高中数学基本初等函数的导数公式及导数运算法则综合测试题(附答-word文档
高中数学 1.2.2基本初等函数的导数公式及导数的运算法则同步测试 新人教A版选修2-2-新人教A版

基本初等函数的导数公式典题探究例1、已知函数()6f x =,则'()f x =___________例2、已知函数6()f x x =,则'()f x =___________例3、已知函数()sin f x x =,则'()f x =___________例4、已知函数()cos f x x =,则'()f x =___________演练方阵A 档(巩固专练)1.已知函数32()f x x =,则'()f x =___________2.已知函数21()f x x=,则'()f x =___________ 3.已知函数()f x x =,则'(4)f =___________4.已知函数()f x x =,则'()f x =___________5.已知函数()3x f x =,则'()f a =___________6.已知函数()cos f x x =,则'()f α=___________7.已知函数()2x f x =,则'()f x =___________8.已知函数()x f x e =,则'()f x =___________9.已知函数3()log f x x =,则'()f x =___________10.已知函数()ln f x x =,则'()f x =___________B 档(提升精练)1.已知函数()8f x =,则'(8)f =___________2.已知函数1()f x x =,则'()f x =___________ 3.已知函数()f x x =,则'()f x =___________ 4.已知函数8()f x x =,则'(6)f =___________ 5.已知函数()sin f x x =,则'()f α=___________ 6.已知函数()cos f x x =,则'()f α=___________7.已知函数()2x f x =,则'(0)f =__________8.已知函数()x f x e =,则'(1)f =___________9.已知函数()lg f x x =,则'()f x =___________10.已知函数()ln f x x =,则'()f e =___________C 档(跨越导练)1.已知函数2()f x x =,求()f x 在(1(1))f ,处切线方程的斜率为___________2.已知函数()f x x =,求()f x 在(4(4))f ,处切线方程的斜率为__________ 3.已知函数1()f x x=,求()f x 在(2(2))f ,处切线方程的斜率为___________ 4.已知函数()sin f x x =,求()f x 在(0(0))f ,处切线方程的斜率为___________5.已知函数()cos f x x =,求()f x 在(())22f ππ,处切线方程的斜率为___________ 6.已知函数2()2x f x =,求()f x 在(1(1))f --,处切线方程的斜率为___________7.已知函数()x f x e =,求()f x 在(1(1))f ,处切线方程的斜率为___________8.已知函数()lg f x x =,求()f x 在(10(10))f ,处切线方程的斜率为___________9.已知函数()ln f x x =,求()f x 在(1.5(1.5))f ,处切线方程的斜率为___________10.已知函数3()f x x =,求()f x 在(1(1))f ,处的切线方程为___________基本初等函数的导数公式答案典题探究例1.0例2.56x例3.cos x例4.sin x -演练方阵A 档(巩固专练) 1.1323x - 2.32x --3.144.15.ln 33a ⋅6.sin α-7.ln 22x ⋅8.x e9.1ln 3x ⋅10.1xB 档(提升精练) 1.02.21x -3.1212x -4.786⨯5.cos α6.sin α-7.ln 28.e 9.1ln10x ⋅10.1eC 档(跨越导练) 1.22.143.14- 4.15.-1 6.ln 44 7.e8.110ln10⋅ 9.2310.32y x =-。
(完整版)导数的计算练习题

导数的计算练习题【知识点】1、基本初等函数的导数公式:()1若()f x c =,则()0f x '=;()2若()()*n f x x x Q =∈,则()1n f x nx -'=; ()3若()sin f x x =,则()cos f x x '=;()4若()cos f x x =,则()sin f x x '=-; ()5若()x f x a =,则()ln x f x a a '=;()6若()x f x e =,则()x f x e '=;()7若()log a f x x =,则()1ln f x x a '=;()8若()ln f x x =,则()1f x x'=. 2、导数运算法则: ()1;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.()()()()f x g x f x g x '''±=±⎡⎤⎣⎦ 3、复合函数()()y f g x =的导数与函数()y f u =,()u g x =的导数间的关系是:x u x y y u '''=⋅.【习题】1、已知()2f x x =,则()3f '等于( ) A .0 B .2x C .6 D .92、()0f x =的导数是( )A .0B .1C .不存在D .不确定 3、y 的导数是( ) A .23x B .213x C .12- D4、曲线n y x =在2x =处的导数是12,则n 等于___________________.5、若()f x =()1f '等于( )A .0B .13-C .3D .13 6、2y x =的斜率等于2的切线方程是( )A .210x y -+=B .210x y -+=或210x y --=C .210x y --=D .20x y -=7、在曲线2y x =上的切线的倾斜角为4π的点是( ) A .()0,0 B .()2,4 C .11,416⎛⎫ ⎪⎝⎭ D .11,24⎛⎫ ⎪⎝⎭ 8、已知()53sin f x x x -=+,则()f x '等于( )A .653cos x x ---B .63cos x x -+C .653cos x x --+D .63cos x x --9、函数()22423y x x =-+的导数是( )A .()2823x x -+B .()2216x -+C .()()282361x x x -+-D .()()242361x x x -+- 10、曲线34y x x =-在点()1,3--处的切线方程是________________________.11、已知a 为实数,()()()24f x x x a =--,且()10f '-=,则a =___________.12、函数lg y x =在点()1,0处的切线方程是__________________________.13、函数()()211y x x =+-在1x =处的导数等于___________. 14、函数x y x e =-上某点的切线平行于x 轴,则这点的坐标为__________.15、在曲线323610y x x x =++-的切线中,斜率最小的切线方程是____________.16、曲线21y x =-与31y x =+在0x x =处的切线互相垂直,则0x 等于__________.17、22sin 35cos y x x =+的导数是_________________________.。
高中数学基本初等函数的导数公式及导数运算法则综合测试题(附答-word文档资料

高中数学基本初等函数的导数公式及导数运算法则综合测试题(附答选修2-2 1.2.2 第2课时基本初等函数的导数公式及导数运算法则一、选择题1.函数y=(x+1)2(x-1)在x=1处的导数等于()A.1 B.2C.3 D.4[答案] D[解析] y=[(x+1)2](x-1)+(x+1)2(x-1)=2(x+1)(x-1)+(x+1)2=3x2+2x-1,y|x=1=4.2.若对任意xR,f(x)=4x3,f(1)=-1,则f(x)=() A.x4 B.x4-2C.4x3-5 D.x4+2[答案] B[解析] ∵f(x)=4x3.f(x)=x4+c,又f(1)=-11+c=-1,c=-2,f(x)=x4-2.3.设函数f(x)=xm+ax的导数为f(x)=2x+1,则数列{1f(n)}(nN*)的前n项和是()A.nn+1B.n+2n+1C.nn-1D.n+1n[解析] ∵f(x)=xm+ax的导数为f(x)=2x+1,m=2,a=1,f(x)=x2+x,即f(n)=n2+n=n(n+1),数列{1f(n)}(nN*)的前n项和为:Sn=112+123+134+…+1n(n+1)=1-12+12-13+…+1n-1n+1=1-1n+1=nn+1,故选A.4.二次函数y=f(x)的图象过原点,且它的导函数y=f(x)的图象是过第一、二、三象限的一条直线,则函数y=f(x)的图象的顶点在()A.第一象限 B.第二象限C.第三象限 D.第四象限[答案] C[解析] 由题意可设f(x)=ax2+bx,f(x)=2ax+b,由于f(x)的图象是过第一、二、三象限的一条直线,故2a0,b0,则f(x)=ax+b2a2-b24a,顶点-b2a,-b24a在第三象限,故选C.5.函数y=(2+x3)2的导数为()A.6x5+12x2 B.4+2x3C.2(2+x3)2 D.2(2+x3)3x[解析] ∵y=(2+x3)2=4+4x3+x6,y=6x5+12x2.6.(2019江西文,4)若函数f(x)=ax4+bx2+c满足f(1)=2,则f(-1)=()A.-1 B.-2C.2 D.0[答案] B[解析] 本题考查函数知识,求导运算及整体代换的思想,f(x)=4ax3+2bx,f(-1)=-4a-2b=-(4a+2b),f(1)=4a+2b,f(-1)=-f(1)=-2要善于观察,故选B.7.设函数f(x)=(1-2x3)10,则f(1)=()A.0 B.-1C.-60 D.60[答案] D[解析] ∵f(x)=10(1-2x3)9(1-2x3)=10(1-2x3)9(-6x2)=-60x2(1-2x3)9,f(1)=60.8.函数y=sin2x-cos2x的导数是()A.22cos2x- B.cos2x-sin2xC.sin2x+cos2x D.22cos2x+4[答案] A[解析] y=(sin2x-cos2x)=(sin2x)-(cos2x)=2cos2x+2sin2x=22cos2x-4.9.(2019高二潍坊检测)已知曲线y=x24-3lnx的一条切线的斜率为12,则切点的横坐标为()A.3 B.2C.1 D.12[答案] A[解析] 由f(x)=x2-3x=12得x=3.10.设函数f(x)是R上以5为周期的可导偶函数,则曲线y =f(x)在x=5处的切线的斜率为()A.-15 B.0C.15 D.5[答案] B[解析] 由题设可知f(x+5)=f(x)f(x+5)=f(x),f(5)=f(0)又f(-x)=f(x),f(-x)(-1)=f(x)即f(-x)=-f(x),f(0)=0故f(5)=f(0)=0.故应选B.二、填空题11.若f(x)=x,(x)=1+sin2x,则f[(x)]=_______,[f(x)]=________.[答案] 2sinx+4,1+sin2x[解析] f[(x)]=1+sin2x=(sinx+cosx)2=|sinx+cosx|=2sinx+4.[f(x)]=1+sin2x.12.设函数f(x)=cos(3x+)(0<),若f(x)+f(x)是奇函数,则=________.[答案] 6[解析] f(x)=-3sin(3x+),f(x)+f(x)=cos(3x+)-3sin(3x+)=2sin3x++56.若f(x)+f(x)为奇函数,则f(0)+f(0)=0,即0=2sin+56,+56=kZ).又∵(0,),6.13.函数y=(1+2x2)8的导数为________.[答案] 32x(1+2x2)7[解析] 令u=1+2x2,则y=u8,yx=yuux=8u74x=8(1+2x2)74x=32x(1+2x2)7.14.函数y=x1+x2的导数为________.[答案] (1+2x2)1+x21+x2[解析] y=(x1+x2)=x1+x2+x(1+x2)=1+x2+x21+x2=(1+2x2)1+x21+x2.三、解答题15.求下列函数的导数:(1)y=xsin2x;(2)y=ln(x+1+x2);(3)y=ex+1ex-1;(4)y=x+cosxx+sinx.[解析] (1)y=(x)sin2x+x(sin2x)=sin2x+x2sinx(sinx)=sin2x+xsin2x.(2)y=1x+1+x2(x+1+x2)=1x+1+x2(1+x1+x2)=11+x2 .(3)y=(ex+1)(ex-1)-(ex+1)(ex-1)(ex-1)2=-2ex(ex-1)2 .(4)y=(x+cosx)(x+sinx)-(x+cosx)(x+sinx)(x+sinx)2=(1-sinx)(x+sinx)-(x+cosx)(1+cosx)(x+sinx)2 =-xcosx-xsinx+sinx-cosx-1(x+sinx)2.16.求下列函数的导数:(1)y=cos2(x2-x);(2)y=cosxsin3x;(3)y=xloga(x2+x-1);(4)y=log2x-1x+1.[解析] (1)y=[cos2(x2-x)]=2cos(x2-x)[cos(x2-x)]=2cos(x2-x)[-sin(x2-x)](x2-x)=2cos(x2-x)[-sin(x2-x)](2x-1)=(1-2x)sin2(x2-x).(2)y=(cosxsin3x)=(cosx)sin3x+cosx(sin3x)=-sinxsin3x+3cosxcos3x=3cosxcos3x-sinxsin3x.(3)y=loga(x2+x-1)+x1x2+x-1logae(x2+x-1)=loga(x2+x-1)+2x2+xx2+x-1logae.(4)y=x+1x-1x-1x+1log2e=x+1x-1log2ex+1-x+1(x+1)2=2log2ex2-1.17.设f(x)=2sinx1+x2,如果f(x)=2(1+x2)2g(x),求g(x).[解析] ∵f(x)=2cosx(1+x2)-2sinx2x(1+x2)2=2(1+x2)2[(1+x2)cosx-2xsinx],又f(x)=2(1+x2)2g(x).g(x)=(1+x2)cosx-2xsinx.18.求下列函数的导数:(其中f(x)是可导函数)(1)y=f1x;(2)y=f(x2+1).[解析] (1)解法1:设y=f(u),u=1x,则yx=yuux=f(u)-1x2=-1x2f1x.解法2:y=f1x=f1x1x=-1x2f1x.(2)解法1:设y=f(u),u=v,v=x2+1,。
高中数学专题练习《基本初等函数的导数》含详细解析

5.2 导数的运算5.2.1 基本初等函数的导数基础过关练题组一 利用导数公式求函数的导数1.(2020浙江绍兴稽山中学高二下期中)已知f(x)=cos30°,则f'(x)的值为( )A.-12B.12C.-32D.02.已知函数f(x)=1x2,则 )A.-14B.-18C.-8D.-163.函数y=1x在x=4处的导数是( )A.116B.-116C.18D.-184.下列求导运算正确的是( )A.(cos x)'=sin xB.(3x)'=3x log3eC.(lg x)'=1x ln10D.(x-2)'=-2x-15.设f0(x)=sin x,f1(x)=f0'(x),f2(x)=f1'(x),……,f n+1(x)=f n'(x),n∈N,则f2 019(x)=( )A.sin xB.-sin xC.cos xD.-cos x6.(多选)下列求导运算正确的是( )'=1x2B.(x)'=12xC.(x a)'=ax a-1D.(log a'=1x ln a 7.求下列函数的导数.(1)y=1x5;(2)y=x2x;(3)y=lg x;(4)y=5x-x.题组二 导数公式的应用8.(2020黑龙江佳木斯一中高二上期末)曲线y=1x在点A(-1,-1)处的切线方程是( )A.x+y-2=0B.x-y+2=0C.x+y+2=0D.x-y-2=09.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为( )A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=010.(2020福建三明第一中学月考)以正弦曲线y=sin x上一点P为切点作切线l,则切线l的倾斜角的范围是( )A.0,πB.[0,π), D.0,,11.已知函数f(x)=ln x,则函数g(x)=f(x)-f'(x)的零点所在的区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)12.若曲线y=x-12在点(m,m-12)处的切线与两个坐标轴围成的三角形的面积为18,则m=( )A.64B.32C.16D.813.(多选)已知函数f(x)及其导数f'(x),若存在x0,使得f(x0)=f'(x0),则称x0是f(x)的一个“巧值点”.下列函数中,有“巧值点”的是( )A.f(x)=x2B.f(x)=e-xC.f(x)=ln xD.f(x)=1x14.(2019广东东莞高二上期末)设曲线y=x n+1(n∈N*)在点(1,1)处的切线,计算a1+a2+a3+…+a2019.与x轴交点的横坐标为x n,令a n=lg1x n答案全解全析基础过关练1.D ∵f(x)=cos 30°=32,∴f'(x)=0.2.D f'(x)=-2x -3=-2x 3,则故选D.3.B y'=-12x -32,∴y'x=4=-12×4-32=-116,故选B.4.C (cos x)'=-sin x,故A 不正确;(3x )'=3x ·ln 3,故B 不正确;(lg x)'=1x ·ln10,故C 正确;(x -2)'=-2x -2-1=-2x -3,故D 不正确.故选C.5.D f 0(x)=sin x,f 1(x)=f 0'(x)=(sin x)'=cos x,f 2(x)=f 1'(x)=(cos x)'=-sin x,f 3(x)=f 2'(x)=(-sin x)'=-cos x,f 4(x)=f 3'(x)=(-cos x)'=sin x,所以4为最小正周期,故f 2 019(x)=f 3(x)=-cos x.6.BCD 在A 中-1)'=-1x 2,故A 错误;在B 中,(x )'=(x 12)'=12×x -12=12x ,故B 正确;在C 中,(x a )'=ax a-1,故C 正确;在D 中,(log a '=1x ln a ,故D 正确.故选BCD.7.解析 (1)∵y=1x 5=x -5,∴y'=-5x -6.(2)∵y=x 2x =x 2x 12=x 32,∴y'=32x 12.(3)∵y=lg x,∴y'=1x ln10.(4)∵y=5x ,∴y'=5x ln 5.(5)∵-x =sin x,∴y'=cos x.8.C 由y=1x 得y'=-x -2,因此切线的斜率为k=-(-1)-2=-1,∴切线方程为y+1=-(x+1),即x+y+2=0,故选C.9.A ∵直线x+4y-8=0的斜率为-14,∴直线l 的斜率为4,又y'=4x 3,∴4x 3=4,得x=1,又当x=1时,y=x 4=1,∴直线l 的方程为y-1=4(x-1),即4x-y-3=0.10.A ∵y=sin x,∴y'=cos x,∵cos x ∈[-1,1],∴切线斜率的范围是[-1,1],∴倾斜角的范围是0,,π,故选A.11.B 由f(x)=ln x,得f'(x)=1x ,则g(x)=f(x)-f'(x)=ln x-1x .易知函数g(x)的定义域为(0,+∞),且函数g(x)在(0,+∞)上为增函数,又g(1)=ln 1-1=-1<0,g(2)=ln 2-12=ln 2-ln e >0,所以函数g(x)在区间(1,2)上有唯一零点.12.A 因为y'=-12x -32,所以曲线y=x -12在点(m,m -12)处的切线方程为y-m -12=-12·m -32(x-m),令x=0,得y=32m -12,令y=0,得x=3m,由题意可得,12×32m -12×3m=18,解得m=64.13.ACD 在A 中,若f(x)=x 2,则f'(x)=2x,则x 2=2x,这个方程显然有解,故A 符合要求;在B 中,若f(x)=e -x ,则ln 1e =-e -x ,即e -x =-e -x ,此方程无解,故B 不符合要求;在C 中,若f(x)=ln x,则f'(x)=1x ,由ln x=1x ,数形结合可知该方程存在实数解,故C 符合要求;在D 中,若f(x)=1x ,则f'(x)=-1x 2,由1x =-1x 2,可得x=-1,故D 符合要求.故选ACD.14.解析 因为y=x n+1,所以y'=(n+1)x n ,所以曲线y=x n+1(n ∈N *)在(1,1)处的切线斜率为k=n+1,切线方程为y-1=(n+1)(x-1).令y=0,得x=n n +1,即x n =n n +1,所以a n =lg 1x n =lg(n+1)-lg n,所以a 1+a 2+a 3+…+a 2 019=lg 2-lg 1+lg 3-lg 2+lg 4-lg 3+…+lg 2 020-lg 2 019=lg 2 020-lg 1=1+lg 202.。
导数的运算-高中数学专项练习

导数的运算-高中数学专项练习1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有[cf (x )]′=cf ′(x );[f (x )±g (x )]′=f ′(x )±g ′(x );[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0);3.复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【方法总结】导数运算的原则和方法基本原则:先化简、再求导; 具体方法:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导.【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x ex ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).解析 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x . (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12x sin4x , ∴y ′=-12sin 4x -12x ·4cos 4x =-12sin 4x -2x cos 4x .(4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5. [例2] (1) (2020·全国Ⅲ)设函数f (x )=e x x +a.若f ′(1)=e4,则a =________.答案 1 解析 f ′(x )=e x (x +a )-e x (x +a )2=e x (x +a -1)(x +a )2,则f ′(1)=a e (a +1)2=e4,整理可得a 2-2a +1=0,解得a =1.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .答案 -74 解析 ∵f (x )=2x 2-3xf ′(1)+ln x ,∴f ′(x )=4x -3f ′(1)+1x ,将x =1代入,得f ′(1)=4-3f ′(1)+1,得f ′(1)=54.∴f (x )=2x 2-154x +ln x ,∴f (1)=2-154=-74.(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x 答案 C 解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2 022=4×505+2,∴f 2 022(x )=f 2(x )=cos x -sin x .故选C .(4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=x 3+2x -1D .f (x )=x e x答案 AB 解析 对于A :f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,∵x ∈⎝⎛⎭⎫0,π2,∴f ″(x )<0,f (x )在⎝⎛⎭⎫0,π2上是凸函数,故A 正确.对于B :f ′(x )=1x -2,f ″(x )=-1x 2<0,故f (x )在⎝⎛⎭⎫0,π2上是凸函数,故B 正确;对于C :f ′(x )=3x 2+2,f ″(x )=6x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故C 错误;对于D :f ′(x )=(x +1)e x ,f ″(x )=(x +2)e x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故D 错误.故选AB . (5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 答案 C 解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎡⎦⎤f (x )x ′=1+1x ,故f (x )x=x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C . 【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 1.答案 B 解析 (log 2x )′=1x ln 2,故B 正确. 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 2.答案 B 解析 y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12x D .(e x -ln x +2x 2)′=e x -1x +4x3.答案 BCD 解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则 知B ,C ,D 正确,故选BCD .4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .4.答案 1cos 2x -2x 3 解析 f ′(x )=(sin x )′·cos x -sin x ·(cos x )′cos 2x +(x -2)′=cos 2x +sin 2x cos 2x +(-2)x -3=1cos 2x -2x 3. 5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x5.答案 D 解析 由题意,f (x )=x sin x ,f 1(x )=f ′(x )=sin x +x cos x ,f 2(x )=f ′1(x )=cos x +cos x -x sin x = 2cos x -x sin x ,f 3(x )=f ′2(x )=-3sin x -x cos x ,f 4(x )=f ′3(x )=-4cos x +x sin x ,f 5(x )=f ′4(x )=5sin x +x cos x ,…,据此可知f 2 019(x )=-2 019sin x -x cos x ,f 2 021(x )=2 021sin x +x cos x ,所以f 2019(x )+f 2 021(x )=2sin x ,故选D .6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e6.答案 B 解析 f ′(x )=2 021+ln x +x ×1x =2 022+ln x ,又f ′(x 0)=2 022,得2 022+ln x 0=2 022,则ln x 0=0,解得x 0=1.7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .7.答案 2 解析 f ′(x )=-(ax -1)′(ax -1)2+e x cos x -e xsin x =-a (ax -1)2+e x cos x -e x sin x ,∴f ′(0)=-a +1=-1,则a =2.8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = . 8.答案 e 2解析 f ′(x )=12x -3·(2x -3)′+a e -x +ax ·(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( ) A .-2 B .2 C .-94 D .949.答案 C 解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x ,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.10.答案 -4 解析 ∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4. 11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= .11.答案 1+e 解析 因为f (ln x )=x +ln x ,所以f (x )=x +e x ,所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e .12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)·2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2D .-212.答案 C 解析 因为f ′(x )=f ′(1)·2x ln 2+2x ,所以f ′(1)=f ′(1)·2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2·2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2.13.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1xD .f (x )=e x +x13.答案 BC 解析 对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意.14.f (x )=3e x +1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( )A .1B .2C .3D .414.答案 C 解析 f ′(x )=-3e x (e x +1)2+3x 2,f ′(-x )=-3e x(e x +1)2+3x 2,所以f ′(x )为偶函数,f ′(2019)-f ′(-2019) =0,因为f (x )+f (-x )=31+e x +x 3+31+e -x -x 3=31+e x +3e x1+e x =3,所以f (2020)+f (-2020)+f ′(2019)-f ′(-2019)=3.故选C .15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______.15.答案 8 解析 因为f ′(x )=4ax 3-b sin x +7,所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7.所以f ′(x )+f ′(-x )=14.又f ′(2 020)=6,所以f ′(-2 020)=14-6=8. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2. 16.解析 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ·1x =⎝⎛⎭⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.(3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12·11+2x ·(1+2x )′=11+2x.(5)由已知f (x )=x -ln x +2x -1x 2.所以f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3.以上就是本次联系的全部内容,希望大家认真练习并有所收货完完完,以下无内容!。
高中数学导数的计算精选题目(附答案)

高中数学导数的计算精选题目(附答案)(1)基本初等函数的导数公式(2)导数运算法则①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 当g (x )=c 时,[cf (x )]′=cf ′(x ).③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).(3)复合导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.求下列函数的导数: (1)y =10x ; (2)y =lg x ; (3)y =log 12x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1.2.求下列函数的导数: (1)y =⎝ ⎛⎭⎪⎫1e x ;(2)y =⎝ ⎛⎭⎪⎫110x ;(3)y =lg 5; (4)y =3lg 3x ; (5)y =2co S 2x2-1. 3.(1)y =x 3·e x ; (2)y =x -S i n x 2co S x2; (3)y =x 2+log 3x; (4)y =e x +1e x -1.4.求下列函数的导数: (1)y =cos x x ; (2)y =xS i n x +x ; (3)y =1+x 1-x +1-x1+x; (4)y =lg x -1x 2.5.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 6.求过曲线y =co S x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.7.求下列函数的导数. (1)y =1-2x 2; (2)y =e S i n x ;(3)y =S i n ⎝ ⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1) 8.求下列函数的导数. (1)f (x )=(-2x +1)2; (2)f (x )=l n (4x -1); (3)f (x )=23x +2; (4)f (x )=5x +4; (5)f (x )=S i n ⎝ ⎛⎭⎪⎫3x +π6;(6)f (x )=co S 2x .9.求下列函数的导数. (1)y =x 1+x 2;(2)y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2.10.求下列函数的导数. (1)y =S i n 2x3; (2)y =S i n 3x +S i n x 3; (3)y =11-x 2; (4)y =x l n (1+x ).11. 设f (x )=l n (x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.12.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D .1参考答案:1.解: (1)y ′=(10x )′=10x l n 10. (2)y ′=(lg x )′=1x ln 10.(3)y ′=(log 12x )′=1x ln 12=-1x ln 2.(4)y ′=(4x 3)′=(x 34)′=34x -14=344x.(5)∵y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1=S i n 2x2+2S i n x 2co S x 2+co S 2x 2-1 =S i n x ,∴y ′=(S i n x )′=co S x .2.解:(1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x l n 1e =-1e x =-e -x .(2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x l n 110=-ln 1010x=-10-x l n 10.(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′=0. (4)∵y =3 lg 3x =lg x ,∴y ′=(lg x )′=1x ln 10.(5)∵y =2co S 2x2-1=co S x ,∴y ′=(co S x )′=-S i n x . 3.解: (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x . (2)∵y =x -12S i n x ,∴y ′=x ′-12(S i n x )′=1-12co S x . (3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln 3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.4.解:(1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.(2)y ′=(xS i n x )′+(x )′=S i n x +x co S x +12x.(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2,∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln 10+2x 3. 5.解:如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.6.解:∵y =co S x ,∴y ′=(co S x )′=-S i n x ,∴曲线在点P π3,12处的切线的斜率为k =y ′|x =π3=-S i n π3=-32,∴过点P 且与切线垂直的直线的斜率为233,∴满足题意的直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3,即233x -y +12-239π=0. 7.解: (1)设y =u 12,u =1-2x 2, 则y ′=⎝ ⎛⎭⎪⎫u 12′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u -12·(-4x ) =12(1-2x 2)-12(-4x )=-2x 1-2x 2 .(2)设y =e u ,u =S i n x ,则y x ′=y u ′·u x ′=e u ·co S x =e S i n x co S x . (3)设y =S i n u ,u =2x +π3,则y x ′=y u ′·u x ′=co S u ·2=2co S ⎝ ⎛⎭⎪⎫2x +π3.(4)设y =5log 2u ,u =2x +1, 则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2.8.解:(1)设y =u 2,u =-2x +1,则y ′=y u ′·u x ′=2u ·(-2)=-4(-2x +1)=8x -4. (2)设y =l n u ,u =4x -1, 则y ′=y u ′·u x ′=1u ·4=44x -1.(3)设y =2u ,u =3x +2,则y ′=y u ′·u x ′=2u l n 2·3=3l n 2·23x +2. (4)设y =u ,u =5x +4, 则y ′=y u ′·u x ′=12u·5=525x +4.(5)设y =S i n u ,u =3x +π6,则y ′=y u ′·u x ′=co S u ·3=3co S ⎝ ⎛⎭⎪⎫3x +π6.(6)法一:设y =u 2,u =co S x , 则y ′=y u ′·u x ′=2u ·(-S i n x ) =-2co S x ·S i n x =-S i n 2x ; 法二:∵f (x )=co S 2x =1+cos 2x 2=12+12co S 2x , 所以f ′(x )=⎝ ⎛⎭⎪⎫12+12cos 2x ′=0+12·(-S i n 2x )·2=-S i n 2x . 9.解: (1)y ′=(x 1+x 2)′ =x ′1+x 2+x (1+x 2)′ =1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(2)∵y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2=x (-S i n 2x )co S 2x =-12xS i n 4x ,∴y ′=⎝ ⎛⎭⎪⎫-12x sin 4x ′=-12S i n 4x -x2co S 4x ·4 =-12S i n 4x -2x co S 4x .10.解:(1)y ′=⎝ ⎛⎭⎪⎫sin 2x 3′=2S i n x 3·⎝ ⎛⎭⎪⎫sin x 3′ =2S i n x 3·co S x 3·⎝ ⎛⎭⎪⎫x 3′=13S i n 2x3.(2)y ′=(S i n 3x +S i n x 3)′=(S i n 3x )′+(S i n x 3)′ =3S i n 2x co Sx +co S x 3·3x 2=3S i n 2x co S x +3x 2co S x 3. (3)y ′=0-(1-x 2)′1-x 2=-12(1-x 2)-12(1-x 2)′1-x 2=x (1-x 2)-121-x 2=x(1-x 2) 1-x 2.(4)y ′=x ′l n (1+x )+x []ln (1+x )′ =l n (1+x )+x 1+x. 11.解: 由曲线y =f (x )过(0,0)点,可得l n 1+1+b =0,故b =-1.由f (x )=l n (x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,此即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意,得32+a =32,故a =0.12.解析:选A 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e-2×0=-2.曲线y =e-2x+1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2、y =0与y =x 的图象,因为直线y =-2x +2与y =x的交点坐标是⎝ ⎛⎭⎪⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),结合图象可得,这三条直线所围成的三角形的面积等于12×1×23=13.。
(完整版)高二数学基本初等函数的导数公式及导数运算法则测试题1
选修2-21.2.2第1课时基本初等函数的导数公式及导数运算法则一、选择题1.曲线y =13x 3-2在点⎝⎛⎭⎫-1,-73处切线的倾斜角为( ) A .30°B .45°C .135°D .60° 2.设f (x )=13x 2-1x x ,则f ′(1)等于( ) A .-16 B.56 C .-76 D.763.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=04.已知f (x )=ax 3+9x 2+6x -7,若f ′(-1)=4,则a 的值等于( )A.193B.163C.103D.1335.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( ) A .0秒、2秒或4秒 B .0秒、2秒或16秒 C .2秒、8秒或16秒 D .0秒、4秒或8秒6.(2010·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x -1C .y =2x -2D .y =-2x -27.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( )A.π2 B .0 C .钝角 D .锐角8.曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为( ) A.π22 B .π2 C .2π2 D.12(2+π)2 9.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2011(x )等于( )A .sin xB .-sin xC .cos xD .-cos x10.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )-g (x )为常数C .f (x )=g (x )=0D .f (x )+g (x )为常数 二、填空题11.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′⎝⎛⎭⎫π3=12,则a =________,b =________.12.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0的解集为________.13.曲线y =cos x 在点P ⎝⎛⎭⎫π3,12处的切线的斜率为______.14.已知函数f (x )=ax +b e x 图象上在点P (-1,2)处的切线与直线y =-3x 平行,则函数f (x )的解析式是____________.三、解答题15.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1); (3)y =sin 4x 4+cos 4x 4;(4)y =1+x 1-x +1-x 1+x.16.已知两条曲线y =sin x 、y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.17.已知曲线C 1:y =x 2与C 2:y =-(x -2)2.直线l 与C 1、C 2都相切,求直线l 的方程.18.求满足下列条件的函数f (x ):(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0;(2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1.1[答案] B[解析] y ′|x =-1=1,∴倾斜角为45°.2[答案] B3[答案] A[解析] ∵直线l 的斜率为4,而y ′=4x 3,由y ′=4得x =1而x =1时,y =x 4=1,故直线l 的方程为:y -1=4(x -1)即4x -y -3=0.4[答案] B[解析] ∵f ′(x )=3ax 2+18x +6,∴由f ′(-1)=4得,3a -18+6=4,即a =163. ∴选B.5[答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.故选D.6[答案] A[解析] 本题考查了导数的几何意义,切线方程的求法,在解题时应首先验证点是否在曲线上,然后通过求导得出切线的斜率,题目定位于简单题.由题可知,点(1,0)在曲线y =x 3-2x +1上,求导可得y ′=3x 2-2,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线y =x 3-2x +1的切线方程为y =x -1,故选A.7[答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C. 8[答案] A[解析] 曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的面积为 π22.9[答案] D[解析] f 0(x )=sin x ,f 1(x )=f 0′(x )=(sin x )′=cos x ,f 2(x )=f 1′(x )=(cos x )′=-sin x ,f 3(x )=f 2′(x )=(-sin x )′=-cos x ,f 4(x )=f 3′(x )=(-cos x )′=sin x ,∴4为最小正周期,∴f 2011(x )=f 3(x )=-cos x .故选D.10[答案] B[解析] 令F (x )=f (x )-g (x ),则F ′(x )=f ′(x )-g ′(x )=0,∴F (x )为常数. 11[答案] 0-1[解析] f ′(x )=2ax -b cos x ,由条件知⎩⎪⎨⎪⎧ -b cos0=12π3a -b cos π3=12,∴⎩⎪⎨⎪⎧b =-1a =0. 12[答案] (-1,3)[解析] f ′(x )=3x 2-6x -9,由f ′(x )<0得3x 2-6x -9<0,∴x 2-2x -3<0,∴-1<x <3. 13[答案] -32[解析] ∵y ′=(cos x )′=-sin x ,∴切线斜率k =y ′|x =π3=-sin π3=-32. 14[答案] f (x )=-52x -12e x +1 [解析] 由题意可知,f ′(x )|x =-1=-3,∴a +b e -1=-3,又f (-1)=2,∴-a +b e -1=2,解之得a =-52,b =-12e , 故f (x )=-52x -12e x +1. 15[解析] (1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x2, ∴y ′=3x 2-2x3;(3)∵y =sin 4x 4+cos 4x 4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x 4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x , ∴y ′=-14sin x ; (4)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x-2, ∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2. 16[解析] 由于y =sin x 、y =cos x ,设两条曲线的一个公共点为P (x 0,y 0), ∴两条曲线在P (x 0,y 0)处的斜率分别为若使两条切线互相垂直,必须cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin2x 0=2,这是不可能的,∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.17[解析] 设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x -x 21.①对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2), 即y =-2(x 2-2)x +x 22-4. ②∵两切线重合,∴2x 1=-2(x 2-2)且-x 21=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0.∴直线l 的方程为y =0或y =4x -4.18[解析] (1)设f (x )=ax 3+bx 2+cx +d (a ≠0) 则f ′(x )=3ax 2+2bx +c 由f (0)=3,可知d =3,由f ′(0)=0可知c =0,由f ′(1)=-3,f ′(2)=0可建立方程组⎩⎪⎨⎪⎧ f ′(1)=3a +2b =-3f ′(2)=12a +4b =0, 解得⎩⎪⎨⎪⎧ a =1b =-3, 所以f (x )=x 3-3x 2+3. (2)由f ′(x )是一次函数可知f (x )是二次函数, 则可设f (x )=ax 2+bx +c (a ≠0)f ′(x )=2ax +b ,把f (x )和f ′(x )代入方程,得x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1 整理得(a -b )x 2+(b -2c )x +c =1若想对任意x 方程都成立,则需⎩⎪⎨⎪⎧ a -b =0b -2c =0c =1解得⎩⎪⎨⎪⎧ a =2b =2c =1,所以f (x )=2x 2+2x +1.。
同步练习】基本初等函数的导数公式及运算法则基础练习题及答案
同步练习】基本初等函数的导数公式及运算法则基础练习题及答案1.函数$y=x^2$在点$x=1$处的导数是2.2.函数$f(x)=(2x+1)^2(4x-2x+1)$的导数是$24x^2-1$。
3.函数$f(x)=(x+2a)(x-a)^2$的导数为$f'(x)=2(x^2-a^2)+2(x-a)\cdot 2x=2(3x^2-2ax-a^2)$。
4.函数$f(x)=1+\sin x$,其导函数为$f'(x)=\cos x$,则$f'(\pi/3)=1/2$。
5.已知函数$f(x)=3x^2$,则$f'(3)=18$。
6.函数$f(x)=(2e^x)+\sin x$的导数是$f'(x)=2e^x+\cos x$。
7.已知$f(x)=\sin x+\cos x+\pi/2$,则$f'(\pi/2)=-1$。
8.已知函数$f(x)=2\sin x+\cos x$,则$f'(\pi)=-2$。
9.已知函数$f(x)=\frac{1}{2}x^2$,则$f(x)=\frac{1}{2}x^2+C$,其中$C$为常数。
10.某物体的瞬时速度为0时,$t=2$。
11.已知函数$f(x)=ax^2+b$的图像开口向下,$\lim\limits_{\Delta x\rightarrow 0}\frac{f(a+\Delta x)-f(a)}{\Delta x}=4$,则$a=-2$。
12.已知函数$f(x)=x^4+ax^2-bx$,且$f'(-1)=-13$,$f'(-1)=-27$,则$a+b=-18$。
13.已知函数$f(x)=x\sin x+\cos x$,则$f'(\frac{\pi}{2})=-1$。
14.函数$f(x)=x\mathrm{e}^x$的导函数为$f'(x)=(x+1)\mathrm{e}^x$,所以$f'(x)>0$的解集为$(0,+\infty)$。
基本初等函数的导数公式及导数的运算法则(二)(优秀经典课时训练作业及答案详解)
[A 组 学业达标]1.函数y =cos x1-x的导数是( ) A.-sin x +x sin x (1-x )2B.x sin x -sin x -cos x(1-x )2C.cos x -sin x +x sin x (1-x )2D.cos x -sin x +x sin x 1-x解析:y ′=⎝⎛⎭⎪⎫cos x 1-x ′ =(-sin x )(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x (1-x )2. 答案:C2.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x +2解析:∵y ′=x ′(x +2)-x (x +2)′(x +2)2=2(x +2)2, ∴k =y ′|x =-1=2(-1+2)2=2,∴切线方程为y+1=2(x+1),即y=2x+1.答案:A3.已知函数f(x)=ax4+bx2+c,若f′(1)=2,则f′(-1)=() A.-1 B.-2C.2 D.0解析:法一:由f(x)=ax4+bx2+c,得f′(x)=4ax3+2bx.因为f′(1)=2,所以4a+2b=2,即2a+b=1.则f′(-1)=-4a-2b=-2(2a+b)=-2.法二:因为f(x)是偶函数,所以f′(x)是奇函数.所以f′(-1)=-f′(1)=-2.答案:B4.函数f(x)=x(x-1)(x-2)(x-3)在x=0处的导数值为() A.-6 B.0C.6 D.1解析:∵f′(x)=(x-1)(x-2)(x-3)+x[(x-1)(x-2)(x-3)]′,∴f′(0)=(-1)×(-2)×(-3)=-6.答案:A5.若函数f(x)=12f′(-1)x2-2x+3,则f′(-1)的值为()A.0 B.-1 C.1 D.2解析:∵f(x)=12f′(-1)x2-2x+3,∴f′(x)=f′(-1)x-2,∴f′(-1)=f′(-1)×(-1)-2,∴f′(-1)=-1.答案:B6.若函数f (x )=e xx 在x =c 处的导数值与函数值互为相反数,则c =________. 解析:∵f (x )=e xx , ∴f (c )=e cc .又f ′(x )=e x ·x -e x x 2=e x (x -1)x 2, ∴f ′(c )=e c (c -1)c 2.由题意,知f (c )+f ′(c )=0, ∴e c c +e c(c -1)c 2=0, ∴2c -1=0,解得c =12. 答案:127.若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标为________.解析:设P (x 0,y 0), 则y ′|x =x 0=ln x 0+1=2, ∴x 0=e ,则y 0=e , 则P 点坐标为(e ,e). 答案:(e ,e)8.已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________. 解析:∵f (x )=ax -ln x , ∴f (1)=a ,即切点是(1,a ). ∵f ′(x )=a -1x ,∴f ′(1)=a -1,∴切线l 的方程为y -a =(a -1)(x -1), 令x =0,得y =1,即l 在y 轴上的截距为1. 答案:19.求下列函数的导数. (1)f (x )=e -x (sin x +cos x ); (2)y =e x +1e x -1;(3)f (x )=x (x +1)(x +2)(x >0). 解析:(1)f ′(x )=⎝⎛⎭⎪⎫cos x +sin x e x ′ =(cos x -sin x )e x -e x (cos x +sin x )e 2x=-2sin xe x =-2e -x sin x . (2)y ′=⎝ ⎛⎭⎪⎪⎫e x +1e x -1′ =e x (e x -1)-(e x +1)e x(e x -1)2=-2e x(e x -1)2. (3)法一:y ′=[x (x +1)(x +2)]′=x ′(x +1)(x +2)+x (x +1)′(x +2)+x (x +1)(x +2)′ =(x +1)(x +2)+x (x +2)+x (x +1) =3x 2+6x +2.法二:因为y =x (x +1)(x +2)=(x 2+x )(x +2)=x 3+3x 2+2x ,所以y ′=(x 3+3x 2+2x )′=3x 2+6x +2.10.求过曲线y =sin x 在x =π4处的点且与此处切线垂直的直线方程. 解析:由于y ′=(sin x )′=cos x ,则y ′|x =π4=cos π4=22,从而与切线垂直的直线的斜率为-2,依点斜式得符合题意的直线方程为y -22=-2⎝ ⎛⎭⎪⎫x -π4,即2x +y -22-24π=0.[B 组 能力提升]11.曲线y =x e x 在点(1,e)处的切线与直线ax +by +c =0垂直,则ab 的值为( )A .-12eB .-2e C.2eD.12e解析:y ′=e x +x e x ,则y ′|x =1=2e.∵曲线在点(1,e)处的切线与直线ax +by +c =0垂直,∴-a b =-12e , ∴a b =12e . 答案:D12.若直线y =12x +b 与曲线y =-12x +ln x 相切,则实数b 的值为( ) A .-2 B .-1 C .-12D .1 解析:设切点为(x 0,y 0).由y =-12x +ln x ,得y ′=-12+1x ,所以-12+1x 0=12,所以x 0=1,y 0=-12,代入直线y =12x +b ,得-12=12+b ,解得b =-1,故选B. 答案:B13.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为________.解析:y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率. 答案:1214.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x ,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2). 由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎨⎧x 0=-12,a =8.答案:815.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程. 解析:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b .令x =1,得f ′(1)=3+2a +b ,又f ′(1)=2a,3+2a +b =2a ,解得b =-3,令x =2得f ′(2)=12+4a +b ,又f ′(2)=-b ,所以12+4a +b =-b ,解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1),即6x +2y -1=0.16.已知曲线y =f (x )=x 2a -1(a >0)在x =1处的切线为l ,求l 与两坐标轴所围成的三角形的面积的最小值.解析:由已知,得f ′(x )=2x a ,切线斜率k =f ′(1)=2a ,所以切线l 的方程为y -⎝ ⎛⎭⎪⎫1a -1=2a (x -1),即2x -ay -a -1=0.令y =0,得x =a +12;令x =0,得y =-a +1a . 所以l 与两坐标轴所围成的三角形的面积S =12×a +12×a +1a =14⎝ ⎛⎭⎪⎫a +1a +12≥14×2a ×1a +12=1,当且仅当a =1a ,即a =1时取等号,所以S min =1.故l 与两坐标轴所围成的三角形的面积的最小值为1.。
《初等函数的导数公式及导数的运算法则》 同步测试
《基本初等函数的导数公式及导数的运算法则》金牌训练题一、选择题1.函数y =x -(2x -1)2的导数是( )A .3-4xB .3+4xC .5+8xD .5-8x 解析:∵y =x -(2x -1)2=-4x 2+5x -1,∴y ′=-8x +5.答案:D2.函数y =cos(1+x 2)的导数是( )A .2x sin(1+x 2)B .-sin(1+x 2)C .-2x sin(1+x 2)D .2cos(1+x 2)解析:∵y ′=[cos(1+x 2)]′=-sin(1+x 2)·(1+x 2)′=-2x sin(1+x 2).答案:C3.已知函数f (x )=ax 2-1且f ′(1)=2,则实数a 的值为( )A .1B .2 C. 2 D .a >0解析:∵f ′(x )=12(ax 2-1)-12·2ax =ax ax 2-1, ∴f ′(1)=a a -1=2.∴a =2,故选B. 答案:B 4.函数y =x 2+12x -1的导数是( ) A.2+x x 2+1·(2x -1)2B .-2+x1+x 2·(2x -1)2 C.4x 2-x +2(2x -1)2D.4x 2-x +2(2x -1)2x 2+1=2cos(2x +3).(2)解法一:y ′=2(x +1x )(x +1x)′ =2(x +1x )(1-1x 2)=2x -2x3. 解法二:∵y =x 2+2+1x2, ∴y ′=(x 2+2+1x 2)′=2x -2x3. (3)y ′=1(x 2+2x +3)ln2·(x 2+2x +3)′ =2x +2(x 2+2x +3)ln2.11.已知函数f (x )=e -x (cos x +sin x ),将满足f ′(x )=0的所有正数x 从小到大排成数列{x n }.求证:数列{f (x n )}为等比数列.证明:f ′(x )=-e -x (cos x +sin x )+e -x (-sin x +cos x )=-2e -x sin x ,由f ′(x )=0,得-2e -x sin x =0,解得x =n π,n ∈Z .从而x n =n π(n =1,2,3……),f (x n )=(-1)n e -n π,所以f (x n +1)f (x n )=-e -π.所以数列{f (x n )}是公比为q =-e -π的等比数列.12.曲线y =e 2x cos3x 在(0,1)处的切线与直线C 的距离为5,求直线C 的方程. 解:由曲线y =e 2x cos3x ,得y ′=(e 2x )′cos3x +e 2x (cos3x )′=2e 2x cos3x -3e 2x sin3x ,∴y ′|x =0=2.∴经过点(0,1)的切线方程为y -1=2x ,即y =2x +1.设直线C 的方程为y =2x +b ,由题意得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学基本初等函数的导数公式及导数运算
法则综合测试题(附答
选修2-2 1.2.2 第2课时基本初等函数的导数公式及导数运算法则
一、选择题
1.函数y=(x+1)2(x-1)在x=1处的导数等于()
A.1 B.2
C.3 D.4
[答案] D
[解析] y=[(x+1)2](x-1)+(x+1)2(x-1)
=2(x+1)(x-1)+(x+1)2=3x2+2x-1,
y|x=1=4.
2.若对任意xR,f(x)=4x3,f(1)=-1,则f(x)=() A.x4 B.x4-2
C.4x3-5 D.x4+2
[答案] B
[解析] ∵f(x)=4x3.f(x)=x4+c,又f(1)=-1
1+c=-1,c=-2,f(x)=x4-2.
3.设函数f(x)=xm+ax的导数为f(x)=2x+1,则数列{1f(n)}(nN*)的前n项和是()
A.nn+1
B.n+2n+1
C.nn-1
D.n+1n
[解析] ∵f(x)=xm+ax的导数为f(x)=2x+1,
m=2,a=1,f(x)=x2+x,
即f(n)=n2+n=n(n+1),
数列{1f(n)}(nN*)的前n项和为:
Sn=112+123+134+…+1n(n+1)
=1-12+12-13+…+1n-1n+1
=1-1n+1=nn+1,
故选A.
4.二次函数y=f(x)的图象过原点,且它的导函数y=f(x)的图象是过第一、二、三象限的一条直线,则函数y=f(x)的图象的顶点在()
A.第一象限 B.第二象限
C.第三象限 D.第四象限
[答案] C
[解析] 由题意可设f(x)=ax2+bx,f(x)=2ax+b,由于f(x)的图象是过第一、二、三象限的一条直线,故2a0,b0,则f(x)=ax+b2a2-b24a,
顶点-b2a,-b24a在第三象限,故选C.
5.函数y=(2+x3)2的导数为()
A.6x5+12x2 B.4+2x3
C.2(2+x3)2 D.2(2+x3)3x
[解析] ∵y=(2+x3)2=4+4x3+x6,
y=6x5+12x2.
6.(2019江西文,4)若函数f(x)=ax4+bx2+c满足f(1)=2,则f(-1)=()
A.-1 B.-2
C.2 D.0
[答案] B
[解析] 本题考查函数知识,求导运算及整体代换的思想,f(x)=4ax3+2bx,f(-1)=-4a-2b=-(4a+2b),f(1)=4a+2b,f(-1)=-f(1)=-2
要善于观察,故选B.
7.设函数f(x)=(1-2x3)10,则f(1)=()
A.0 B.-1
C.-60 D.60
[答案] D
[解析] ∵f(x)=10(1-2x3)9(1-2x3)=10(1-2x3)9(-6x2)=-60x2(1-2x3)9,f(1)=60.
8.函数y=sin2x-cos2x的导数是()
A.22cos2x- B.cos2x-sin2x
C.sin2x+cos2x D.22cos2x+4
[答案] A
[解析] y=(sin2x-cos2x)=(sin2x)-(cos2x)
=2cos2x+2sin2x=22cos2x-4.
9.(2019高二潍坊检测)已知曲线y=x24-3lnx的一条切线的斜率为12,则切点的横坐标为()
A.3 B.2
C.1 D.12
[答案] A
[解析] 由f(x)=x2-3x=12得x=3.
10.设函数f(x)是R上以5为周期的可导偶函数,则曲线y =f(x)在x=5处的切线的斜率为()
A.-15 B.0
C.15 D.5
[答案] B
[解析] 由题设可知f(x+5)=f(x)
f(x+5)=f(x),f(5)=f(0)
又f(-x)=f(x),f(-x)(-1)=f(x)
即f(-x)=-f(x),f(0)=0
故f(5)=f(0)=0.故应选B.
二、填空题
11.若f(x)=x,(x)=1+sin2x,则f[(x)]=_______,[f(x)]=________.
[答案] 2sinx+4,1+sin2x
[解析] f[(x)]=1+sin2x=(sinx+cosx)2
=|sinx+cosx|=2sinx+4.
[f(x)]=1+sin2x.
12.设函数f(x)=cos(3x+)(0<),若f(x)+f(x)是奇函数,则=________.
[答案] 6
[解析] f(x)=-3sin(3x+),
f(x)+f(x)=cos(3x+)-3sin(3x+)
=2sin3x++56.
若f(x)+f(x)为奇函数,则f(0)+f(0)=0,
即0=2sin+56,+56=kZ).
又∵(0,),6.
13.函数y=(1+2x2)8的导数为________.
[答案] 32x(1+2x2)7
[解析] 令u=1+2x2,则y=u8,
yx=yuux=8u74x=8(1+2x2)74x
=32x(1+2x2)7.
14.函数y=x1+x2的导数为________.
[答案] (1+2x2)1+x21+x2
[解析] y=(x1+x2)=x1+x2+x(1+x2)=1+x2+x21+x2=(1+2x2)1+x21+x2.
三、解答题
15.求下列函数的导数:
(1)y=xsin2x;(2)y=ln(x+1+x2);
(3)y=ex+1ex-1;(4)y=x+cosxx+sinx.
[解析] (1)y=(x)sin2x+x(sin2x)
=sin2x+x2sinx(sinx)=sin2x+xsin2x.
(2)y=1x+1+x2(x+1+x2)
=1x+1+x2(1+x1+x2)=11+x2 .
(3)y=(ex+1)(ex-1)-(ex+1)(ex-1)(ex-1)2=-
2ex(ex-1)2 .
(4)y=(x+cosx)(x+sinx)-(x+cosx)(x+sinx)(x+sinx)2
=(1-sinx)(x+sinx)-(x+cosx)(1+cosx)(x+sinx)2 =-xcosx-xsinx+sinx-cosx-1(x+sinx)2.
16.求下列函数的导数:
(1)y=cos2(x2-x);(2)y=cosxsin3x;
(3)y=xloga(x2+x-1);(4)y=log2x-1x+1.
[解析] (1)y=[cos2(x2-x)]
=2cos(x2-x)[cos(x2-x)]
=2cos(x2-x)[-sin(x2-x)](x2-x)
=2cos(x2-x)[-sin(x2-x)](2x-1)
=(1-2x)sin2(x2-x).
(2)y=(cosxsin3x)=(cosx)sin3x+cosx(sin3x)
=-sinxsin3x+3cosxcos3x=3cosxcos3x-sinxsin3x.
(3)y=loga(x2+x-1)+x1x2+x-1logae(x2+x-1)=loga(x2+x-1)+2x2+xx2+x-1logae.
(4)y=x+1x-1x-1x+1log2e=x+1x-1log2ex+1-x+1(x+1)2
=2log2ex2-1.
17.设f(x)=2sinx1+x2,如果f(x)=2(1+x2)2g(x),求g(x).
[解析] ∵f(x)=2cosx(1+x2)-2sinx2x(1+x2)2
=2(1+x2)2[(1+x2)cosx-2xsinx],
又f(x)=2(1+x2)2g(x).
g(x)=(1+x2)cosx-2xsinx.
18.求下列函数的导数:(其中f(x)是可导函数)
(1)y=f1x;(2)y=f(x2+1).
[解析] (1)解法1:设y=f(u),u=1x,则yx=yuux=f(u)-1x2=-1x2f1x.
解法2:y=f1x=f1x1x=-1x2f1x.
(2)解法1:设y=f(u),u=v,v=x2+1,。