30道小升初数学几何问题(附答案)

合集下载

小升初几何经典难题55道含答案

小升初几何经典难题55道含答案
52.如下图,一个正方体形状的木块,棱长 1 米,沿水平方向将它锯成 3 片,每 片又锯成 4 长条,每条又锯成 5 小块,共得到大大小小的长方体 60 块。那么, 这 60 块长方体表面积的和是多少平方米?
53.下图是一个棱长为 2 厘米的正方体,在正方体上表面的正中,向下挖一个棱 长为 1 厘米的正方体小洞,接着在小洞的底面正中向下挖一个 棱长为 1/2 厘米的正方形小洞,第三个正方形小洞的挖法和前 两个相同,棱长为 1/4 厘米,那么最后得到的立体图形的表面 积是多少平方厘米?
4.如下图所示,AE︰EC=1︰2,CD︰DB=1︰4,BF︰FA=1︰3, 三角形 ABC 的面积等于 1,那么四边形 AFHG 的面积是__________。
FH B
A GE
DC
5.设正方形的面积为 1,下图中 E、F 分别为 AB、BD 的中点,GC= 1 FC。求阴影 3
部分面积。
A
D
E
F
A
P 73
100 B
D C
32.下图中除大圆外,所有的弧线都是半圆,且 AB : BC : CD : DE =1: 2:3: 4 ,图 中有上、下两块阴影区域,如果上面的阴影区域面积为 100 平方厘米,那么下面 的阴影域面积为________平方厘米。
A B
C
OD
E
33.如图,∠1=15°,圆的周长为 62.8 厘米,平行四边形的面积为 100 平方厘米。 求阴影部分面积?
43.一个 3×3×3 的正方体。用红、黄、蓝三种颜色去染这些小正方形,要求有 公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?
44.将一个棱长为整数的(单位:分米)的长方体 6 个面都涂上红色,然后把它 全部切成棱长为 1 分米的小正方体。在这些小正方体中,6 个面都没有涂红色的 有 12 块,仅有两个面涂红色的有 28 块,仅有一面涂红色的有____块。原来长方 体的体积是____立方分米。

小升初数学图形问题难题精选

小升初数学图形问题难题精选

小升初数学图形问题难题精选1、【四边形】【1】在一本数学书的插图中,有100个平行四边形,80个长方形,40个菱形。

这本书的插图中正方形最多有_____个。

【答案】40个2、【最值】【剪拼】—个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的长方形纸条?【答案】123、【剪拼】【2】图中由24个正方形组成,请通过P点画一条直线,把这个图形分割成面积相等的两部分。

【答案】5、【面积】【2】求出图中梯形ABCD的面积。

其中BC=10厘米。

【答案】50平方厘米6、【面积】【3】用4个相同的等腰直角三角形相互交叠拼成下图,阴影正方形的面积是平方厘米。

【答案】18平方厘米图中的阴影部分面积是正方形面积的。

3×3÷2×4=18(㎝2)7、【周长】【面积】【1】判断:在周长都为8厘米的正方形和长方形中,面积较大的是正方形。

【答案】√8、【周长面积】【2】由5个正方形组成的十字架图形的面积是180,求它的周长是多少?【答案】729、【面积】【1】等腰梯形的对角线互相垂直,一条对角线的长是9厘米,求梯形的面积。

【答案】40.5平方厘米10、【面积】【差不变】【2】如图,有边长分别是16分米和24分米的两个正方形,一条直线把这两个相连的正方形分成四部分。

甲三角形的面积比乙三角形的面积多多少平方分米?【答案】9611、【面积】【格点多边形】【2】、在边长等于5厘米的正方形内有一个平行四边形,这个平行四边形面积是多少?【答案】14平方厘米12、【面积】【格点多边形】【2】如图,计算这个格点多边形的面积.(每一格为单位1)【答案】6.513、【等高模型】【2】如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.【答案】14【等高模型】【2】As shown below, the area of the parallelogram ABCD is 54 cm2, E, F trisect CA and BA, the area of the shadow is _________.【答案】6cm215、【等高模型】【3】如图:正方形ABCD的边长为12厘米,P是AB边上的任意一点,M、N、I、H分别是BC、AD上的三等分点(即BM=MN=NC),E、F、G是边CD上的四等分点,图中阴影部分面积是多少平方厘米。

【小升初手册】30道小升初几何问题(答案)

【小升初手册】30道小升初几何问题(答案)
11.【周长与面积】有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形的面积是45平方厘米,求这个大长方形的周长.
【解析】从图上可以知道,小长方形的长的4倍等于宽的5倍,所以长是宽的541.25倍.每个小长方形的面积为4595平方厘米,所以1.25宽宽5,所以宽为2厘米,长为2.5厘米.大长方形的周长为(2.5422.5)229厘米.
积为:4461146120平方厘米.
16.【共高模型】如图,把四边形ABCD的各边都延长2倍,得到一个新四边形EFGH如果ABCD的面积是5平方厘米,则EFGH的面积是多少平方厘米?
【解析】如下图,连接BD,ED,BG,
有EAD、ADB同高,所以面积比为底的比,有S
EA
S
2S

EAD
ABD
ABD
AB
5 05 02 5 0(0块).
8. 【化整为零】正方形ABCD与等腰直角三角形BEF放在一起(如图),M、N点为正方形的边的中点,阴影部分的面积是 14cm2,三角形 BEF 的面积是多少平方厘米?
【解析】因为M、N是中点,故我们可以将该图形进行分割,所得图形如下
F
F
A
M
D
A
M
D
N
N
B
E
B
E
C
C
图形中的三角形面积都相等,阴影部分由7个三角形组成,且其面积为14平方厘米,故一个三角形的面积为2平方厘米,那么三角形BEF的面积是18平方厘米。
123(22212)(322212)(322212)39141440(平方厘米),
所以,所得到的多面体的表面积为:23440194(平方厘米).
(法2)三视图法.从前后面观察到的面积为52322238平方厘米,从左右两个面观察到的面积为523234平方厘米,从上下能观察到的面积为5225平方厘米.

小升初数学几何图形专题训练含参考答案(5篇)

小升初数学几何图形专题训练含参考答案(5篇)

小升初数学几何图形专题知识训练含答案一、单选题1.甲数和乙数的比是4∶7,甲数是乙数的()A.47B.74C.342.甲数的14和乙数的34相等,那么甲数()乙数。

A.大于B.小于C.等于D.不能比较3.在一张长8厘米,宽6厘米的长方形纸上,剪下一个最大的正方形,这个正方形的面积是()。

A.36平方厘米B.48平方厘米C.64平方厘米4.下面图形都是由3个边长1厘米的小正方形组成的,其中周长最长的是()。

A.B.C.5.旋转能得到()A.圆柱B.圆锥C.一个空心的球6.如图,图中的物体从()看到的形状是相同的.A.正面和上面B.正面和右面C.上面和右面7.下面运用“转化”思想方法的是()。

A.①和②B.①和③C.②和③8.下列叙述正确的是()A.两个数的最小公倍数是它们最大公因数的倍数。

B.三角形的底和高扩大2倍,它的面积也扩大2倍。

C.相邻两个非0的自然数,其中一定有一个是合数。

9.两个完全相同的长方形(如图),将图①和图②阴影部分的面积相比,()A.图①大B.图②大C.图①和图②相等10.下列说法中正确的有()。

①2厘米长的线段向上平移10厘米,线段的长还是2厘米。

②8080008000这个数只读出一个“零”。

③万级包括亿万、千万、百万、十万、万五个数位。

④三位数乘两位数,积不可能是六位数。

A.2个B.3个C.4个二、填空题11.在一个宽为6厘米的长方形里恰好能画两个同样尽量大的圆(如图).圆的直径为厘米,半径为厘米;一个圆的周长为厘米,面积为平方厘米;长方形的面积是平方厘米,阴影部分的面积是平方厘米.12.一个梯形的上底是5.8厘米,下底是6.2厘米,高是2.5厘米,它的面积是平方厘米。

13.是由几个拼成的。

;;。

14.在横线上填上“平移”或“旋转”。

汽车行驶中车轮的运动是现象;推拉门被推开是现象。

15.把一个棱长为6 cm的正方体木块削成一个最大的圆柱,圆柱的体积是,再把这个圆柱削成一个最大的圆锥,这个圆锥的体积是。

小学数学几何图形经典30题(含解析)

小学数学几何图形经典30题(含解析)

小学数学几何图形经典30题(含解析)小学阶段常考的几何易错知识点1线、角1.直线没有端点,没有长度,可以无限延伸。

2.射线只有一个端点,没有长度,射线可以无限延伸,并且射线有方向。

3.在一条直线上的一个点可以引出两条射线。

4.线段有两个端点,可以测量长度。

圆的半径、直径都是线段。

5.角的两边是射线,角的大小与射线的长度没有关系,而是跟角的两边叉开的大小有关,叉得越大角就越大。

6.几个易错的角边关系:(1)平角的两边是射线,平角不是直线。

(2)三角形、四边形中的角的两边是线段。

(3)圆心角的两边是线段。

7.两条直线相交成直角时,这两条直线叫做互相垂直。

其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

8.从直线外一点到这条直线所画的垂直线段的长度叫做点到直线的距离。

9.在同一个平面上不相交的两条直线叫做平行线。

2三角形1.任何三角形内角和都是180度。

2.三角形具有稳定的特性,三角形两边之和大于第三边,三角形两边之差小于第三边。

3.任何三角形都有三条高。

4.直角三角形两个锐角的和是90度。

5.两个三角形等底等高,则它们面积相等。

6.面积相等的两个三角形,形状不一定相同。

3正方形面积1.正方形面积:边长×边长2.正方形面积:两条对角线长度的积÷24三角形、四边形的关系1.两个完全一样的三角形能组成一个平行四边形。

2.两个完全一样的直角三角形能组成一个长方形。

3.两个完全一样的等腰直角三角形能组成一个正方形。

4.两个完全一样的梯形能组成一个平行四边形。

5圆1.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。

则长方形的面积等于圆的面积,长方形的周长比圆的周长增加r×2。

2.半圆的周长等于圆的周长的一半加直径。

3.半圆的周长公式:C=pd¸2+d或C=pr+2r4.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

小升初数学专项训练——几何图形及其面积(含详细解析)

小升初数学专项训练——几何图形及其面积(含详细解析)

小升初数学专项训练——几何图形及其面积一、单选题1.求这个图形的面积,可把它分为长方形和()。

A. 梯形B. 三角形C. 平行四边形D. 正方形2.在下图中你可以找到()种简单的基本图形。

A. 1B. 2C. 3D. 43.把一个圆分成若干等份,剪开后拼成近似的长方形,那么这两个图形的()A. 面积、周长都相等B. 面积、周长都不相等C. 面积相等,周长不相等D. 面积不相等,周长相等4.如图中,阴影部分(甲)与空白部分(乙)的周长相比()A. 甲长B. 乙长C. 一样长5.如图所示,图中三角形的个数为()A. 9个B. 10个C. 7个D. 4个6.如图中共有()个三角形.A. 5B. 20C. 157.一个5边形的三个内角是直角,另外两个角相等,那么这两个角的度数是()。

A. 100°B. 120°C. 135°二、判断题8.105厘米>1米.9.100厘米比1米长.10. 1米的线段比100厘米的线段长。

11.梯形的内角和是180°。

()12.任意四边形的内角和都是360°.三、填空题13.如图,CD=15厘米,AE=16厘米.AB﹣BC=1厘米,则三角形ABC的面积是________ 平方厘米.14.把棱长为1分米的正方体表面涂上红色后,再把它分成棱长为1厘米的小正方体.小正方体中只有一面涂色的有________ 个.15.如图,已知三角形ABC中,BD:DC=3:2,E是AD的中点,阴影部分的面积是13.5平方分米,三角形ABC的面积是________ 平方分米16.把这个物体放到地面上,观察并填空。

是由________个小正方体拼成的。

如果把这个图形的表面涂上绿色,不涂色的有________个小正方体;一个面涂绿色的有________个小正方体;有2个面涂绿色的有________个小正方体;有3个面涂绿色的有________个小正方体;有4个面涂绿色的有________个小正方体;有5个面涂红色的有________个小正方体。

几何数学小升初试题及答案

几何数学小升初试题及答案

几何数学小升初试题及答案一、选择题1. 下列哪个选项是正方形的四个角都是直角?A. 圆形B. 长方形C. 三角形D. 正方形答案:D2. 一个长方形的长是15厘米,宽是10厘米,其周长是多少厘米?A. 25B. 30C. 50D. 60答案:C3. 如果一个三角形的三个内角的度数之和不是180度,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 非欧几里得三角形答案:D二、填空题4. 一个圆的直径是14厘米,那么它的半径是_________厘米。

答案:7厘米5. 一个长方体的长、宽、高分别是20厘米、15厘米和10厘米,它的体积是_________立方厘米。

答案:3000立方厘米三、计算题6. 一块三角形的草地,底边长是30米,高是20米,求这块草地的面积是多少平方米?答案:300平方米(计算过程:面积 = 底边长× 高÷ 2,即 30× 20 ÷ 2 = 300)7. 一个圆柱体的底面半径是5厘米,高是12厘米,求这个圆柱体的体积是多少立方厘米?答案:942立方厘米(计算过程:体积= π × r² × h,即3.14 × 5² × 12 = 942)四、解答题8. 一块平行四边形的地,底边长是18米,高是10米,如果每平方米的产量是25千克,这块地的总产量是多少千克?答案:4500千克(解答过程:首先计算平行四边形的面积,面积 = 底边长× 高= 18 × 10 = 180平方米。

然后计算总产量,总产量 = 面积× 每平方米的产量= 180 × 25 = 4500千克)9. 一个长方体的长是12厘米,宽是8厘米,高是6厘米,如果用这个长方体的木块制作一个最大的圆柱体,这个圆柱体的体积是多少立方厘米?答案:301.44立方厘米(解答过程:要制作最大的圆柱体,底面直径和高都要等于长方体的最短边,即直径和高都是6厘米。

小学数学-有答案-小升初数学专项复习:几何的初步知识

小学数学-有答案-小升初数学专项复习:几何的初步知识

小升初数学专项复习:几何的初步知识一、例题:1. 通过放大10倍的放大镜来看一个60∘的角,这个角是多少度?2. 王小明家把一块长15米,宽12米5分米的长方形草场围上篱笆,求篱笆有多长?3. 有一块正方形实验田,周长24米,它的面积是多少平方米?4. 用10.28厘米的铁丝围成一个半圆形,半圆形的面积是多少平方厘米?5. 一个长方形和一个三角形等底等高,已知三角形的面积是30平方厘米,长方形的面积是多少?6. 一块梯形棉田,上底长85米,下底长160米,高70米;在这块棉田里共收籽棉1845千克,每平方米产籽棉多少千克?二、填空题在同一平面内不相交的两条直线叫________.12个正方形可以摆成________种不同形式的长方形。

在等腰三角形中,如果顶角为124∘,底角各是________,这个三角形是________角三角形。

把两个边长都是2厘米的正方形拼成一个长方形,这个长方形的周长是________,面积是________.一个平行四边形,底是24厘米,高2分米,面积是________.一个等边三角形,周长是12.6厘米,它的边长是________厘米。

周长是28厘米的长方形,长是10厘米,面积是________.一个梯形的面积是10平方分米,高是4分米,上底是2.2分米,下底是________分米。

一个圆,周长是6.28分米,它的面积是________.圆心角是1∘的扇形的面积是________.三、判断小明画了一条25厘米长的直线。

________.(判断对错)等边三角形和等腰三角形都是锐角三角形。

________.两个面积相等的三角形一定能拼成平行四边形。

________(判断对错)平行四边形和长方形的周长相等,它们的面积也相等。

________.(判断对错)半径是2厘米的圆,它的周长和面积相等。

________.(判断对错)半圆的周长是和它相等半径的圆周长的一半。

________.(判断对错)平行四边形不是对称图形,没有对称轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连接
AC,AF,HC,还可得 S
EFB
6S
ABC
,S
DHG
6S

ACD
有 S EFB S DHG 6 S ABC S ACD 6SABCD =30 平方厘米.
有四边形 EFGH 的面积为 EAH, FCG, EFB, DHG,ABCD 的面积和,即为 30+30+5=65(平方厘米.)
5 0 5 0 2 5 0(0块).
8. 【化整为零】正方形 ABCD 与等腰直角三角形 BEF 放在一起(如图),M、N 点为正方
形的边的中点,阴影部分的面积是 14cm2,三角形 BEF 的面积是多少平方厘米?
【解析】因为 M、N 是中点,故我们可以将该图形进行分割,所得图形如下
F
A
MD
N
F
A
MD
7
(法 2)三视图法.从前后面观察到的面积为 52 32 22 38 平方厘米,从左右 两个面观察到的面积为 52 32 34 平方厘米,从上下能观察到的面积为 52 25 平方厘米.
表面积为 38 34 25 2 194 (平方厘米).
20.【表面积计算】用棱长是 1 厘米的立方块拼成如右图所示的立体图形,问该图形的表 面积是多少平方厘米?
如图,这样阴影部分就划分成了 4 个半圆减去三角形,我们可以求得,
S阴影 4 S半圆 S三角形
4
1
2
a 2 2
1a 2
a
2
1 a2 2
15.【表面积计算】中是一个边长为 4 厘米的正方体,分别在前后、左右、上下各面的中 心位置挖去一个边长 1 厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?
13.【曲线开型面积】如右图,有 8 个半径为 1 厘米的小圆,用它们的圆周的一部分连成
4
一个花瓣图形,图中的黑点是这些圆的圆心.则花瓣图形的面积是多少平方厘米? ( π 取 3)
【解析】本题直接计算不方便,可以利用分割移动凑成规则图形来求解.
如右上图,连接顶角上的 4 个圆心,可得到一个边长为 4 的正方形.可以看 出,与原图相比,正方形的每一条边上都多了一个半圆,所以可以把原花瓣 图形的每个角上分割出一个半圆来补在这些地方,这样得到一个正方形,还
19.【表面积计算】如图,棱长分别为1 厘米、 2 厘米、 3 厘米、 5 厘米的四个正方体紧贴 在一起,则所得到的多面体的表面积是多少平方厘米?
【解析】(法 1)四个正方体的表面积之和为: (12 22 32 52 ) 6 39 6 234 (平方厘米),
重叠部分的面积为: 12 3 (22 2 12 ) (32 22 12 ) (32 22 12 ) 3 9 14 14 40 (平方厘米), 所以,所得到的多面体的表面积为: 234 40 194 (平方厘米).
30 道典型几何题解析
1.【加减法求面积】如图是一个直径为 3cm 的半圆,让这个半圆以 A 点为轴沿逆时针方 向旋转 60 ,此时 B 点移动到 B ' 点,求阴影部分的面积.(图中长度单位为 cm ,圆周率按 3 计算).
B'
60
A
B
【解析】面积 圆心角为 60 的扇形面积 半圆 空白部分面积(也是半圆) 圆心角为
长为 2.5 厘米.大长方形的周长为 (2.5 4 2 2.5) 2 29 厘米.
12.【梯形蝴蝶】如图, ABCD 与 AEFG 均为正方形,三角形 ABH 的面积为 6 平方厘
米,图中阴影部分的面积为

D
C
D
C
F
E
H
F
E
H
G
A
BG
A
B
【解析】如图,连接 AF ,比较 ABF 与 ADF ,由于 AB AD , FG FE ,即 ABF 与 ADF 的底与高分别相等,所以 ABF 与 ADF 的面积相等,那么阴影部分面积与 ABH 的面积相等,为 6 平方厘米.
我们可以利用旋转的方法对图形实施变换:
3
把三角形 OAB 绕顶点 O 逆时针旋转,使长为13 的两条边重合,此时三角形 OAB 将旋转到三角形 OCD 的位置.这样,通过旋转后所得到的新图形是一个 边长为12 的正方形,且这个正方形的面积就是原来四边形的面积.
因此,原来四边形的面积为1212 144 .(也可以用勾股定理)
A (H)
D
A
H
D
E
G
E
G
B
F
B C
F
C
【解析】特殊点法.由于 H 为 AD 边上任意一点,找 H 的特殊点,把 H 点与 A 点重合
(如左上图),那么阴影部分的面积就是 AEF 与 ADG 的面积之和,而这两个三角形
的面积分别为长方形 ABCD 面积的 1 和 1 ,所以阴影部分面积为长方形 ABCD 面积的 84
E
E
C
(1) C
(2)
A
B
D
A
B
D
【解析】注意分割、平移、补齐. 如图所示,将图形⑴移补到图形⑵的位置,
2
因为 EBD 60 ,那么 ABE 120 ,
则阴影部分为一圆环的 1 . 3
7.【图形与平移】用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它 地方铺白色的,如图所示.如果铺满这块地面共用 101 块黑色瓷砖,那么白色瓷砖用了多 少块?
A
I
II
B
C
1
【解析】由于阴影 I 的面积比阴影 II 的面积小 25cm2 ,根据差不变原理,直角三角形
ABC 面积减去半圆面积为 25cm2 ,则直角三角形 ABC 面积为
1 2
π
8 2
2
25

25
(
cm2
),
BC 的长度为 8π 25 2 8 2π 6.25 12.53 ( cm ).
4.【等量代换】下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面 积.
5 8
20
20-5 8
20
【解析】所求面积等于图中阴影部分的面积,为(20 5 20)8 2 140 (平方厘米). 5.【等面积变形】如下图,长方形 AFEB 和长方形 FDCE 拼成了长方形 ABCD ,长方形
ABCD 的长是 20,宽是 12,则它内部阴影部分的面积是多少?
A
B
F
E
D
C
【解析】根据面积比例模型可知阴影部分面积等于长方形面积的一半,为 1 20 12 120 . 2
6.【面积与旋转】如图所示,直角三角形 ABC 的斜边 AB 长为 10 厘米, ABC 60 , 此时 BC 长 5 厘米.以点 B 为中心,将 ABC 顺时针旋转120 ,点 A 、 C 分别到达点 E 、 D 的位置.求 AC 边扫过的图形即图中阴影部分的面积.( π 取 3)
【解析】该图形的上、左、前三个方向的表面分别由 9、7、7 块正方形组成.
该图形的表面积等于 (9 7 7) 2 46 个小正方形的面积,所以该图形表面积 为 46 平方厘米.
21.【取特殊点】长方形 ABCD 的面积为 36, E 、 F 、 G 为各边中点, H 为 AD 边上任 意一点,问阴影部分面积是多少?
11.【周长与面积】有 9 个小长方形,它们的长和宽分别相等,用这 9 个小长方形拼成的 大长方形的面积是 45 平方厘米,求这个大长方形的周长.
【解析】从图上可以知道,小长方形的长的 4 倍等于宽的 5 倍,所以长是宽的 5 4 1.25
倍.每个小长方形的面积为 45 9 5 平方厘米,所以1.25 宽 宽 5 ,所以宽为 2 厘米,
图1
图2
【解析】我们可以让静止的瓷砖动起来,把对角线上的黑瓷砖,通过平移这种动态的
处理,移到两条边上(如图 2).在这一转化过程中瓷砖的位置发生了变化,但数量没
有变,此时白色瓷砖组成一个正方形.大正方形的边长上能放 (1011) 2 51(块),白
色 瓷 砖 组 成 的 正 方 形 的 边 长 上 能 放 : 511 50 ( 块 ) , 所 以 白 色 瓷 砖 共 用 了 :
1 1 3 ,为 36 3 13.5 .
848
8
22.【共高模型】如图,长方形 ABCD 的面积是 2 平方厘米, EC 2DE , F 是 DG 的中
点.阴影部分的面积是多少平方厘米?
A
DA
D
FE
xF
E y
B
G
CB
xy
G
C
【解析】如下图,连接 FC , DBF 、 BFG 的面积相等,设为 x 平方厘米; FGC 、
剩下 4 个 1 圆,合起来恰好是一个圆,所以花瓣图形的面积为 4
42 π 12 19 (平方厘米).
14.【曲线型面积】如图,ABCD 是边长为 a 的正方形,以 AB、BC、CD、DA 分别为直 径画半圆,求这四个半圆弧所围成的阴影部分的面积.( π 取 3)
A
DA
D
B
a
C
B
a
C
【解析】这道题目是很常见的面积计算问题.阴影部分是一个花瓣状的不规则图形, 不能直接通过面积公式求解,观察发现阴影部分是一个对称图形,我们只需要在阴影 部分的对称轴上作两条辅助线就明了了.
N
B
CE
B
CE
图形中的三角形面积都相等,阴影部分由 7 个三角形组成,且其面积为 14 平方厘米, 故一个三角形的面积为 2 平方厘米,那么三角形 BEF 的面积是 18 平方厘米。 9. 【割补法】如图所示的四边形的面积等于多少?
C
O
13 13
12
13
13
D
12
12
相关文档
最新文档