频率与概率的关系2导学案

合集下载

人教版九年级数学上册25.3 用频率估计概率(第2课时)导学案

人教版九年级数学上册25.3 用频率估计概率(第2课时)导学案

25.3.2《用频率估计概率(第2课时)》导学案一、学习目标1、知识技能:①熟练掌握用频率来估计概率的计算方法;②能用频率来估计概率的知识来解决实际问题。

2、数学思考:①通过几道题的练习,让学生掌握用频率来估计概率的计算方法;②通过实践,培养学生的计算、归纳能力.3、解决问题:能用频率来估计概率的知识来解决生活中的实际问题。

4、情感态度:引导学生对例题情景的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心.二、预习内容自学课本144页至147,完成下列问题:1、理解课本144页中的问题1,完成相应的填空并根据频率数值估计幼树移植成活的概率。

2、理解课本145页中的问题2,弄懂解题的思路。

3、尝试完成147页中的练习。

三、探究学习1、自主探究解决问题某林业部门要考查某种幼树在一定条件的移植的成活率,应采用什么具体做法?下表是一张模拟的统计表,请补出表中的空缺,并完成表后的填空.移植总数(n)成活率(m)成活的频率(保留三位小数)1080.80050472702350.871400369750662150013350.890350032030.915700063359000807314000126280.902从表可以发现,幼树移植成活的频率在_________左右摆动,并且随着统计数据的增加,这种规律愈加越明显,所以估计幼树移植成活率的概率为________2、某水果公司以2元/千克的成本新进了10 000千克的柑橘,如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率”统计,并把获得的数据记录在表中,请你帮忙完成下表.(1)、填表(2)、从表可以看出,柑橘损坏的频率在常数_____左右摆动,并且随统计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______(3)、根据现有的条件求出每千克的定价?写出解题思路四、巩固测评1、某农科所在相同条件下做了某作物种子发芽率的实验,结果如下表所示:一般地,1 000千克种子中大约有多少是不能发芽的?种子个数发芽种子个数发芽种子频率100 94200 187300 282400 338500 435600 530700 624800 718900 8141000 981五、学习心得。

九年级数学上册《用频率估计概率2》导学案新人教版

九年级数学上册《用频率估计概率2》导学案新人教版
A.口袋中装入10个小球,其中只有两个红球;
B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;
C.装入红球5个,白球13个,黑球2个;
D.装入红球7个,白球13个,黑球2个,黄球13个。
展示:
最棒的小组要看C层同学完成情况咯!加油!
学以致用。
你收获了多少?
(1)计算并完成表格:
转动转盘的次数n
100
150
200
500
800
1000
落在“铅笔”的次数m
68
111
136
345
546
701
落在“铅笔”的频率
(2)请估计,当 很大时,频率将会接近多少?
(3)转动该转盘一次,获得铅笔的 概率约是多少?
(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)
4、展示提升
1.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为().
A. B. C. D.
五、过关检测
1.下列说法正 确的是( ).
A.抛一枚硬币正面 朝上的机会与抛一枚图钉钉尖着地的机会一样大;
B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;
2.对于活动二 的题目,可以自发开展“帮扶”,达到“人人过关”的效果!
群学:
Байду номын сангаас1.先独立完成,
2.由组长组织交流,针对主要矛盾进行交流
3.组 长指定同学上台板演,其余同学组内一对 一过关!
流程及学习内容
学习要求和方法
【探究二】:某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购 物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:

频率与概率 导学案- 高一上学期数学人教B版(2019)必修第二册

频率与概率 导学案- 高一上学期数学人教B版(2019)必修第二册

5.3.4 频率与概率学习目标1.在具体情境中,了解随机事件发生的不确定性和频率的稳定性,培养学生数据分析、逻辑推理的核心素养.2.理解概率的意义,利用概率知识正确理解现实生活中的实际问题,培养学生数学建模、数学运算的核心素养.3.理解频率与概率的区别,培养学生数学抽象的核心素养.自主预习1.在n次重复进行的试验中,事件A发生的频率为m,则当n很大时,可以认为n,此时也有.事件A发生的概率P(A)的估计值为mn2.概率是可以通过来“测量”的,或者说频率是概率的一个,概率从数量上反映了一个事件发生可能性的大小.课堂探究一、温故旧知1.古典概型的两个特性是什么?2.古典概型计算概率的步骤是什么?二、设置情境1.《中国青年报》社会调查中心联合问卷网,对2 000名18~35岁的青年进行的一项调查显示,在生活节奏加快的今天,70.0%的受访青年表示仍要培养古典诗词爱好,15.5%的人认为不需要,14.5%的人表示不好说.随机选取一名18~35岁的青年,这名青年认为仍要培养古典诗词爱好的概率为多少?2.随机抛一个瓶盖,观察它落地后的状态(参见上一节的图5-3-7),怎样确定瓶盖盖口朝下的概率?怎样确定这两个概率到底多大呢,今天我们就来一起学习频率与概率.三、问题探究1.情境引入中的两个问题能不能用古典概型来确定概率?为什么?2.我们应该用什么方法来估计这两个概率?请作出简要叙述.3.你觉得用频率来估计概率的方法可靠吗?怎样检验这种方法的可靠性?四、要点归纳总结频率与概率的区别和联系:五、典型例题题型一用频率估计概率例1为了确定某类种子的发芽率,从一大批这类种子中随机抽取了2 000粒试种,后来观察到有1 806粒种子发了芽,试估计这类种子的发芽率.小结:在随机事件的大量重复试验中,往往呈现几乎必然的规律,这个规律就是大数定律.通俗地说,这个定理就是,在试验条件不变的情况下,重复试验多次,随机事件的频率近似于它的概率.偶然中包含着某种必然.变式训练1某商场设立了一个可以自由转动的转盘(如图所示),并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据.转动转盘的次数n 100 150 200 500 8001000落在“铅笔”区域的次数m68 111 136 345 564 701落在“铅笔”区域的频率mn(1)计算并完成表格.(2)请估计,当n很大时,落在“铅笔”区域的频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?题型二频率与概率的关系例2下列关于概率和频率的叙述中正确的有.(把符合条件的所有答案的序号填在横线上)①随机事件的频率就是概率;②随机事件的概率是一个确定的数值,而频率不是一个固定的数值;③频率是客观存在的,与试验次数无关;④概率是随机的,在试验前不能确定;⑤概率可以看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性大小,而频率在大量重复试验的前提下可近似地看作这个事件的概率.小结:概率可以通过频率来“测量”或者说频率是概率的一个近似值,概率从数量上反映了一个事件发生的可能性的大小.变式训练2下列说法:①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小;②百分率能表示频率,但不能表示概率;③频率是不能脱离试验次数n的试验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是.题型三频率与概率的综合问题例3某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.小结:根据频率与概率的关系,概率的有关计算就可以转化为频率的计算,有关事件的频率值就可以看作是概率值.六、当堂检测”意味着()1.“某彩票的中奖概率为11000A.买1 000张彩票就一定能中奖B.买1 000张彩票中一次奖C.买1 000张彩票一次奖也不中D.购买彩票中奖的可能性是110002.同时向上抛掷100枚质量均匀的铜板,落地时这100枚铜板全都正面向上,则这100枚铜板更可能是下面哪种情况()A.这100枚铜板两面是一样的B.这100枚铜板两面是不一样的C.这100枚铜板中有50枚两面是一样的,另外50枚两面是不一样的D.这100枚铜板中有20枚两面是一样的,另外80枚两面是不一样的3.已知某次试验随机事件A发生的频率是0.2,事件A出现了10次,那么共进行了次试验.七、课堂小结1.知识清单:(1)用频率估计概率.(2)频率与概率的关系.2.方法归纳:极限思想.3.常见误区:频率与概率的区别与联系.核心素养专练层次一基础巩固一、课本,P113,练习A.二、课外习题1.关于随机事件的频率与概率,以下说法正确的是()A.频率是确定的,概率是随机的B.频率是随机的,概率也是随机的C.概率是确定的,概率是频率的近似值D.概率是确定的,频率是概率的近似值2.下列说法正确的是()A.某事件发生的频率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然要发生的事件D.某事件发生的概率是随着试验次数的变化而变化的3.下列说法正确的是()A.某厂一批产品的次品率为5%,则任意抽取其中20件产品一定会发现一件次品B.气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨C.某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈D.掷一枚均匀硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为50%4.盒中装有4只白球和5只黑球,从中任意取出1只球.(1)“取出的球是黄球”是事件,它的概率是;(2)“取出的球是白球”是事件,它的概率是;(3)“取出的球是白球或黑球”是事件,它的概率是.5.解释下列概率的含义:(1)某厂生产产品合格的概率为0.9;(2)一次抽奖活动中,中奖的概率为0.2.层次二能力提升一、课本,P113,练习B.二、课外习题1.某人将一枚硬币连续掷了10次,正面朝上的出现了6次,若用A表示正面朝上这一事件,则A的()A.概率为35B.频率为35C.频率为6D.概率接近352.从12件同类产品(其中10件正品,2件次品),任意抽取6件产品,下列说法中正确的是()A.抽出的6件产品中必有5件正品,一件次品B.抽出的6件产品中可能有5件正品,一件次品C.抽取6件产品时逐个不放回抽取,前5件是正品,第6件必是次品D.抽取6件产品时,不可能抽得5件正品,一件次品3.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g~501.5 g之间的概率约为.4.掷一枚骰子得到6点的概率是16,是否意味着把它掷6次一定能得到一次6点?参考答案自主预习略课堂探究一、略二、略三、1.不能,因为不符合古典概型等可能性和有限性的特性.2.不能用古典概型来确定概率的时候,我们可以利用有关统计数据得出事件发生的概率的估计值.3.可靠.我们可以进行大量的重复试验,观察经过试验次数的增多,频率是否趋于稳定.要点归纳频率是通过随机试验测量出来的结果,它的值是不稳定的;概率是通过很多次随机试验总结归纳出来的,是可以代替频率的稳定值.典型例题例1解:因为1 806÷2 000=0.903,所以估计这类种子的发芽率是0.903.变式训练1解:(1)0.680.740.680.690.7050.701(2)当n很大时,落在“铅笔”区域的频率将会接近0.7.(3)获得铅笔的概率约是0.7.例2②⑤变式训练2①③④例3解:(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5.=20.所以总体中分数在区间[40,50)内的人数估计为400×5100(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,=30.所以样本中分数不小于70的男生人数为60×12所以样本中的男生人数为30×2=60,女生人数为100-60=40,所以样本中男生和女生人数的比例为60∶40=3∶2.所以根据分层抽样原理,估计总体中男生和女生人数的比例为3∶2.当堂检测1.D2.A3.50核心素养专练层次一一、略二、1.D 2.B 3.D4.(1)不可能0(2)随机49(3)必然 15.(1)从某厂生产产品中抽取一件,是合格品的可能为0.9 (2)抽奖一次,中奖可能为0.2层次二一、略二、1.B2.B3.0.254.不是。

小学生必备的频率与概率教案

小学生必备的频率与概率教案

在小学数学教学中,频率与概率是非常重要的概念。

频率与概率教学不仅可以让小学生掌握一些数字,还可以培养他们的逻辑思维能力,因此,频率与概率教案也成为了小学数学教学中必不可少的一部分。

一、教学目标1、认识频率与概率的定义。

2、理解频率与概率之间的关系。

3、学习使用频率与概率进行简单的计算。

二、教学内容1、频率和概率的定义。

频率和概率都是描述事件发生概率的概念。

具体来说:频率表示既有事件发生的次数,又有事件未发生的次数。

那么频率的计算方法就是:既有事件发生的次数÷总次数。

概率则表示随机事件发生的可能性大小。

概率的计算方法就是:随机事件发生的次数÷总可能性的次数。

2、频率和概率的关系。

频率和概率之间的关系是非常紧密的。

对于一个大样本,随着事件发生的次数越来越多,频率会趋近于概率。

因此,频率和概率可以相互转化。

3、使用频率和概率进行计算。

当我们知道了事件的频率或概率后,可以通过它们进行一些简单的计算。

比如:如果一个事件发生的概率是1/4,那么与之对应的频率是多少?如果一项运动员在400米比赛中有90%的赢的可能性,那么符合要求的比赛有多少次?三、教学过程1、导入教师可以通过一些事例引入频率和概率这个概念。

比如,假如你期末考试有60分,有一个同学考了78分,你对他拿高分的可能性是多少?又或者,在你的班级里,有多少人喜欢吃蛋糕呢?2、讲解教师可以讲解频率和概率的定义,并介绍它们之间的关系。

如果有条件的话,教师可以通过一些实际的案例,帮助学生更好地理解频率和概率。

3、例子分析教师可以举例,让学生通过计算频率和概率来理解它们之间的差异和联系。

4、练习通过一些练习题的形式,巩固学生对于频率和概率的掌握情况。

比如:一批裁判员对两个击球手的投球速度进行测试,测试结果如下表所示:击球手投球速度甲 19秒 20秒 21秒 22秒 23秒乙 19秒 20秒 21秒 22秒 23秒 24秒请问,甲乙两位选手的投球速度在22秒到23秒之间的可能性大吗?五、总结与反思在教学结束时,教师可以让学生总结和归纳今天学习的内容,并且让学生对自己的学习过程进行一些反思。

3.1.1频率与概率-导学案

3.1.1频率与概率-导学案

频率与概率使用说明:1.阅读探究课本122119 p 页的基础知识,自主高效预习,提升自己的阅读理解能力;2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成本学案内容。

【学习目标】1.了解随机事件发生的不确定性和频率的稳定性,并能通过做大量重复试验,用频率对某些随机事件的概率作出估计,进一步理解随机事件概率的意义.2.掌握频率与概率的联系与区别.3.运用概率思想和概率的意义,对日常生活中的现象作出合理解释,并澄清日常生活中存在的一些错误认识,突出概率的应用价值. 【重点难点】重点:1.理解随机事件发生的不确定性和频率的稳定性。

2.正确理解概率的意义。

难点:1.对概率含义的正确理解.2.理解频率与概率的关系.一、知识链接1.什么是必然事件? 2什么是不可能事件? 3.什么是确定事件? 4.什么是随机事件? 二.教材助读1.频率的稳定性在随机事件中,虽然每次试验的结果都是随机的,无法预测的,但是随机事件的发生 并非是完全没有规律。

随着试验次数的增加,隐含的规律会逐渐显现,事件出现的_________会逐渐稳定到某一个值,这就是频率的_____________. 2.频率与概率之间的关系什么是事件A 的频率与概率?3.频率与概率的区别与联系有哪些?三、预习自测1.下列说法中,随机事件是( )A.导体通电发热B. 某人射击一次中靶C.抛一块石头下落D.在常温下,焊锡熔化2.从12个同类产品中(其中10个正品;2个次品) 中任意抽取3个的必然事件是( ) A. 3个都是正品 B.至少有1个是次品 C.3个都是次品 D.至少有1个是正品 3.下列说法正确的是( )A. 频率就是概率B. 频率是确定的数,而概率有不确定性C. 可以由频率近似得到概率D. 以上说法都不正确4.事件A 的概率P 满足( )A .P=0B .P=1C .0≦P ≦1D .0<P <1基础知识探究1.课本P120页,思考交流:在上面掷图钉的活动中,随着试验次数的增加,出现”钉尖朝上”的频率在这个常数附近的摆动幅度是否一定越来越小?预习案 探究案综合应用探究2.某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多少?中10环的概率约为多少?【当堂检测】1.下列事件中,不可能事件是()A.抛一枚硬币,正面朝上B.若a,b,c都是实数,则a.(bc)=(ab).cC.在标准大气压下且温度低于0时,冰融化D.某一天内电话收到的呼叫次数为02.下列说法正确的是()A.任一事件的概率总在(0,1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对3.对某电视机厂生产的电视机进行抽样检测的数据下抽取数n501002003005001000优等品数m4092192285478954频率m/n(1)计算表中优等品的频率;(2)该厂生产的电视机优等品的概率是多少?我的收获。

九年级数学上册-北师大版九年级上册数学 3.2 用频率估计概率导学案2

九年级数学上册-北师大版九年级上册数学      3.2  用频率估计概率导学案2

3.2 用频率估计概率一、读一读(学习目标)1.经历实验、统计等活动过程,在活动中进一步发展合作交流的意识和能力。

2.通过实验,理解当实验次数较大时实验频率稳于理论概率,并可根据此估计某一事件发生的概率。

二、试一试 1.知识回顾(1)在考察中,每个对象出现的次数称为 _,而每个对象出现的次数与总次数的比值称为 (2)某种事件在同一条件下可能发生,也可能不发生,表示发生的可能性大小的量叫做 2.认真阅读课本69页—71页的内容完成下列活动。

活动内容1:摸牌活动. 每组两张,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,称为一次试验.(1)估计一次试验中。

两张牌的牌面数字和可能有哪些值?(2)以同桌为单位,每人做30次实验,根据实验结果填写下面的表格:(因课堂时间有限,为了节约时间,建议当堂课挑选两名同学分两组完成此次试验)牌面数字和 2 3 4 频数 频率(3)根据上表,估计哪种情况的频率最大?(4)计算两张牌的牌面数字和等于3的频率是多少?(5)四个同学组成一组,分别汇总其中两人、三人、四人、五人、六人的试验数据,相应得到试验60次、90次、120次、150次、180次时两张牌的牌面数字之和等于3的频率,填写下表:活动2:分组讨论问题1:在上面的试验中,你发现了什么?如果继续增加试验次数呢?与其他小组交流你的发现与结论。

问题2:请同学们估计,当试验次数很大时,两张牌的牌面数字和等于3的频率大约有多大?试验次数 60 90 120 150 180 两张牌面数字和等于3的频数两张牌面数字和等于3的频率问题3:你能用我们所学过的知识计算出两张牌的牌面数字和为3的概率吗?通过以上的活动1和活动2从而得出大的一般性结论是:三、练一练1..下列有关概率的说法中正确的是()A.掷一枚均匀的硬币,出现正面和反面的概率相同B.因为购买彩票时有“中奖”与“不中奖”两种情况,所以购买彩票中奖的概率1 2C.掷一枚均匀的正方体骰子,每一种点数出现的概率都是16,所以没投掷六次,肯定出现一次6点D.某种彩票的中奖概率是1﹪,买100张这样的彩票一定中奖。

人教版九年级数学上册 25.3 用频率估计概率 精品导学案2 新人教版

人教版九年级数学上册 25.3 用频率估计概率 精品导学案2 新人教版

用频率估计概率 学习目标:知识和技能:能利用估计的概率来解决实际问题。

2、过程和方法:(1)接触并了解到设计实验进行频率估计的方法。

(2)了解模拟实验的方法,会设计模拟实验去估计概率。

3、 情感、态度、价值观:(1)了解频率估计概率的必要性。

(2)通过利用频率来估计概率,再利用概率解决实际问题,让学生明白学习概率的意义,提高他们学习的积极性。

学习重点:用频率估计概率的方法。

学习难点:理解用频率估计概率的依据(频率稳定性定理)。

导学过程一、课前预习:阅读教材第143页有关内容,思考下列问题:学习了本学时的内容后,你能总结出用频率的稳定趋势估计概率的依据吗?二、课堂导学:1、导入王叔叔承包了鱼塘养鱼,到了收获时期,他想知道池塘里大约有多少条鱼,于是他先捞出1000条鱼,将他们做上标记,然后放回鱼塘,经过一段时间后,待有标记的鱼完全混合于鱼群后,从中捕捞出150条鱼,发现有标记的鱼有3条,利用以上信息,他能估计池塘内约有多少条鱼吗?出示任务、自主学习能利用估计的概率来解决实际问题。

合作探究阅读教材第143页有关内容,回答下列问题:1). “问题1”从表中发现,幼树移植成活的频率在______左右摆动?2). 随着统计数值的增加,规律越来越明显,所以幼树移植成活的概率为:_______________?3).“问题1”中所求的是实际问题中的一种概率,但是这个概率是否可以根据概率的定义求解?4).对于“问题1”中所有的概率,只能选用什么方法来求解?三、展示反馈1.完成《问题导学》132“自主测评”1---32. 一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有8个,黄、白色小球的数目相等.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,再次搅匀……多次试验发现摸到红球的频率是16,则估计黄色小球的数目是( ) A .2个 B .20个 C .40个 D .48个四、学习小结:有些事件发生的概率无法用概率的定义获得,只能通过做大量的重复试验,用频率估计概率。

导学案 8.3(2)

导学案 8.3(2)

课题 8.3频率与概率(2)八年级班姓名:评价:总编号:0011一、学习目标:1.认识到在实际生活中,人们常把试验次数很大时,事件发生的频率作为概率的估计值;2.初步体会到出现机会的均等与试验结果是否具有等可能性的关系;3.通过试验,加深对频率与概率的关系的理解二、预习课(时段:晚自习时间: 30分钟)新知认识:(5分钟)在硬地上掷1枚图钉,通常会出现哪些情况?你认为这两种情况的机会均等吗?自研新知:自学课本47至48页,回答下列问题并写下疑惑摘要.定向导学(探究合作)(25分钟)导学一:概念认识[学法指导]交流,思考,回答问题:活动一数学实验室:在硬地上掷1枚图钉,通常会出现两种情况:钉尖着地,钉尖不着地;(1)任意掷1枚图钉,你认为是“钉尖着地”的可能性大,还是“钉尖不着地”的可能性大?(2)做“掷图钉试验”,每人掷1枚图钉20次,分别汇总5人、10人、15人、…、50人……的试验结果,并将试验数据填入下表:(3)根据上表,完成下面的折线统计图:(4)观察所画的折线统计图,你发现了什么?并与同学交流 三、展示课(时段: 正课,时间: 45 分钟)(互动展示,质疑评价,内容·方式· )展示单元一: 抛一枚均匀的硬币100次,若出现正面的次数为45次,那么出现正面的频率是 .展示单元二: 两人在玩“石头”、“剪刀”、“布”的游戏中,那么石头胜的概率为( ) A. 81 B .92 C. 41 D. 31展示单元三:某灯泡厂在一次质量检查中,从2 000个灯泡中随机抽查了100个,其中有10个不合格,则出现不合格灯泡的频率是 ,在这2 000个灯泡中,估计有 个为不合格产品.展示单元四:一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、 鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_______尾,鲢鱼_______尾.展示单元五:某口袋中有红、黄、蓝色玻璃球共80个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的概率分别是35%、25%和40%,估计袋中三种玻璃球各有 个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.3频率与概率的关系(2)(导学案)
五中 陈晓梅
教学目标
1.理解频率与概率的区别与联系.
2.能运用事件发生的频率估计事件发生的概率.
3.会计算简单事件的概率.
4.通过积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.
教学过程:
一 解决疑惑 。

二、二者的意义
1、频率:在相同条件下重复n 次实验,事件A 发生的次数m 与实验总次数n 的比值。

注意:频率在一定程度上可以反映随机事件发生的可能性的大小,但频率本身是随机的,在实验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复实验的条件下可以近似地作为这个事件的概率。

2、概率:事件A 的频率n
m 接近与某个常数,这时就把这个常数叫做事件A
的概率,记做P (A )。

注意:①概率是随机事件发生的可能性的大小的数量反映;②概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同;③必然事件与不可能事件可以看作随机事件的两种特殊情况,因此,任何事件发生的概率都满足0≤P (A )P (A )≤1,必然事件的概率是1,不可能事件的概率是0。

3、频率与概率的区别与联系
频率和概率是研究随机事件发生的可能性大小常用的特征量,从定义可以得到二者的联系,可用大量重复实验中的发生频率来估计事件发生的可能性,另一方面,大量重复实验中事件发的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同实验次数而有所不同,是概率的近似值,二者不能简单地等同。

4、应用
在实际生活中,我们常用频率来估计概率,在大量重复的实验中发现频率接近于哪个数,把这个数作为概率。

概率是理论性的东西,频率是实践性的东西,理论应该联系实际,因此我们可以通过大量重复的实验,用一个事件发生的频率来估计这一事件发的概率。

5 学生自行总结
6 解决180习题1,2。

相关文档
最新文档