第三讲:绝对值
第三讲 绝对值(解析版)

第三讲绝对值【课程解读】————小学初中课程解读————初中课程【知识衔接】————小学知识回顾————一、整数:整数包括正整数、负整数和0.二、分数:1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
学-科网把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2.分数的分类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数三、百分数1、百分数的意义表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
四、小数1.小数是分数的一种特殊形式,但不能说小数就是分数.2.小数的分类小数包括有限小数和无限小数,无限小数有包括无限循环小数和无限不循环小数.注:分数又可分为正分数和负分数,小数也可分为正小数和负小数.————初中知识链接————(1)绝对值的定义一般地,数轴上表示数的点与原点的距离叫做数的绝对值,记作。
注:这里可以是正数,也可以是负数和0.(2)绝对值的性质:1.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.代数表示(数学语言)是:字母可个有理数。
当是正数时,a =a ;当是负数时,a =-a ;当是0时,a =0.3.互为相反数的两个数的绝对值相等.(3)有理数的比较大小。
1.在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。
2. 正数大于0,也大于负数,0大于负数。
3. 两个负数比较大小,绝对值大的反而小。
七年级上册数学培优讲义(绝对值)第三讲

绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算.运算符号是“”.求一个数的绝对值.就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性.取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值.如:5-符号是负号.绝对值是5.求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数.绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0.那么这若干个非负数都必为0. 例如:若0a b c ++=.则0a =.0b =.0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数.也不小于这个数的相反数.即a a ≥.且a a ≥-;(2)若a b =.则a b =或a b =-;(3)ab a b =⋅;a a b b =(0)b ≠; (4)222||||a a a ==;a 的几何意义:在数轴上.表示这个数的点离开原点的距离.a b -的几何意义:在数轴上.表示数a 、b 对应数轴上两点间的距离.绝对值【经典例题1】到数轴原点的距离是2的点表示的数是()A、±2B、2C、-2D、4【题目难度】★【解题思路】此题要全面考虑.原点两侧各有一个点到原点的距离为2.即表示2和-2的点.【题目答案】根据题意.知到数轴原点的距离是2的点表示的数.即绝对值是2的数.应是±2.故选A.【考点难点】利用数轴可以直观地求出两点的距离或解决一些与距离有关的问题.体现了数形结合的数学思想.【经典例题2】下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等.那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数.也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥【题目难度】★★【解题思路】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【题目答案】①0是有理数.|0|=0.故本小题错误;②互为相反数的两个数的绝对值相等.故本小题错误;③互为相反数的两个数的绝对值相等.故本小题正确;④有绝对值最小的有理数.故本小题错误;⑤由于数轴上的点和实数是一一对应的.所以所有的有理数都可以用数轴上的点来表示.故本小题正确;⑥只有符号不同的两个数互为相反数.故本小题错误.所以③⑤正确.故选B.【考点难点】本题考查的是有理数、绝对值、相反数的定义及数轴的特点.熟知以上知识是解答此题的关键.【经典例题3】如果a的绝对值是2.那么a是()A、2B、-2C、±2D、【题目难度】★【解题思路】根据题意可知:绝对值等于2的数应该是±2.【题目答案】2的绝对值是2.-2的绝对值也是2.所以a的值应该是±2.故选C.【考点难点】本题考查了绝对值的概念.学生要熟练掌握.【经典例题4】若a<0.则4a+7|a|等于()A、11aB、-11aC、-3aD、3a【题目难度】★★【解题思路】:本题考查有理数的绝对值问题.如果用字母a表示有理数.则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时.a的绝对值是它本身a;②当a是负有理数时.a的绝对值是它的相反数-a;③当a是零时.a的绝对值是零【题目答案】:解:∵a<0.∴|a|=-a.4a+7|a|=4a+7|-a|=4a-7a=-3a.选C.【经典例题5】一个数与这个数的绝对值相等.那么这个数是()A、1.0B、正数C、非正数D、非负数【解题思路】:根据绝对值的性质进行解答即可.【题目答案】解:因为一个正数的绝对值是它本身.一个负数的绝对值是它的相反数.0的绝对值是0.所以一个数与这个数的绝对值相等.那么这个数是非负数.故选D .【经典例题6】已知|x|=5.|y|=2.且xy >0.则x-y 的值等于( )A 、7或-7B 、7或3C 、3或-3D 、-7或-3【题目难度】★★【解题思路】先根据绝对值的定义求出x 、y 的值.再由xy >0可知x 、y 同号.根据此条件求出x 、y 的对应值即可. 【题目答案】解:∵|x|=5.|y|=2.∴x=±5.y=±2.∵xy >0.∴当x=5时.y=2.此时x-y=5-2=3;当x=-5时.y=-2.此时x-y=-5+2=-3.故选C .【考点难点】本题考查的是绝对值的性质及有理数的加减法.熟知绝对值的性质是解答此题的关键.【经典例题7】若1-=x x.则x 是( )A 、正数B 、负数C 、非负数D 、非正数【解题思路】本题作为选择题可用排除法进行解答.由于是分式.所以x≠0.故可排除C、D;再根据x的取值范围进行讨论即可.【题目答案】:解:∵是分式.∴x≠0.∴可排除C、D.∵当x>0时.原式可化为=1.故A选项错误.故选B.【考点难点】本题考查的是绝对值的性质.即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【经典例题8】已知:a>0.b<0.|a|<|b|<1.那么以下判断正确的是()A、1-b>-b>1+a>aD、1-b>1+a>-b>aC、1+a>1-b>a>-bB、1+a>a>1-b>-b【题目难度】★★★【解题思路】根据绝对值的定义.可知a>0.b<0时.|a|=a.|b|=-b.代入|a|<|b|<1.得a<-b <1.由不等式的性质得-b>a.则1-b>1+a.又1+a>1.1>-b>a.进而得出结果.【题目答案】∵a>0.∴|a|=a;∵b<0.∴|b|=-b;又∵|a|<|b|<1.∴a<-b<1;∴1-b>1+a;而1+a>1.∴1-b>1+a>-b>a.故选D.【考点难点】本题主要考查绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0;互为相反数的绝对值相等.【经典例题9】已知a、b互为相反数.且|a-b|=6.则|b-1|的值为()A、2B、2或3C、4D、2或4【题目难度】★★【解题思路】根据互为相反数的两数和为0.又因为|a-b|=6.可求得b的值.代入即可求得结果判定正确选项.【题目答案】∵a、b互为相反数.∴a+b=0.∵|a-b|=6.∴b=±3.∴|b-1|=2或4.故选D.【考点难点】此题把相反数和绝对值的运算结合求解.先根据相反数求出b的值.再确定绝对值符号中代数式的正负.去绝对值符号.【经典例题10】a<0.ab<0.计算|b-a+1|-|a-b-5|.结果为()A、6B、-4C、-2a+2b+6D、2a-2b-6【题目难度】★★【解题思路】:根据已知条件先去掉绝对值即可求解.【题目答案】解:∵a<0.ab<0.∴b-a+1>0.a-b-5<0.∴|b-a+1|-|a-b-5|=b-a+1+a-b-5=-4.故选A.【经典例题11】若|x+y|=y-x.则有()A、y>0.x<0B、y<0.x>0C、y<0.x<0D、x=0.y≥0或y=0.x≤0【题目难度】★★★★【解题思路】根据绝对值的定义.当x+y≥0时.|x+y|=x+y.当x+y≤0时.|x+y|=-x-y.从中得出正确答案.:【题目答案】解:∵|x+y|=y-x.又当x+y≥0时.|x+y|=x+y.可得x=0.y≥0或者y=0.x≤0又当x+y≤0时.|x+y|=-x-y.可得y=0.x≤0或x=0.y≥0∴x=0.y≥0或y=0.x≤0选D.【考点难点】此题主要考查了绝对值的性质.能够根据已知条件正确地判断出x.y的值是解答此题的关键.【经典例题12】已知:x<0<z.xy>0.且|y|>|z|>|x|.那么|x+z|+|y+z|-|x-y|的值()A、是正数B、是负数C、是零D、不能确定符号【题目难度】★★★★【解题思路】:先根据已知条件确定x、y、z的符号及其绝对值的大小.再画出数轴确定出各点在数轴上的位置.根据绝对值的性质即可去掉原式的绝对值.使原式得到化简.【题目答案】:解:由题意可知.x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=0【经典例题13】给出下面说法:(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身.这个数不是负数;(3)若|m|>m.则m<0;(4)若|a|>|b|.则a>b.其中正确的有()A、(1)(2)(3)B、(1)(2)(4)C、(1)(3)(4)D、(2)(3)(4)【题目难度】★★★【解题思路】:分别根据绝对值的性质、相反数的定义进行解答.【题目答案】解:(1)正确.符合绝对值的性质;(2)正确.符合绝对值的性质;(3)正确.符合绝对值的性质;(4)错误.例如a=-5.b=2时.不成立.故选A.(1)相反数的定义:只有符号不同的两个数.叫互为相反数;(2)绝对值的性质:一个正数的绝对值是它本身.一个负数的绝对值是它的相反数.0的绝对值是0.【经典例题14】已知a.b.c为三个有理数.它们在数轴上的对应位置如图所示.则|c-b|-|b-a|-|a-c|= _________【题目难度】★★★【解题思路】:根据图示.可知有理数a.b.c的取值范围b>1>a>0>c>-1.然后根据它们的取值范围去绝对值并求|c-b|-|b-a|-|a-c|的值.【题目答案】:解:根据图示知:b>1>a>0>c>-1.∴|c-b|-|b-a|-|a-c|=-c+b-b+a-a+c=0故答案是0.【考点难点】本题主要考查了关于数轴的知识以及有理数大小的比较.【经典例题15】若x<-2.则|1-|1+x||=______若|a|=-a.则|a-1|-|a-2|= ________【题目难度】★★★【解题思路】根据已知x<-2.则可知1+x<0.x+2<0;再根据绝对值的定义|1-|1+x||逐步去掉绝对值可转化为-2-x根据已知|a|=-a与绝对值的定义.那么a≤0.则|a-1|-|a-2|可去掉绝对值后【题目答案】∵x<-2.∴1+x<0.x+2<0.则|1-|1+x||=|1-[-(1+x)]|=|2+x|=-2-x;∵|a|=-a.∴a≤0.∴a-1<0.a-2<0..则|a-1|-|a-2|=1-a-(2-a).=1-a-2+a.=-1.故答案为:-2-x.-1.【考点难点】此题主要考查了绝对值的性质.能够根据已知条件正确地判断出1+x<0、x+2<0、a≤0进而得出a-1<0、a-2<0.这些是解答此题的关键.【经典例题16】()2120a b++-=.分别求a b,的值【题目难度】★★★【解题思路】根据平方和绝对值的非负性解决.【题目答案】()02,012≥-≥+ba可得02,01=-=+ba;所以2,1=-=ba所以|x+1|+|x-5|+4的最小值是10.故答案为:10.【考点难点】本题主要考查了绝对值的定义.如何去掉绝对值是解决本题的关键.因而采用了对x的取值讨论.去掉绝对值.进而确定式子的最小值.【经典例题18】计算=【题目难度】★★★★【解题思路】根据绝对值的定义.去掉绝对值符合.化简求值.【题目答案】= ===故答案为【考点难点】解决本题的关键是去掉绝对值符号后.部分数值恰好是互为相反数.其和等于0.【经典例题19】若|a|+a=0.|ab|=ab.|c|-c=0.化简:|b|-|a+b|-|c-b|+|a-c|= ________ 【题目难度】★★★★【解题思路】根据绝对值的性质进行化简:正数的绝对值是它本身.负数的绝对值是它的相反数.0的绝对值是0.【题目答案】∵|a|+a=0.|ab|=ab.|c|-c=0.∴a≤0.b≤0.c≥0.∴a+b≤0.c-b≥0.a-c≤0.∴原式=-b+a+b-c+b-a+c=b.故答案为b.【考点难点】此题考查了绝对值的性质.同时注意根据有理数的运算法则正确判断含有字母的式子的符号.【经典例题20】已知:abc≠0.且M= .当a.b.c取不同值时.M有 ____种不同可能.当a、b、c都是正数时.M= ______;当a、b、c中有一个负数时.则M= ________;当a、b、c中有2个负数时.则M= ________;当a、b、c都是负数时.M=__________ .【题目难度】★★★★【解题思路】:根据abc≠0.可以知道.a、b、c一定不可能是0.可以分三个中都是正数.只有一个负数.有2个负数.3个都是负数.4种情况进行讨论即可.【题目答案】当a、b、c中都是正数时.M=1+1+1=3;当a、b、c中有一个负数时.不妨设a是负数.则M=-1+1+1=1;当a、b、c中有2个负数时.不妨设a.b是负数.则M=-1-1+1=-1;当a、b、c都是负数时.M=-1-1-1=-3;故M有4种不同结果.课堂检测练习1. 若a的绝对值是.则a的值是()A、2B、-2C、D、【题目难度】★【解题思路】:根据绝对值的意义可知:表示数a的点与原点的距离为.这样的点有两个.分别在原点的左右两侧.求出即可.【题目答案】解:∵|a|= .∴a= .故选D.【考点难点】此题注意考查绝对值的意义.应多让学生借助数轴.直观的观察、总结、归纳结论.2. 若|x|=-x.则x一定是()A、负数 B、负数或零 C、零 D、正数【题目难度】★【解题思路】:根据绝对值的性质进行解答即可.【题目答案】:解:A、错误.例如x=0时不成立;B、正确.符合绝对值的性质;C、错误.x<0时原式仍成立;D、错误.例如|5|≠-5.故选B.【考点难点】本题考查的是绝对的性质.根据已知条件判断出x的取值范围是解答此题的关键.练习2. 如果|x-1|=1-x.那么()A、x<1B、x>1C、x≤1D、x≥1【题目难度】★【解题思路】:根据|x-1|=1-x可确定x-1的符号.再根据不等式的性质解答即可.【题目答案】:解:∵|x-1|=1-x.∴x-1≤0.∴x≤1.故选C.【考点难点】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.在确定x与1的大小关系时要利用不等式的相关性质.练习3. 若|a-3|=2.则a+3的值为()A、5 B、8 C、5或1 D、8或4 【题目难度】★★【解题思路】:先根据绝对值的性质去掉绝对值符号.求出a的值.再把a的值代入a+3进行计算即可.【题目答案】:解:当a-3≥0.即a≥3时.原不等式可化为a-3=2.a=5.故a+3=5+3=8;当a-3<0.即a<3时.原不等式可化为-a+3=2.a=1.故a+3=1+3=4.故a+3=8或4.故选D.【考点难点】本题考查的是绝对值的性质.解答此题题目是要注意分类讨论.不要漏解.练习4.若x<2.则|x-2|+|2+x|=________________【题目难度】★★【解题思路】:已知x<2.可得x-2<0.先分类讨论.然后根据绝对值的性质进行求解.【题目答案】:解:∵x<2.∴x-2<0.①若-2≤x<2.∴|x-2|+|2+x|=-(x-2)+2+x=4;②x<-2.∴x+2<0.∴|x-2|+|2+x|=2-x-2-x=-2x.故答案为:4或-2x.【考点难点】此题主要考查绝对值的性质.当x>0时.|x|=x;当x≤0时.|x|=-x.解题的关键是如何根据已知条件.去掉绝对值.还考查了分类讨论的思想.是一道好题.练习5. 绝对值小于6的所有整数的和与积分别是__________【题目难度】★★【解题思路】根据绝对值的概念.即数轴上表示数的点到原点的距离叫这个数的绝对值.结合数轴.知绝对值小于6的所有整数分别是±1.±2.±3.±4.±5.0.进一步求得其和与积.【题目答案】绝对值小于6的所有整数分别是±1.±2.±3.±4.±5.0.则它们的和是0.积是0.故答案为0.0.【考点难点】此题考查了绝对值的意义以及有理数的加法和乘法运算.互为相反数的两个数的和是0;几个数相乘.若其中一个因数为0.则积为0.练习6.如图所示.a、b是有理数.则式子|a|+|b|+|a+b|+|b-a|化简的结果为 __________【题目难度】★★★【解题思路】先根据a、b两点在数轴上的位置判断出其取值范围.再根据绝对值的性质进行解答即可.【题目答案】∵由数轴上a、b两点的位置可知.-1<a<0.b>1.∴a+b>0.b-a>0.∴原式=-a+b+a+b+b-a=3b-a.故答案为:3b-a.【考点难点】本题考查的是绝对值的性质及数轴的特点.能根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.练习7. 已知|x|=2.|y|=3.且xy<0.则x+y的值为 _________【题目难度】★★★【解题思路】若|x|=2.|y|=3.则x=±2.y=±3;又有xy<0.则xy异号;故x+y=±1.∴x=±2.y=±3.∵xy<0.∴xy符号相反.①x=2.y=-3时.x+y=-1;②x=-3.y=3时.x+y=1.故答案为:±1.【考点难点】本题考查绝对值的化简.正数的绝对值是其本身.负数的绝对值是它的相反数.0的绝对值是0.课后练习练习1.-19的绝对值是________【题目难度】★【解题思路】直接根据绝对值的性质进行解答即可.∴|-19|=19.故答案为:19.【考点难点】本题考查的是绝对值的性质.用到的知识点为:负数的绝对值是它的相反数.练习2. 如果|-a|=-a.则a的取值范围是(A、a>OB、a≥OC、a≤OD、a<O【题目难度】★【解题思路】:根据绝对值的性质:一个负数的绝对值是它的相反数.0的绝对值是0.若|-a|=-a.则可求得a的取值范围.注意0的相反数是0.【题目答案】:解:因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数.所以如果|a|=-a.那么a的取值范围是a≤0.故选C.【考点难点】此题考查的知识点是绝对值.关键明确绝对值规律总结:一个正数的绝对值是它本身.一个负数的绝对值是它的相反数.0的绝对值是0.练习3. 对值大于1且不大于5的整数有 __________个.【题目难度】★★【解题思路】先根据题意列出不等式组.求出x的取值范围.在x的取值范围内找出符合条件的x的整数值即可.【题目答案】由题意得.解得1<x≤5或-5≤x<-1.所以x的值可以是2、3、4、5或-2、-3、-4、-5共8个.故答案为:8.【考点难点】本题考查的是绝对值的性质及一元一次不等式组的特殊解.根据题意列出不等式组是解答此题的关键.练习4.绝对值最小的有理数是 _________.绝对值等于本身的数是________.【题目难度】★【解题思路】根据绝对值的定义及性质来解答.【题目答案】绝对值等于本身的数是非负数.绝对值最小的有理数是0.故答案为:0、非负数.【考点难点】本题考查了绝对值的定义.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.练习5. 当x __________时.|2-x|=x-2.【题目难度】★★【解题思路】因为x-2和2-x互为相反数.即一个数的绝对值等于它的相反数.所以2-x≤0.即可得到答案.【题目答案】∵x-2=-(2-x)..|2-x|=x-2.∴2-x≤0.解得:x≥2.故答案为:x≥2.【考点难点】本题考查对绝对值和相反数的理解和掌握.知一个数的绝对值等于它的相反数.这个数是负数是解此题的关键.练习6.如图.有理数x.y 在数轴上的位置如图.化简:|y-x|-3|y+1|-|x|= ________【题目难度】★★★【解题思路】依据x.y 在数轴上的位置比较大小.在此基础上化简给出的式子.【题目答案】根据数轴图可知:x >0.y <-1.∴|y-x|=x-y.|y+1|=-1-y.|x|=x ;∴|y-x|-3|y+1|-|x|=x-y+3(1+y )-x=2y+3.【考点难点】考查绝对值的运算.先确定绝对值符号中代数式的正负再去绝对值符号.借助数轴化简含有绝对值的式子.比较有关数的大小有直观、简捷.举重若轻的优势.练习7. 若3230x y -++=.则y x的值是多少? 【题目难度】★★★【解题思路】根据绝对值的非负性来解决.【题目答案】由03,02≥+≥-y x 可得:03,02=+=-y x 所以3,2-==y x 所以y x =23-。
第3讲:数轴与绝对值

第三讲:数轴与绝对值模块一 绝对值及其性质:观察图形,探究知识:在图中,我们能得到下面的信息:1. 大象在数轴上表示的数为___________,这个数到原点的距离为____________。
2. 两只小狗在数轴上表示的数分别是-3与3,我们知道-3与3是相反数,它们只有符号 不同,它们什么相同呢?答:它们到原点的距离____________,都等于___________。
学习归纳:在数轴上,一个数所对应点与原点的________,叫做这个数的绝对值。
导学练习:1. -3的绝对值是表示-3的点到原点的距离,-3的绝对值是_______,记作33=-; 3的绝对值是表示_______________________,3的绝对值是______,记作:________。
2. =-12____________,=325____________,=-5.0____________。
学习归纳:1. 一个正数的绝对值是它_______,一个负数的绝对值是它的_______,0的绝对值是____。
即:当a 是正数时,____=a ;当a 是负数时,____=a ;当a 是零时,____=a 。
2. 如果a 表示有理数,那么a 表示_________________________________;从而可知:a 是一个_______数或________,即a 是一个非负数。
3. 若a 、b 为有理数,且0=+b a ,则=a _______,=b _______。
4. 互为相反数的两个数的绝对值____________。
即:若6=a ,则=a 。
模块二 利用绝对值比较两个负数的大小做一做:(1)在数轴上表示下列各数,并比较它们的大小:5.1- 3- 1- 5-(2)求出(1)中各数的绝对值,并比较它们的大小:(3)你发现了什么?两个负数比较大小,绝对值大的反而小。
典型例题讲解(理解新知识):题型一:利用绝对值求有理数例1(1)若2=x ,则=x ;(2) 已知2=a ,3=b ,且b a >,求a 、b 的值。
人教版七年级上册数学第3讲 绝对值

第3讲 绝对值姓名 学校 日期【知识要点】一、绝对值的概念1.定义:一个数的绝对值就是数轴上表示a 的点与原点的距离,数a 的绝对值记作a ,读作a 的绝对值。
2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值还是0。
3.绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小。
4绝对值的非负性:由于距离总是正数或0,故有理数的绝对值不可能是负数,即对任意有理数a ,总有a ≥0。
5.互为相反数的两个数的绝对值相等,但绝对值相等的两个数相等或互为相反数。
6.绝对值等于它本身的数一定是非负数,绝对值等于它的相反数的数一定是非正数。
二、绝对值的求法绝对值是一种运算,这个运算符号是“”,求一个数的绝对值就是想办法去掉绝对值符号,对于任意有理数a ,有 (1)(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(2)(0)(0)a a a a a ≥⎧⎨-<⎩ (3)(0)(0)a a a a a >⎧⎨-≤⎩ 【典型例题】例1 求下列各数的绝对值。
(1)34= ; (2)13-= ; (3)144-= ; (4)132= ; 例2 (1)一个数的绝对值是3,则这个数是 。
(2)一个数的绝对值是0,则这个数是 。
(3)有没有一个数的绝对值是-4? 。
思考:a 与0的大小关系例3 (1)若2m -=,求m 的值;(2)若a b =,则a b 与的关系是什么?例4 写出绝对值不大于3的所有整数,并求出它们的和。
例5 如果a 的相反数是最大的负整数,b 是绝对值最小的数,那么a 与b 的和是多少?例6 数b a ,在数轴上的位置如图,观察数轴,并回答:(1)比较a 和b 的大小;(2)比较a 和b 的大小; (3)判断b a a b b a b a ⨯--+,,,的符号;(4)试化简a b b a -+--经典练习一、填空题1.31-的绝对值是 ,31的绝对值是 , 的绝对值是31.2.一个正数的绝对值为8,这个数是 ,一个负数的绝对值为8,这个数是 .3. 的绝对值是它本身, 的绝对值是它的相反数.4.若0>a ,则=a ;若0<a ,则=a ;若0=a ,则=a .5.若a a =,则a 0,若a a -=,则a 0.6. 的绝对值比它的本身大.7.一个数的绝对值不大于3,则满足条件的最大的负数是 .二、选择题1.下列等式中,成立的是( )A 、33±=+B 、()33--=-C 、33±=±D 、3131=--2.下列计算中,错误的是( )A 、1257=-+-B 、04.03.034.0=---C 、535154=-- D 、311312213=---a b3.如果两个数的绝对值相等,那么这两个数必满足( )A 、相等B 、都是0C 、互为相反数D 、相等或互为相反数4.下列各式中,不正确的是( )A 、01.001.0->-B 、001.001.0->-C 、⎪⎭⎫⎝⎛--<--3131D 、2.32.3->--5.下列判断正确的是( )A 、若b a =,则b a =B 、若b a =,则b a =C 、若b a <,则b a <D 、若b a >,则b a >三、解答题1.试写出:(1)绝对值小于5的所有负整数 ;(2)绝对值小于5.2而又大于2.1的所有整数 .2.已知一组数;4,-3,21-,+5.1,214-,0,-2.2.在这组数中:(1)绝对值最大的数为 ;绝对值最小的数为 ;(2)相反数最大的数为 ;相反数最小的数为 .3.如图,直线上有三个不同的点A 、B 、C ,且AB ≠BC ,那么,到A 、B 、C 三点距离的和最小的点( )(A )是B 点 (B )是AC 的中点 (C )是AC 外一点 (D )有无穷多个4.对任意有理数a ,式子1a -,1a +,1a -+,1a +中,取值不为0的是 。
小升初数学衔接第3讲:绝对值

第3讲 绝对值(1)绝对值的定义一般地,数轴上表示数的点与原点的距离叫做数的绝对值,记作。
注:这里可以是正数,也可以是负数和0.因为点B 、D 表示的数互为相反数,且它们的绝对值相等,合作探究1:在数轴上表示出下列各数,并求出它们的绝对值。
-2,1.5,0,7,-3.5,5.解:依题意得:数轴可表示为:如图所示数轴上的A 、B 、O 、C 、D 、E 分别表示-2,1.5,0,7,-3.5,5.|-2|=2,|1.5|=1.5,|0|=0,|7|=7,|-3.5|=3.5,|5|=5.根据此题的结果我们可归纳总结正数的绝对值、负数的绝对值、0的绝对值各有的特点,因此可得出(2)合作探究2:绝对值的性质:1.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.代数表示(数学语言)是:字母可个有理数。
(1)当是正数时,a = a ; (2) 当是负数时,a = -a ;(3)当是0时,a = 0 . 3.对于任意的有理数a ,0a ,即任意的有理数a 的绝对值是一个非负数,绝对值最小的有理数是0. 合作探究3:例题:写出下列各数的绝对值:6,-8,-3.9,52,2-11,100,0 解:55226=6-8=8-3.9=3.9=-=100=1000=0221111,,,,,,. (3)合作探究4:有理数的比较大小。
下列各数表示北京某一天4个时间的气温,122,-0.5,1,-2.则它们的大小关系是-2<-0.5<1<122. 把上述各数的点在数轴上表示出来,然后观察它们在数轴上的位置关系如图所示:a a a a a a a a122=2.5, 结论:1.在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。
2. 正数大于0,也大于负数,0大于负数。
3. 两个负数比较大小,绝对值大的反而小。
例题精讲:比较下列各组数的大小.(1)54-与43- (2)31,21-,|31|--, 0. 解:(1)|-54|=54=2016,|-43|=43=2015, 因为2016>2015,所以-54 <-43; (2)因为-|-31|=-31>-21,所以 31 >0>-|-31|>-21. (4)拓展延伸已知:|a-1|+|b+2|=0,求a 、b 的值.解:因为|a-1|+|b+2|=0,且|a-1|≥0,|b+2|≥0,所以根据非负数的性质可得:|a-1|=0,|b+2|=0,所以a-1=0,b+2=0,所以a=1,b=-2.(5)巩固练习1.求 +8、-12、-3、+3、-1.6的绝对值.解:|+8|=8 ;|-12|=12 ; |-3|= 3; |+3|= 3 ;∣-1.6∣=1.6.三、课堂小结:这节课我们学习了哪些知识?1、数轴上表示数a的点与原点的距离叫做数a的绝对值。
绝对值知识讲解及经典例题

第三讲绝对值2.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____.3.-32的绝对值是_____. 4.绝对值最小的数是_____.5.绝对值等于5的数是_____,它们互为_____.6.若b<0且a=|b|,则a与b的关系是______.7.一个数大于另一个数的绝对值,则这两个数的和一定_____0(填“>”或“<”).8.如果|a|>a,那么a是_____.9.绝对值大于2.5小于7.2的所有负整数为_____.10.将下列各数由小到大排列顺序是_____.11.12.13.(1)14.(1)(3)15.16.若A.正数B.负数C.非负数D.非正数17.下列说法正确的是()A.一个有理数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数18.下列结论正确的是()A.若|x|=|y|,则x=-yB.若x=-y,则|x|=|y|C.若|a|<|b|,则a<bD.若a<b,则|a|<|b|19.某班举办“迎七一”知识竞赛,规定答对一题得10分,不答得0分,答错一题扣10分,今有甲、乙、丙、丁四名同学所得分数,分别为+50,+20,0,-30,请问哪个同学分数最高,哪个最低,为什么?最高分高出最1A.a的相反数大于b的相反数B.a的相反数小于b的相反数C.a,b的相反数的大小比较要根据a,b的正负情况确定D.无法比较a,b的相反数的大小=.(第13题)7.已知a,b,c在数轴上的位置如图,且a b(1)比较a+b与c的大小及a+b与c的大小;(2)判断b+c与a+c的符号.8.下表记录了我国几个城市某天的平均气温.。
第三讲:绝对值

第三讲:绝对值知识点:1、有理数的绝对值概念及表示方法2、有理数绝对值的求法和有关的简单计算3、绝对值的几何意义,数形结合等思想方法一、复习提问1.下列各数中:+7,-2,13,-8.3,0,+0.01,-25,112,哪些是正数?哪些是负数?哪些是非负数?2.什么叫做数轴?画一条数轴,并在数轴上标出下列各数:-3,4,0,3,-1.5,-4,32,2。
3.问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?4.怎样表示一个数的相反数?二、绝对值的概念及表示法例1.两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米。
这样,利用有理数就可以明确表示每辆汽车在公路上的位置了。
例2 两位徒工分别用卷尺测量一段1米长的钢管,由于测量工具使用不当或读数不准确,甲测得的结果是1.01米,乙侧得的结果是0.98米。
甲测量的差额即多出的数记作+0.01米,乙测量的差额即减少的数记作-0.02米。
一般地,一个数a的绝对值就是数轴上表示a的点到原点的距离。
为了方便,我们用一种符号来表示一个数的绝对值。
约定在一个数的两旁各画一条竖线来表示这个数的绝对值。
例3利用数轴求5,3.2,7,-2,-7.1,-0.5的绝对值。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
这也是绝对值的代数定义。
数学语言表示:把绝对值的代数定义用数学符号语言如何表达?1.用a表示一个数,如何表示a是正数,a是负数,a是0?由有理数大小比较可以知道:a是正数:a>0;a是负数:a<0;a是0:a=02 .怎样表示a的本身,a的相反数?结论:例4 求8,-8,14,14,0,6,-π,π-5的绝对值。
练习一:1. 下列哪些数是正数?-2,13,3-,0,-2+,-(-2),-2-2. 在括号里填写适当的数:3.5-=( ); 12+=( ); -5-=( ); -3+=( );()=1, ()=0;-()=-2。
第三讲:绝对值 比大小

有理数第三讲:绝对值 比较大小一、绝对值的概念1、绝对值的代数求法:a 、一个正数的绝对值是它 ;b 、0的绝对值是 ;c 、一个负数的绝对值是 .2、用符号语言表示为:⎪⎩⎪⎨⎧-=a a a 0 )0()0()0(<=>a a a 可简化合并为:⎩⎨⎧-=a a a )0()0(<≥a a 或 ⎩⎨⎧-=a a a )0()0(≤>a a 3、几何意义: (定义)在数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|.(体会两种定义的一致性.如:|-4|=4的两种解释)二、绝对值的非负性不论有理数a 取何值,它的绝对值总是正数或0(通常称为非负数).即:对于任意有理数a ,总有 |a|≥0.(当且仅当a=0时|a|=0) 如:若0)1(32=-+-b a ,试求:b a 32-的值.当然,绝对值还有一些其它性质,如:;a a -=22a a =;b a b a ⋅=⋅; b a a a +≥+等。
三、有理数大小的比较1、有理数大小的(代数)比较方法:(1) 负数小于0,0小于正数,负数小于正数;(2) 两个正数,应用小学已有的方法比较;(3) 两个负数,绝对值大的反而小.2、作差比较法:比较两个数量的大小可以通过它们的差来判断:a >b ⇔a -b >0;a =b ⇔a -b =0;a <b ⇔a -b <0四、典型例题:例1:下列判断中,正确的是( ).(A )如果两个数的绝对值相等,那么这两个数相等;(B) 如果两个数相等,那么这两个数的绝对值相等;(C) 任何数的绝对值都是正数;(D) 如果一个数的绝对值是它本身,那么这个数是正数 例2:比大小: 653-_____;763- -|-3.2|______-(+3.2);|1|--______|1.0|+-;0.0001______-1000;83.1 -______-1.384; -π______-3.14.例3:如果|x |=2,那么x =_____ ;如果|-x |=2,那么x =______.如果|x -2|=1,那么x = ; 如果|x |>3,那么x 的范围是 .例4:若a a =,则a 0;若a a =-,则a 0; 若1a a =-,则a 0;若a a ≥,则a 0;若11a a -=-,则a 的取值范围是 .例5:(1)已知:y x ,满足0|21||2|21=-+-y y x ,则y x 37-的值为 .(2)式子212+-x 取最小值时,x 等于 .(3)已知2=x ,5=y ,且y x >,则: x =______,y =______. 例6: 化简||||||c c b b a a ++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲:绝对值
知识点:1、有理数的绝对值概念及表示方法
2、有理数绝对值的求法和有关的简单计算
3、绝对值的几何意义,数形结合等思想方法
一、复习提问
1.下列各数中:
+7,-2,1
3
,-8.3,0,+0.01,-
2
5
,1
1
2
,哪些是正数?哪些是负数?哪些是非负数?
2.什么叫做数轴?画一条数轴,并在数轴上标出下列各数:
-3,4,0,3,-1.5,-4,3
2
,2。
3.问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?
4.怎样表示一个数的相反数?
二、绝对值的概念及表示法
例1.两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米。
这样,利用有理数就可以明确表示每辆汽车在公路上的位置了。
例2 两位徒工分别用卷尺测量一段1米长的钢管,由于测量工具使用不当或读数不准确,甲测得的结果是1.01米,乙侧得的结果是0.98米。
甲测量的差额即多出的数记作+0.01米,乙测量的差额即减少的数记作-0.02米。
一般地,一个数a的绝对值就是数轴上表示a的点到原点的距离。
为了方便,我们用一种符号来表示一个数的绝对值。
约定在一个数的两旁各画一条竖线来表示这个数的绝对值。
例3利用数轴求5,3.2,7,-2,-7.1,-0.5的绝对值。
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0。
这也是绝对值的代数定义。
数学语言表示:
把绝对值的代数定义用数学符号语言如何表达?
1.用a表示一个数,如何表示a是正数,a是负数,a是0?
由有理数大小比较可以知道:
a是正数:a>0;a是负数:a<0;a是0:a=0
2 .怎样表示a的本身,a的相反数?
结论:
例4 求8,-8,1
4
,
1
4
,0,6,-π,π-5的绝对值。
练习一:
1. 下列哪些数是正数?
-2,13,3-,0,-2+,-(-2),-2- 2. 在括号里填写适当的数: 3.5-=( ); 12+
=( ); -5-=( ); -3+=( ); ()=1, ()=0;-()=-2。
3. 计算下列各题:
|-3|+|+5|;|-3|+|-5|;|+2|-|-2|;|-3|-|-2|;|-12|×|-13|;|-12|÷|-2|;12÷|-12
|。
4. 填空:
(1)+3的符号是_____,绝对值是______;
(2)-3的符号是_____,绝对值是______; (3)- 3
2的符号是____,绝对值是______;
(4)10.5的符号是_____,绝对值是______
5. 填空:
(1)符号是+号,绝对值是7的数是________;
(2)符号是-号,绝对值是7的数是________;
(3)符号是-号,绝对值是0.35的数是________;
(4)符号是+号,绝对值是11
2的数是________;
6.(1)绝对值是1
2的数有几个?各是什么?
(2)绝对值是0的数有几个?各是什么?
(3)有没有绝对值是-2的数?
7. 计算:
(1)|-15|-|-6|; (2)|-0.24|+|-5.06|; (3)|-3|×|-2|;
(4)|+4|×|-5|; (3)|-12|÷|+2|; (6)|20|÷|-1
2|。
8. 填空:
(1)当a >0时,|2a|=________;
(2)当a >1时,|a-1|=________;
(3)当a <1时,|a-1|=________
练习2:
1. 计算:|+1.5|;|-1
2|;|0|。
2. 计算:|1
2-13|;|-12-1
3|。
3. 比较-(-5)和-|-5|,+(-5)和+|-5|的大小。
4. 哪个数的绝对值等于0?等于1
2?等于-1?
5. 绝对值小于3的数有哪些?绝对值小于3的整数有哪几个?
6.a ,b 所表示的数如图所示,求|a|,|b|,|a+b|,|b-a|
7.若|a|+|b-1|=0,求a ,b b
a 0
三、探索利用绝对值比较负数大小的法则
例5 比较-412
与-|—3|的大小。
例6 已知a >b >0,比较a ,-a ,b ,-b 的大小。
例7 比较-32与-4
3的大小。
练习3
1. 比较下列每对数的大小:
32与52;|2|与35;-61与112;73-与5
2- 2. 比较下列每对数的大小: -107与-103;-21与-31;-21与-5
3。
3. 判断下列各式是否正确: (1)|-0.1|<|-0.01|; (2)|-
31
|<
41; (3) 32<43-; (4)81>-71 4. 比较下列每对数的大小: (1)-
85与-83;(2)-11
3与-0.273;(3)-73与-94; (4)-65与-1110;(5)- 32与-53;(6)-97与-119 5、 写出绝对值大于3而小于8的所有整数。
6、 你能说出符合下列条件的字母表示什么数吗?
(1)|a|=a ; (2)|a|=-a ; (3)x x
=-1; (4)a >-a ;
(5)|a|≥a ; (6)-y >0; (7)-a <0; (8)a+b=0
绝对值学习要点
绝对值在中学数学中有广泛应用,由于概念抽象,它是初一同学学习中的难点.本文从四个方面说明如何掌握绝对值.
1.几何意义
一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.记住:绝对值是距离,因而最小是0,不会出现负数.
例1 (1)已知|m |=|n |,能否断定m =n ?
(2)已知|m |>|n |,能否断定m >n ?
(3)已知m 是任何有理数,能否断定|m |≥0?
练习
1.比较|-2|与|-1|、-2与-1的大小,说明为什么绝对值大的负数反而小?
2.等式|a|+|b|=|a+b|一定成立吗?为什么?
2.计算
正确去掉绝对值符号是解决这类问题的关键.记住:去绝对值符号前必须先考虑绝对值符号里的数是正数、零、还是负数?如果是负数,去掉绝对值符号后要在原数前加上一个“-”号!
例2 化简|1+|1+x||(x<-1).
.
练习:1.计算|1|-|-2|+|3|-|-4|+|5|-|-6|+…+|99|-|-100|.
3.已知某数的绝对值求此数
这类问题与上面第二类问题相反,关键是:对绝对值符号里的数可能是什么数,要仔细分析、全面考虑.例3 已知|m|=1,|n|=2.求m+n.
练习
1.当a为何值时,下列各式成立?
(1)|1949a|=1996.(2)|1997a|=0.
(3)|-2000a|=-2000.
(4)|1996a|+|1997a|>0.
2.已知|x|≥10,求x.
4.绝对值概念的运用
由|a|≥0,可得(1)|a|是非负数;(2)|a|取最小值0.这两个结论在解某些综合题时十分有用.
例4 x为何值时,-4|1-x|-5有最大值,最大值是多少?
练习
1.若|x|≤0,说出表示x的点在数轴上的位置.
2.已知|a-3|+|3b-1|=0,求a、b.。