向上,距离是600 米;(2)书店在学校北偏西60°的方向上,距离是800 米;(3)图书馆在学校南偏西15°的方向上,距离是400 米;(4)王老师骑自行车从学校到邮局发邮件,每分钟骑250米,需要多长时间到达?解:200×5÷250=1000÷250=4(分钟).答:需要4分钟到达.2平面直角坐标系第1课时平面直角坐标系知识点1平面直角坐标系及相关概念(1)在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.水平的数轴叫做x轴或横轴.铅直的数轴叫做y轴或纵轴.它们的公共原点O称为直角坐标系的原点.(2)两条坐标轴将平面分为四个部分,右上部分叫做第一象限,其他按逆时针方向依次是第二象限、第三象限、第四象限.坐标轴上的点不在任何一个象限.知识点2平面内点的坐标对于平面内任意一点,过这个点分别作x轴、y轴的垂线,垂足在x轴、y轴上对应的数字a,b分别叫做这个点的横坐标、纵坐标,有序实数对(a,b) 叫做这个点的坐标.知识点3平面直角坐标系与有序实数对之间的关系坐标平面内的点与一对有序实数对是一一对应关系.(总分30分)1.(知识点3)(3分)小明建立了如图的直角坐标系,则点“A”的坐标是(B)第1题A.(-1,1) B.(1,2)C.(-1,2) D.(1,-1)2.(知识点2)(3分)如图,点A(-2,1)到y轴的距离为(C)第2题A.-2 B.1C.2 D. 53.(知识点1)(3分)如图,小手盖住的点的坐标可能为(D)A.(4,3)B.(-5,4)C.(-3,-4)D.(4,-5)4.(知识点2)(3分)已知点P在第一象限,且P到x轴的距离为2,到y轴的距离为6,则P点的坐标为(D)A.(2,-6) B.(-2,6)C.(6,-2) D.(6,2)5.(知识点2)(3分)点P(-4,-3)到x轴的距离为 3 .6.(知识点2)(7分)如图,写出下列各点A,B,C,D,E,F,H的坐标.解:A(2,1),B(-4,3),C(-2,-3),D(3,-3),E(-3,0),F(0,2),H(0,0).7.(综合题)(8分)如图,A点、B点的坐标分别是(-2,0)和(2,0).(1)请你在图中描出下列各点:C(0,5),D(3,5),E(-4,-5),F(0,-5);(2)连接AC,CD,DB,BF,FE,EA,并写出图中的任意一组平行线.解:(1)略.(2)略,平行线有AB∥CD∥EF,AE∥BF.第2课时点的坐标知识点1平面直角坐标系中由点的坐标确定点的位置找点的方法:先分别找出该点的横坐标、纵坐标在两条数轴上的点,再分别作对应坐标轴的垂线,交点即为所要找的点的位置.知识点2点的坐标特征(1)坐标轴上点P(a,b)的坐标特征:点P在x轴上,a为一切实数,b=0 .点P在y轴上,b为一切实数,a = 0 .点P 在原点,a = 0 ,b 0 .(2)与坐标轴平行的直线上的点的坐标特征:点的坐标特征⎩⎪⎪⎨⎪⎪⎧与x 轴平行⎩⎨⎧ 横坐标 不同纵坐标相同与y 轴平行⎩⎨⎧横坐标相同 纵坐标 不同 (3)两坐标轴夹角平分线上的点的坐标特征:坐标轴夹角平分线⎩⎪⎪⎪⎨⎪⎪⎪⎧ 第 一、三 象限⎩⎪⎨⎪⎧点的坐标特征:横、纵坐标相同表示法:(a ,a )第二、四象限⎩⎨⎧点的坐标特征:横、纵坐标 互为相反数 表示法:(a ,-a ) (总分30分)1.(知识点2)(3分)坐标平面内的下列各点中,在x 轴上的是( B )A .(0,2)B .(-2,0)C .(-2,2)D .(-1,-3)2.(知识点2)(3分)如果点A 与点B 的横坐标相同,纵坐标不同,那么直线AB 与y 轴的关系为( A )A .平行B .垂直C .相交D .以上均不对。

华师大版八年级上册电子课本 第14章 勾股定理(新版)-

第14章勾股定理§14.1勾股定理1. 直角三角形三边的关系2. 直角三角形的判定阅读材料勾股定理史话美丽的勾股树§14.2勾股定理的应用小结复习题课题学习勾股定理的“无字证明”第14章勾股定理还记得2002年在北京召开的国际数学家大会(ICM2002)吗?在那个大会上,到处可以看到一个简洁优美的图案在流动,那个远看像旋转的纸风车的图案就是大会的会标.那是采用了1700多年前中国古代数学家赵爽用来证明勾股定理的弦图.§14.1 勾股定理1. 直角三角形三边的关系本章导图中的弦图隐含着直角三角形三边之间的一种奇妙的关系,让我们首先观察经常使用的两块直角三角尺.试一试测量你的两块直角三角尺的三边的长度,并将各边的长度填入下表:三角尺直角边a直角边b斜边c 关系12根据已经得到的数据,请猜想三边的长度a、 b、 c之间的关系.图14.1.1是正方形瓷砖拼成的地面,观察图中用阴影画出的三个正方形,很显然,两个小正方形P、 Q的面积之和等于大正方形R 的面积.即AC2+BC2=AB2,图14.1.1这说明,在等腰直角三角形ABC中,两直角边的平方和等于斜边的平方.那么在一般的直角三角形中,两直角边的平方和是否等于斜边的平方呢?试一试观察图14.1.2,如果每一小方格表示1平方厘米,那么可以得到:正方形P的面积=平方厘米;正方形Q的面积=平方厘米;(每一小方格表示1平方厘米)图14.1.2正方形R的面积=平方厘米.我们发现,正方形P、Q、R的面积之间的关系是.由此,我们得出直角三角形ABC的三边的长度之间存在关系.做一做在图14.1.3的方格图中,用三角尺画出两条直角边分别为5cm、12cm的直角三角形,然后用刻度尺量出斜边的长,并验证上述关系对这个直角三角形是否成立.(每一小格代表1平方厘米)图14.1.3概括数学上可以说明:对于任意的直角三角形,如果它的两条直角边分别为a、 b,斜边为c,那么一定有a2+b2=c2,这种关系我们称为勾股定理.勾股定理直角三角形两直角边的平方和等于斜边的平方.勾股定理揭示了直角三角形三边之间的关系.例1如图14.1.4,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底边的垂直距离AB.(精确到0.01米)图14.1.4 解 如图14.1.4,在Rt△ABC中,BC=2.16米, AC=5.41米,根据勾股定理可得AB= -BC AC 22 =22 16.-2 41.5≈4.96(米). 答: 梯子上端A 到墙的底边的垂直距离 AB 约为4.96米. 练习1. 在Rt△ABC中, AB=c , BC=a , AC =b , ∠B=90°.(1) 已知a =6, b =10, 求c ;(2) 已知a =24, c =25, 求b .2. 如果一个直角三角形的两条边长分别是3厘米和4厘米,那么这个三角形的周长是多少厘米?试一试剪四个与图14.1.5完全相同的直角三角形,然后将它们拼成如图14.1.6所示的图形.大正方形的面积可以表示为 ,又可以表示为 .对比两种表示方法,看看能不能得到勾股定理的结论.图14.1.5 图14.1.6 用上面得到的完全相同的四个直角三角形,还可以拼成如图14.1.7所示的图形,与上面的方法类似,也能说明勾股定理是正确的.读一读我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.图14.1.7称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作注时给出的.图14.1.8是在北京召开的2002年国际数学家大会(ICM2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.图14.1.7 图14.1.8例2如图14.1.9,为了求出位于湖两岸的两点A 、 B 之间的距离,一个观测者在点C 设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC 长160米,BC长128米.问从点A 穿过湖到点B 有多远?图14.1.9 解 如图14.1.9,在直角三角形ABC中,AC =160米, BC=128米,根据勾股定理可得AB=22BC AC -=22128160-=96(米).答: 从点A 穿过湖到点B 有96米.练习1. 如图,小方格都是边长为1的正方形,求四边形ABCD的面积与周长.2. 假期中,王强和同学到某海岛上去探宝旅游,按照探宝图(如图),他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到6千米处往东一拐,仅走1千米就找到宝藏,问登陆点A到宝藏埋藏点B的直线距离是多少千米?(第1题)(第2题)2. 直角三角形的判定古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后如图14.1.10那样用桩钉钉成一个三角形,他们认为其中一个角便是直角.你知道这是什么道理吗?图14.1.10试一试试画出三边长度分别为如下数据的三角形,看看它们是一些什么样的三角形:(1) a=3, b=4, c=5;(2) a=4, b=6, c=8;(3) a=6, b=8, c=10.可以发现,其中按(1)、(3)所画的三角形都是直角三角形,而按(2)所画的不是直角三角形.在这三组数据中,(1)、(3)两组都满足a2+b2=c2,而组(2)不满足.以后我们会证明一般的结论:如果三角形的三边长a、 b、 c有关系: a2+b2=c2,那么这个三角形是直角三角形.古埃及人所画的三角形的三边长恰好满足这样的关系,所以其中一个角是直角.例 3 设三角形三边长分别为下列各组数,试判断各三角形是否是直角三角形:(1) 7, 24, 25;(2) 12, 35, 37;(3) 13, 11, 9.解因为 252=242+72,372=352+122,132≠112+92,所以根据前面的判定方法可知,以(1)、(2)两组数为边长的三角形是直角三角形,而以组(3)的数为边长的三角形不是直角三角形.练习1. 设三角形的三边长分别等于下列各组数,试判断各三角形是否是直角三角形.若是,指出哪一条边所对的角是直角.(1) 12, 16, 20;(2) 8, 12, 15;(3) 5, 6, 8.2. 有哪些方法可以判断一个三角形是直角三角形?习题14.11. 将图14.1.6沿中间的小正方形的对角线剪开,得到如图所示的梯形.利用此图的面积表示式验证勾股定理.(第1题)2. 已知△ABC中,∠B=90°, AC=13cm,BC=5cm,求AB的长.3. 已知等腰直角三角形斜边的长为2cm,求这个三角形的周长.4. 如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心、正方形边长的一半为半径作圆.试探索这三个圆的面积之间的关系.(第4题)(第5题)5. 如图,已知直角三角形ABC的三边分别为6、8、10,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积.6. 试判断以如下的a、 b、 c为边长的三角形是不是直角三角形?如果是,那么哪一条边所对的角是直角?(1) a=25, b=20, c=15;(2) a=1, b=2, c=3;(3) a=40, b=9, c=40;(4)a∶b∶c=5∶12∶13.阅读材料勾股定理史话勾股定理从被发现到现在已有五千年的历史.远在公元前三千年的巴比伦人就已经知道和应用它了.我国古代也发现了这个定理.据《周髀算经》记载,商高(公元前1120年)关于勾股定理已有明确的认识,《周髀算经》中有商高答周公的话:“勾广三,股修四,径隅五.”同书中还有另一位学者陈子(公元前六七世纪)与荣方(公元前六世纪)的一段对话:“求邪(斜)至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得邪至日”(如图所示),即邪至日=勾2+股2.这里陈子已不限于“三、四、五”的特殊情形,而是推广到一般情形了.人们对勾股定理的认识,经历过一个从特殊到一般的过程,其特殊情况,在世界很多地区的现存文献中都有记载,很难区分这个定理是谁最先发明的.国外一般认为这个定理是毕达哥拉斯(Pythagoras)学派首先发现的,因而称为毕达哥拉斯定理.勾股定理曾引起很多人的兴趣,世界上对这个定理的证明方法很多.1940年卢米斯(E.S. Loomis)专门编辑了一本证明勾股定理的小册子——《毕氏命题》,作者收集了这个著名定理的370种证明,其中包括大画家达·芬奇和美国第20任总统詹姆士·阿·加菲尔德(James Abram Garfield, 1831~1881)的证法.美丽的勾股树你可能去过森林公园,看到过许许多多千姿百态的植物.可是你是否见过如下的勾股树呢?你知道这是如何画出来的吗?仔细看看,你就会发现那一个个细小的部分正是我们学过的勾股图,一个一个连接在一起,构成了多么奇妙美丽的勾股树!动手画画看,相信你也能画出其他形态的勾股树.§14.2 勾股定理的应用勾股定理能解决直角三角形的许多问题,因此在现实生活和数学中有着广泛的应用.例1如图14.2.1,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.图14.2.1分析 蚂蚁实际上是在圆柱的半个侧面内爬行,如果将这半个侧面展开(如图14.2.2),得到矩形 ABCD ,根据“两点之间,线段最短”,所求的最短路程就是侧面展开图矩形对角线AC 之长.(精确到0.01cm )图14.2.2解 如图14.2.2,在Rt△ABC中,BC=底面周长的一半=10cm , ∴ AC=22BC AB +=22104+=229≈10.77(cm )(勾股定理).答: 最短路程约为10.77cm .例2一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图14.2.3的某工厂,问这辆卡车能否通过该工厂的厂门?图14.2.3分析由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度是否小于CH .如图14.2.3所示,点D 在离厂门中线0.8米处,且CD⊥AB, 与地面交于H .解 在Rt△OCD 中,由勾股定理得CD=22OD OC -=228.01-=0.6米,C H=0.6+2.3=2.9(米)>2.5(米).因此高度上有0.4米的余量,所以卡车能通过厂门.做一做图14.2.4如图14.2.4,以直角三角形ABC的三边为边分别向外作正方形,其中一个正方形划分成四个形状与大小都一样的四边形.试将图中5个带色的图形拼入到大正方形中,填满整个大正方形.练习1. 如图,从电杆离地面5米处向地面拉一条7米长的钢缆,求地面钢缆固定点A 到电杆底部B 的距离.2. 现准备将一块形为直角三角形的绿地扩大,使其仍为直角三角形,两直角边同时扩大到原来的两倍,问斜边扩大到原来的多少倍?(第1题)例3如图14.2.5,在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形:(1)从点A出发画一条线段AB,使它的另一个端点B在格点(即小正方形的顶点)上,且长度为22;(2)画出所有的以(1)中的AB为边的等腰三角形,使另一个顶点在格点上,且另两边的长度都是无理数.分析只需利用勾股定理看哪一个矩形的对角线满足要求.图14.2.5 图14.2.6解(1)图14.2.6中AB长度为22.(2)图14.2.6中△ABC、△ABD就是所要画的等腰三角形.例4如图14.2.7,已知CD=6m, AD=8m,∠ADC=90°, BC =24m,AB=26m.求图中阴影部分的面积.图14.2.7解在Rt△ADC中,AC2=AD2+CD2=62+82=100(勾股定理),∴ AC=10m.∵ AC2+BC2=102+242=676=AB2,∴ △ACB为直角三角形(如果三角形的三边长a、 b、 c有关系: a2+b2=c2,那么这个三角形是直角三角形),∴ S阴影部分=S△ACB-S△ACD=1/2×10×24-1/2×6×8=96(m2).练习1. 若直角三角形的三边长分别为2、 4、 x,试求出x的所有可能值.2. 利用勾股定理,分别画出长度为3和5厘米的线段.习题14.21. 若等腰直角三角形的斜边长为2cm,试求出它的直角边和斜边上的高的长度.2. 下图由4个等腰直角三角形组成,其中第1个直角三角形腰长为1cm,求第4个直角三角形斜边长度.(第2题)(第3题)3. 如图,为了加固一个高2米、宽3米的大门,需在相对角的顶点间加一块木条.求木条的长度.4. 在△ABC中,AB=2, BC=4, AC=23, ∠C=30°, 求∠B 的大小.5. 已知三角形的三边分别是n +1、 n +2、 n +3,当n 是多少时,三角形是一个直角三角形?6. 如图,AD⊥CD, AB=13,BC=12,CD=4,AD=3, 若∠CAB=55°,求∠B 的大小.(第6题)小结一、 知识结构二、 概括本章研究了揭示直角三角形三条边之间关系的勾股定理和由此产生的一种判定直角三角形的方法.如果知道了直角三角形任意两边的长度,那么应用勾股定理可以计算出第三边的长度;如果知道了一直角三角形 勾股定理应用判定直角三角形的一种方法个三角形的三边的长,也可以判断这个三角形是否是直角三角形.勾股定理可以解决直角三角形中的许多问题,在现实生活中有许多重要的应用.复习题A组1. 求下列阴影部分的面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.(第1题)2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.(第2题)3. 试判断下列三角形是否是直角三角形:(1)三边长为m2+n2、 mn、 m2-n2(m>n>0);(2)三边长之比为1∶1∶2;(3)△ABC的三边长为a、 b、 c,满足a2-b2=c2.4. 一架 2.5米长的梯子靠在一座建筑物上,梯子的底部离建筑物0.7米,如果梯子的顶部滑下0.4米,梯子的底部向外滑出多远?5. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,求正方形A、 B、 C、D的面积和.(第5题)B组6. 在△ABC中,AB=AC=10, BD是AC边的高,DC=2,求BD的长.(第7题)7. 有一块四边形地ABCD(如图),∠B=90°,AB=4m,BC=3m, CD=12m, DA=13m,求该四边形地ABCD的面积.8. 能够成为直角三角形三条边长的正整数,称为勾股数.请你写出5组勾股数.9. 已知△ABC中,三条边长分别为a=n2-1, b=2n, c=n2+1(n>1).试判断该三角形是否是直角三角形,若是,请指出哪一条边所对的角是直角.C组10. 如图,四边形ABCD中,AB=BC=2, CD=3,DA=1,且∠B=90°,求∠DAB的度数.(第10题)(第11题)11. 如图,在矩形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.求此时AD的长.(第12题)12. 折竹抵地(源自《九章算术》):今有竹高一丈,末折抵地,去本三尺.问折者高几何?意即:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原长竹子处3尺远.问原处还有多高的竹子?课题学习勾股定理的“无字证明”在勾股定理的学习过程中,我们已经学会运用以下图形,验证著名的勾股定理:整个大正方形的面积可以表示为里面小正方形的面积与四边上的4个直角三角形的面积之和,即为(a+b) 2=c2+4·(1/2ab),由此可以推出勾股定理a2+b2=c2.这种根据图形可以极其简单地直观推论或验证数学规律和公式的方法,简称为“无字证明”.对于勾股定理,我们还可以找到一些用于“无字证明”的图形.现在请你和大家一起,查阅课本和其他有关书籍,上网查询各种相应的资料,相信你一定能够发现更多的有趣图形,验证勾股定理.实际上你还可以发现“无字证明”也可以用于验证数与代数、空间与图形等领域中的许多数学公式和规律!- 21 -。

14.2勾股定理的应用第一课时课件华东师大版数学八年级上册


AB AC2 BC2 12 22 5
答:最短路程为 5 厘米。
例3.如果盒子换成如图长为3cm,宽为2cm,高为
1cm的长方体,蚂蚁沿着表面需要爬行的最短路程
又是多少呢?
B
分析:蚂蚁由A爬到B过程中 较短的路线有多少种情况?
1
A
3
2
(1)经过前面和上底面; (2)经过前面和右面;
B
B
2
(大门宽度一半),米 (卡车
宽度一半)在Rt△OCD中,由
勾股定理得
A

CD= OC 2 OD2
= 12 0.82 =米,
CH=+=>
N
因此高度上有米的余量,所以卡车能通过厂门.
B
2米
C
C
O

D
B
2米 HM
例3.有一个水池,水面是一个边长 为10尺的正方形,在水池的中央有 一根新生的芦苇,它高出水面1尺, 如果把这根芦苇拉向岸边,它的顶端 恰好到达岸边的水面,问这个水池的 深度和这根芦苇的长度各是多少?
解:由题意得,在RtΔABF中 A
AF=AD=BC=10,AB=DC=8
BF AF2 AB2
8
102 82 6
∴FC =4cm
B
设EC=x,则DE=EF=(8-x),
10
6 10
D
8-X
8-X E
X
F4 C
∵EF2=EC2+FC2 ∴ (8-x)2 = x2+42
解得:x=3
试一试
1.长方形纸片ABCD中,AD=4cm,AB=10cm,按如
解:如图,在Rt∆ABC中,∠A=90
C
BC2=AB2+AC2

北师大版八年级上册数学《探索勾股定理》勾股定理教学说课复习课件巩固

基 础 巩 固 题
1.如图,一个长为2.5 m的梯子,一端放在离墙脚
1.5 m处,另一端靠墙,则梯子顶端距离墙脚( C )
A.0.2 m
B.0.4 m
C.2 m
D.4 m
课堂检测
基 础 巩 固 题
2.如图,在边长为1个单位长度的小正方形组成的网
格中,点A,B都是格点,则线段AB的长度为( A )
A.5
B.6
C.7
D.25
课堂检测
基 础 巩 固 题
3.如图,直线l上有三个正方形a,b,c,若a,c的
面积分别为3和4,则b的面积为( D )
A.16
B.12
C.9
D.7
课堂检测
基 础 巩 固 题
4.两棵树之间的距离为8 m,两棵树的高度分别是8 m,2 m,
一只小鸟从一棵树的树顶飞到另一棵树的树顶,这只小鸟至
部分称为“股”.
(在西方称为毕达
哥拉斯定理)
斜边称为 弦 .



勾2
+ 股2
= 弦2
a b c
2
2
2
四、探究活动
观察图片,分别求出正方形A,B,C的面
积。
能用直角三角
形的两直角边
的长a,b和斜
边长 c 来表示
图中正方形的
面积吗?
割补法
16
a
Sc c2
2
2
Sc a b
c
25
10
1
4km
所以BC2=9,所以BC=3,

因为20s=
h,
A


所以3÷ =540km.

答:飞机每小时飞行540km.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[14.2 第1课时勾股定理在生活中的应用]
一、选择题
图K-41-1
1.如图K-41-1,在城墙AB的外侧有一条宽5 m的护城河BC,士兵甲将一长为13 m 的云梯从河的对岸恰好搭在城墙的顶部,则该城墙的高为( )
A.8 m B.10 m
C.18 m D.12 m
2.现有两根木棒,长度分别为44 cm和55 cm,若要钉成一个三角形木架,其中有一个角为直角,所需木棒的长度最短是( )
A.22 cm B.33 cm C.44 cm D.11 cm
3.如图K-41-2,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行60海里后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为( )
A.60海里 B.45海里
C.1200海里
D.2700海里
图K-41-2
4.如图K-41-3,王大伯家屋后有一块长12 m,宽8 m的长方形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用( )
图K-41-3
A.9 m B.7 m C.5 m D.3 m
5.2016·北京大学附属中学河南分校期中某农舍的大门是一个木制的长方形栅栏,它的高为2 m,宽为1.5 m,现需要在相对的顶点间用一块木板加固,则木板的长度为________m.
图K-41-4
6.如图K-41-4,一次强风中,一棵大树在离地面3米高处折断,树的顶端落在离树干底部4米远处,那么这棵树折断之前的高度是________米.
二、填空题
图K-41-5
7.如图K-41-5所示,一文物C被探明位于A点地下24 m处,由于A点地面下有障碍物,考古人员不能垂直下挖,他们从距离A点10 m的B处斜着挖掘,那么要找到文物至少要挖________m.
8.一幢高层住宅楼发生火灾,消防车立即赶到,在距住宅楼9米的B处升起云梯搭在发生火灾的住户窗口(如图K-41-6),已知云梯长15米,云梯底部距地面2米,发生火灾的住户窗口A离地面的距离AF有________米.
图K-41-6
9.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图K-41-7所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是________尺.
图K-41-7
三、解答题
10.2017·吉林长春农安期末如图K-41-8,为了测量池塘的宽度DE,在池塘周围的平地上选择了A,B,C三点,且A,D,E,C四点在同一条直线上,∠C=90°,已测得AB =100 m,BC=60 m,AD=20 m,EC=10 m,求池塘的宽度DE.
图K-41-8
11.如图K-41-9是一个窗户,窗框AB的长为160厘米,窗框BC的长为120厘米,又量得AC的长为200厘米,则∠ABC是直角吗?为什么?
图K-41-9
12.如图K-41-10所示的圆柱形玻璃杯,高为8 cm,底面周长为12 cm,在杯内壁离杯底2 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,求蚂蚁到达C处吃到蜂蜜的最短路程.链接听课例1归纳总结
图K-41-10
13.在某小区的A处有一个凉亭,道路AB,BC,AC两两相交于点A,B,C,并且道路AB与道路BC互相垂直,如图K-41-11所示.已知A与B之间的距离为20 m,若有两个小朋友在与点B相距10 m的点D处玩耍,玩累了他们分别沿不同的路线D→B→A,D→C→A 到凉亭A处喝水休息,已知路线D→B→A与D→C→A路程相等,求AC的长度.
图K-41-11
如图K-41-12,在Rt△ABC中,∠ACB=90°,AC=4,BC=3.在Rt△ABC的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形.要求:在两个备用图中分别画出两种与示例不同的拼接方法,并在图中标明拼接的直角三角形的三边长.
图K-41-12
详解详析
【课时作业】
[课堂达标]
1.[解析] D在Rt△ABC中,∠ABC=90°,
∴AC2=BC2+AB2,
∴AB2=AC2-BC2=132-52=144.
故AB=12 m.
2.[解析] B由题意,符合条件的最短的木棒长度=552-442=33(cm).故选B.
3.[解析] D由题意可得∠B=30°,AP=30海里,∠APB=90°,AB=60海里,则此时轮船所在位置B处与灯塔P之间的距离为BP=AB2-AP2=2700海里.故选D.
4.D
5.[答案] 2.5
[解析] 由勾股定理,得木板的长为22+1.52=2.5(m).
6.[答案] 8
[解析] 由勾股定理得折断的一段长为32+42=5(米),所以这棵树折断之前的高度为3+5=8(米).
7.[答案] 26
[解析] BC=AB2+AC2=102+242=26(m).
8.14
9.25
10.解:在Rt△ABC中,由勾股定理,得AC=AB2-BC2=1002-602=80(m),
所以DE=AC-AD-EC=80-20-10=50(m).
故DE为50 m.
11.解:是.理由如下:
∵AB2+BC2=1602+1202=40000,AC2=2002=40000,
∴AB2+BC2= AC2,∴∠ABC是直角.
12.解:如图,
将杯子侧面展开,作A关于EF的对称点A′,
连结A′C,则A′C的长即为最短路程,
由题意可得出A′D=6 cm,CD=8 cm,
所以A′C=A′D2+CD2=10(cm).
故蚂蚁到达C处吃到蜂蜜的最短路程为10 cm.
13.解:设AC的长为x m,则DC的长为(30-x)m,则BC的长为(40-x)m.
在Rt△ABC中,由勾股定理得AB2+BC2=AC2,即202+(40-x)2=x2,
解得x=25.
答:AC的长度是25 m.
[素养提升]
[解析] 要在Rt△ABC的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,关键是腰与底边的确定;要求在图中标明拼接的直角三角形的三边长,这需要用到勾股定理的知识.
解:如图,有四种拼接方案可供参考.。

相关文档
最新文档