3.2平面直角坐标系(第1课时)

合集下载

北师大版数学八年级上册3.2平面直角坐标系(第一课时)说课稿

北师大版数学八年级上册3.2平面直角坐标系(第一课时)说课稿
二、学情分析导
(一)学生特点
本节课面向的是八年级学生,这一年龄段的学生正处于青春期,思维活跃,好奇心强,具有一定的独立思考和探究能力。在认知水平上,他们已经掌握了平面几何的基本知识,具有一定的空间想象能力,但对于抽象的坐标系概念可能还不够熟悉。在学习兴趣方面,学生对新颖有趣、富有挑战性的内容较为感兴趣,喜欢通过动手实践来学习新知识。然而,部分学生的学习习惯还需进一步培养,如自主学习、合作交流等方面的能力。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.创设生情境,引入坐标系的概念,使学生认识到数学知识在实际生活中的应用,提高学习兴趣。
2.设计丰富的教学活动,如小组讨论、动手操作、竞赛等,激发学生的学习积极性。
3.利用多媒体教学手段,如课件、动画等,直观展示坐标系知识,提高学生的学习兴趣和效果。
2.对学生的共性问题进行总结,并在下一节课中进行针对性的讲解和巩固。
3.定期对教学计划进行评估,确保教学内容与学生的实际需求相符合。
4.针对不同层次的学生,设置不同难度的任务,使每位学生都能在完成任务的过程中获得成就感,增强学习自信心。
5.结合学生的兴趣爱好,设计相关的问题或案例,让学生在解决问题中感受到学习的乐趣。
三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括启发式教学法、任务驱动法和合作学习法。这些方法的理论依据如下:
(2)通过问题解决,培养学生的观察能力、逻辑思维能力和空间想象能力。
3.情感态度与价值观目标
(1)激发学生学习数学的兴趣,增强对数学学科的好奇心和求知欲。
(2)培养学生严谨、细致的学习态度,提高合作交流能力。
(3)使学生认识到数学知识在实际生活中的应用,增强数学学习的实用性。

北师大版数学八年级上册3.2平面直角坐标系(第1课时)优秀教学案例

北师大版数学八年级上册3.2平面直角坐标系(第1课时)优秀教学案例
2.小组成员之间相互讨论、交流,分享各自的想法和发现,培养团队协作能力和交流表达能力。
3.组织小组汇报,让各小组展示自己的研究成果,其他小组进行评价和提问,从而促进知识的内化和巩固。
(四)反思与评价
1.鼓励学生在学习过程中进行自我反思,总结自己在解决问题时的成功经验和不足之处,以便在今后的学习中取得更好的效果。
2.创设具有挑战性的问题情景,如寻找宝藏游戏、机器人行走路径等,让学生在解决问题的过程中,自然地引入坐标概念,增强学习的积极性。
3.利用多媒体、教具等辅助手段,直观演示坐标系的建立过程,帮助学生形象地理解坐标与图形之间的关系,提高课堂参与度。
(二)题导向
1.设计具有启发性的问题,引导学生思考,如:“如何在平面内表示一个点的位置?”“如何通过坐标解决实际问题?”等,培养学生的问题意识和探究精神。
3.针对本节课的重点、难点,进行总结梳理,帮助学生巩固所学知识。
(五)作业小结
1.课后作业:
-根据课堂所学,绘制一幅学校平面图,并用坐标表示各建筑物的位置。
-完成教材课后习题,巩固坐标与图形之间的关系。
2.作业要求:
-认真完成作业,规范书写,养成良好的学习习惯。
-遇到问题及时向同学或老师请教,提高问题解决能力。
4.倡导合作、互助、共享的精神,使学生学会尊重他人、关心集体,形成良好的道德品质。
5.鼓励学生勇于面对挑战,不怕困难,培养积极向上的心态和坚韧不拔的精神。
三、教学策略
(一)情景创设
1.以生活中的实际情景为背景,如地图上的位置表示、停车场车辆的定位等,引导学生感知平面直角坐标系在现实中的应用,激发学生的学习兴趣。
二、教学目标
(一)知识与技能
1.理解平面直角坐标系的概念,掌握坐标轴、坐标点、坐标值等基本要素。

平面直角坐标系(第一课时)

平面直角坐标系(第一课时)

《3.2.1 平面直角坐标系》教学设计一、内容和内容解析“平面直角坐标系”是北师大版数学八年级上册第三章“位置与坐标”第二节,既是对小学阶段“图形与位置”的延续,又是初中阶段“图形与坐标”的开端,在此之前,教材分别从“图形的性质”的角度研究了线段,角,平行线,三角形;又从“图形的变换”的角度研究了轴对称,本章是第一次以“图形与坐标”的角度来研究几何图形,研究对象则是几何图形中最简单的“点”.将“点”放在平面直角坐标系中,同时又是从性质与变换两个角度出发,也反映了知识之间的内在联系. “平面直角坐标系”是“数轴”的发展,使点与坐标的对应关系顺利实现了从一维到二维的过渡.“平面直角坐标系”的建立使有序数对与平面内的点产生了一一对应,提供了用代数方法来研究几何问题的重要数学工具,因此本章也是本册书下一章“一次函数”的重要基础.上一节课,学生在具体情境中学习了有序数对表示物体的位置.本节课先介绍数轴上点与坐标的一一对应,在此基础上说明建立平面直角坐标系的必要性以及合理性,同时引入相关的概念,以及平面内点与坐标是一一对应的结论,并在此基础上,由对于坐标系平面内的任何一点,我们可以确定它的坐标.反过来,对于任何一个坐标,可以在坐标平面内确定它所表示的一个点,从而建立坐标平面内点与有序数对的一一对应,体现数形结合的思想.基于以上内容分析,本节课的教学重点为:平面直角坐标系相关概念及点的坐标.二、目标和目标解析课程标准对本节课的具体要求是探索并理解平面直角坐标系及其应用,理解平面直角坐标系的有关概念,能画出直角坐标系,在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标.根据课标,依据八年级学生已有的知识结构,确定本节课的目标为:(1)经历建立平面直角坐标系的过程,进一步认识平面上的点与坐标的关系.(2)理解平面直角坐标系的相关概念,在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.(3)通过对具体问题的探究活动,进一步发展数形结合意识,初步建立几何直观.目标解析1. 让学生理解建立平面直角坐标系的必要性,体会到平面内点与有序数对的“一一对应”:给一个坐标,就有唯一确定的点与之对应;反之,给一个点,就有唯一确定的坐标与之对应.在给定的平面直角坐标系中,学生会由点的位置写出点的坐标,由点的坐标确定点的位置.2.让学生理解平面直角坐标系中两条数轴一般具备的特征:互相垂直;原点重合;取向右、向上为正方向.能在平面直角坐标系中理解x轴(横轴)、y轴(纵轴)、原点、坐标、象限等相关概念.三、学生学情分析平面内点的坐标是根据数轴上点的坐标来定义的,平面内点与坐标的对应关系虽然与数轴上点与坐标的对应关系类似,但学生毕竟在认识上第一次从一维空间过渡到二维空间,因此理解建立直角坐标系的必要性、体会其中蕴含的点与坐标的一一对应关系都比较困难. 上一节课“确定位置”是在具体情境中认识物体位置与有序实数对的对应,学生易于理解,但由具体情境抽象出平面直角坐标系中点与坐标的一一对应,要求学生有较强的抽象思维能力.因此,本节课的教学难点是:理解建立平面直角坐标系的必要性,体会平面直角坐标系中点与坐标的一一对应关系.四、教学策略分析1.让学生经历建立直角坐标系的过程,在此基础上通过简单数学活动让学生掌握了平面直角坐标系的两个基本问题:①已知点写坐标②已知坐标描点,同时渗透了数形结合的数学思想,数与形的相互转化加深了学生对点与坐标的理解.2.本节课内容比较简单,我采用学生自主探究与教师启发引导相结合的教学方法. 从问题情境引入,引导学生建立平面直角坐标系,再由学生自主探究得到由点写坐标和根据坐标描点的方法,整堂课的教学中,都立足于在学生已有知识的基础上,进一步发展提高,并有针对性的解决学生的难点,最大限度地调动学生的积极性,使学生有足够机会展示思维、发展个性.五、教学过程设计(一)复习回顾问题1:确定位置的四个方法.问题2:在一条直线上确定一个点的位置,我们借助了什么数学工具?【设计意图】从学生熟悉的问题出发,一个数来表示数轴上一个点的坐标,那么如何表示平面上的一个点的位置呢?使学生顺利地实现从一维到二维的过渡,进而指出了建立平面直角坐标系的必要性. 问题的设置为引出平面直角坐标系作铺垫.(二)情境引入出示一张周边位置示意图,请你利用上节课学习的确定位置的方法来介绍几个具体的位置.【设计意图】学生在没有任何工具的帮助下,表述出具体的位置是有难度的,引入网格,学生表述已有的位置则非常方便,这个时候再出现网格外部的点,让学生体会到网格表述位置的局限性,很自然的想到了数轴,引出平面直角坐标系.(二)探究新知1. 平面直角坐标系及相关概念.【师生活动】(1)在网格纸上建立平面直角坐标系,类比数轴的学习,认识平面直角坐标系的相关概念.(2)简单介绍平面直角坐标系的由来.(3)下面关于平面直角坐标系的画法正确的是()A.B.-11yx OC.-11yxOD.-11yxO【设计意图】用类比数轴的方法,帮助同学们顺利地完成知识的迁移过程,通过正反例对概念的辨析加深对概念的理解.2. 点的坐标【师生活动】已知平面直角坐标系上的一点,写出它的坐标,已知一个坐标,在平面直角坐标系上找到对应的点.【设计意图】观察与实践相结合,引导学生归纳总结出由点写坐标以及由坐标找点的方法,提高学生归纳概括的能力,并通过具体操作加深理解.(三)随堂练习(1).写出下图中的多边形ABCDEF各个顶点的坐标.(2).请在平面直角坐标系中描出下列各数对所对应的点:A(-5,0),B(1,4),C(3,3), D(1,0),E(3,-3),F(1,-4);依次连A,B,C,D,E,F,A,你得到什么图形?(3). 体会原点和单位长度的可选择性.【师生活动】在前面已有的问题情境中,改变原点和单位长度,相同的点对应的坐标是否发生变化?相同的坐标对应的点又是否发生变化?再出示教材61页知识技能3:如图,五个学生正在做游戏,建立适当的直角坐标系,写出这五个学生所在位置的坐标.【设计意图】让同学们通过自己建立直角坐标系,感受利用直角坐标系刻画平面上点的位置,单位长度、原点、方向的选择直接影响着最终的结果,加深学生对直角坐标系中的原点、单位长度可选择性的认识.(四)知识梳理1.通过本节课的研究你学习了有关平面直角坐标系的哪些概念?由点找坐标的方法和由坐标找点的方法分别是什么?2.我们是如何学习的?在学习概念的时候类比了什么?通过学习你对数形结合的思想是否又有了个深刻的认识?3.我们学习了直角坐标系以及平面上点的坐标,你想不想更深入的研究不同位置的点的坐标的特征?以及图形的变化会给坐标带来怎么样的变化?【设计意图】通过知识的梳理,让学生对所学的知识有一个清晰的脉络.(五)布置作业1.查阅资料,了解平面直角坐标系的来历;2.试着建立直角坐标系来描述你的学校各建筑物所在的位置.板书设计3.2.1平面直角坐标系平面直角坐标系直线上一点实数图形(形)一一对应(数)坐标平面上一点有序实数对(坐标)。

3.2平面直角坐标系(1)

3.2平面直角坐标系(1)

想一想:
如图:点B与C 的纵坐标相同, 1、线段BC的位 置有什么特点?
2、线段CE的位 置有什么特点? 3、坐标轴上的 点的坐标有什么 特点?
个性展示
(1)与x轴平行的直线上的点的纵坐标相同;与y 轴平行的直线上的点的横坐标相同; (2)坐标轴上的点的坐标中至少有一个是0;横 轴上的点的坐标为(a,0),纵轴上的点的坐标 为(0,y). (3)第一象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-)
5.点M(0,-4)的位置在 ( ) A.第二象限 B.第三象限 C.第四象限 D.不在任何象限 6.点P到轴距离是1,到轴距离是2,则P点坐标为 ( ) A (2,1) B (1,2) C (-2,1) D (2,1)(-2,1)(-2,-1)(2,-1) 7.如图3等腰△ABC的腰长为2,底边BC=4,以BC 所在的直线为x轴,BC的垂直平分线为y轴建立如 图所示的直角坐标系,则B( )、C( )、 A( ).
8.如图,在所给的直角坐标系中,作出点A(2,3),B(3,-5),C(0,-3),D(-2,-4)的点,并答出点P、 G、M的坐标.
3.2平面直角坐标系 (1)
八年级数学组 倪印刚
什么是数轴?
规定了原点、正方向、单位长度的直线 就叫做数轴。
单位长度
原点
2 1 0 -1
-3 -2 -1 0 1 2 3 4
·
数轴上的点A表示数1.
B D A C
我们说数1是点A在数轴上
的坐标。 同理可知,
0 1 5
数轴上的点与
点B在数轴上的坐标是-3; 点D在数轴上坐标是0.
纵轴
y 5 4 3 2 1
第二象限
第一象限

八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系教案 新版北师大版

八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系教案 新版北师大版

八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系教案新版北师大版一. 教材分析《新版北师大版八年级数学上册3.2平面直角坐标系》这一章节主要介绍了平面直角坐标系的概念、点的坐标、以及坐标轴上的点的坐标特征。

本节课的内容是学生在学习了函数图像的基础上进一步对平面直角坐标系进行深入的了解,为后续学习直线、抛物线等知识打下基础。

二. 学情分析八年级的学生已经掌握了函数图像的基本知识,对坐标系有了一定的认识。

但是,对于平面直角坐标系的严谨定义和坐标系的运用还存在一定的困难。

因此,在教学过程中,需要教师引导学生逐步理解并掌握平面直角坐标系的概念和运用。

三. 教学目标1.理解平面直角坐标系的定义和构成。

2.掌握点的坐标的概念及其表示方法。

3.能够正确判断坐标轴上的点的坐标特征。

4.能够运用平面直角坐标系解决简单问题。

四. 教学重难点1.平面直角坐标系的定义和构成。

2.点的坐标的表示方法。

3.坐标轴上的点的坐标特征的判断。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过自主学习、合作交流,掌握平面直角坐标系的知识。

六. 教学准备1.PPT课件2.平面直角坐标系的模型3.坐标轴上的点的坐标示例七. 教学过程1.导入(5分钟)利用PPT课件展示一个实际问题:某商店在一条东西街道上,街道是南北方向的,商店的位置如何用坐标表示?引导学生思考并引入平面直角坐标系的概念。

2.呈现(10分钟)讲解平面直角坐标系的定义和构成,用PPT课件展示平面直角坐标系的图像,并用模型进行实地展示,让学生直观地理解平面直角坐标系。

3.操练(10分钟)讲解点的坐标的表示方法,用PPT课件展示坐标轴上的点的坐标示例,让学生动手操作,判断坐标轴上的点的坐标特征。

4.巩固(10分钟)用PPT课件展示一些关于平面直角坐标系的练习题,让学生独立完成,巩固所学知识。

5.拓展(10分钟)引导学生思考:如何用平面直角坐标系解决实际问题?让学生分组讨论,每组选一个实际问题进行分析和解答。

八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系说课稿(新版北师大版)

八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系说课稿(新版北师大版)

八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系说课稿(新版北师大版)一. 教材分析平面直角坐标系是八年级数学上册第三章第二节的内容,本节课的主要内容有:平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法以及坐标轴上的点的坐标特征。

这部分内容是学生学习函数、几何等数学知识的基础,对于学生来说具有重要的意义。

二. 学情分析学生在七年级时已经学习了坐标轴和坐标的初步知识,对本节课的内容有一定的了解。

但是,对于平面直角坐标系的定义,坐标轴和坐标点的概念,以及坐标轴上的点的坐标特征等知识,还需要进一步的讲解和巩固。

此外,学生对于实际问题中的坐标系应用还不够熟悉,需要通过实例来加强理解和运用。

三. 说教学目标1.知识与技能:理解平面直角坐标系的定义,掌握坐标轴和坐标点的概念,学会表示坐标,并能判断坐标轴上的点的坐标特征。

2.过程与方法:通过实例和练习,培养学生的空间想象能力,提高学生解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和探究精神。

四. 说教学重难点1.重点:平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法。

2.难点:坐标轴上的点的坐标特征的判断,以及坐标系在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法和合作学习法,引导学生主动探究,提高学生的学习兴趣和参与度。

2.教学手段:利用多媒体课件和教具,直观展示平面直角坐标系,帮助学生理解和记忆。

六. 说教学过程1.导入:通过问题驱动,引导学生回顾七年级学过的坐标轴和坐标点的知识,为新课的学习做好铺垫。

2.新课讲解:讲解平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法,以及坐标轴上的点的坐标特征。

通过实例和练习,让学生加深对知识的理解。

3.课堂互动:学生进行小组讨论,分享学习心得,解答疑难问题。

4.练习巩固:布置一些具有代表性的题目,让学生独立完成,检验学习效果。

初中北师大版数学八年级上册3.2【教学设计】《 平面直角坐标系》

初中北师大版数学八年级上册3.2【教学设计】《 平面直角坐标系》

《平面直角坐标系》第1课时《平面直角坐标系》是八年级上册第五章《位置与坐标》第二节内容。

本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。

《平面直角坐标系》反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。

因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。

【知识与能力目标】1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;2、认识并能画出平面直角坐标系;3、能在给定的直角坐标系中,由点的位置写出它的坐标。

【过程与方法目标】1.通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。

【情感态度价值观目标】由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。

【教学重点】1.理解平面直角坐标系的有关知识;2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标;3.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。

【教学难点】1.横(或纵)坐标相同的点的连线与坐标轴的关系的探究;2.坐标轴上点的坐标有什么特点的总结。

学生每人准备好草稿纸、铅笔、直尺;教师准备课件,图片,三角板。

北师大版八年级数学上册3.2.1平面直角坐标系(第1课时)课件(共15张PPT)

北师大版八年级数学上册3.2.1平面直角坐标系(第1课时)课件(共15张PPT)
4、如何在平面直角坐标系中找到有序数对所对应的点?
-3
如何表示平面直角坐标系中的点?
1.平面直角坐标系中,点P(3,5)与Q(5,3)是同一个点吗?
纵轴(y轴)
3.如何表示平面直角坐标
系中的点?
3
过点A分别向x轴、y轴作垂
线,垂足在x轴、y轴所对
2
应的数3、2分别叫做点A
Hale Waihona Puke 的横坐标、纵坐标,有序1
数对(3,2)叫做点A的坐
标。
-3 -2 -1 0
有序数对横坐标在 -1 -2
前,纵坐标在后。 -3
A 1 2 3 4 横轴(x轴)
巩固练习 纵轴(y轴)
请写出下列A、B、C、
B
D、E、F各点的坐标
3
A
A(2,3) B(0,3) C(-2,1) D(-2,0) E(-2,-2)
2
C
1
-3 -2 D -1 0
1 2 3 4 横轴(x轴)
2 平面直角坐标系 2、完成课本60页随堂练习
-3
能够正确画出直角坐标系;
有序数对横坐标在前,纵坐标在后。
第一象限
23
第四象限
4 横轴(x轴)
巩固练习 纵轴(y轴)
A(-2,0) B(0,-3)
C(3,-3) D(4,0) EB(3,3) F(0,3)
两条互相平垂面直且上有的公共点原A点,的数B轴,C,D,

11
自学课本,回答下列问题
1. 平面内 两条互相垂直且有公共原点的数轴组成
平面直角坐标系, 水平的数轴 叫x轴(横轴),
取向 右为正方向, 铅直的数轴 叫y轴(纵轴),
取向 上为正方向。
两轴的交点是 原点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2平面直角坐标系(第一课时)
鲁山十中鲍艳晓
一、教学目标
1、知识与技能目标:理解平面直角坐标系、横轴、纵轴、原点、坐标等概念,学会画平面直角坐标系,并能在所给的平面直角坐标系中,由点的位置写出它的坐标。

2、过程方法目标:通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,培养学生的探索意识和能力。

3、由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的联系,让学生认识到数学与人类生活的密切联系,提高学生参加数学活动的积极性和好奇心。

二、重点、难点
1、教学重点:平面直角坐标系和点的坐标.
2、教学难点:在平面直角坐标系中根据点的位置写出点的坐标,由坐标描出点
三、教学设计思路解析
通过创设问题情境,引出要研究的问题,以自学的方式让学生掌握本节课的基础知识.又通过简单应用,让学生掌握了平面直角坐标系的两个基本问题:①已知点求坐标②已知坐标描点.
四、教学过程
(一)、提出问题,导入新课
(设计说明:在学生已有知识的基础上,让学生进一步认识到利用数轴可以确定直线上点的位置,但平面内点的位置利用数轴已无法解决,由此引出新课.)问题:
1、什么是数轴?
2、如图,写出数轴上A和B两点所对应的数,反过来,描出数-4,0和1所对应的点.
3、我们已经知道,平面内点的位置的确定需要两个数,而借用一条数轴只能确定直线上的点的位置,那么平面内的点我们借用几条数轴来确定它的位置呢?
(教学说明:由学生熟悉的数轴出发,给出数轴上点的坐标的定义,建立点与坐标的对应关系,从而得到确定直线上点的位置的方法.而平面内点的坐标是根据数轴上的点的坐标定义的,因此本节从数轴引入,使学生顺利地实现由一维到二维的过渡.)
(二)、探索新知,解决问题
(设计说明:让学生带着问题阅读课文,既能加深对知识的理解,又能培养学生的自学能力.)
1、让学生带着以下问题预习课本“思考”以下的内容.
(1)什么是平面直角坐标系?
(2)在平面直角坐标系中,什么是横轴、纵轴、原点?
(3)在坐标平面内如何求一个点的坐标?
2、检查自学结果,明确概念
(1)平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系.
(2)水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y 轴或纵轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点.
(3)点的坐标:由该点出发向x轴作垂线,交在x轴上的点表示的数是几,这个数就是该点的横坐标;同样,由该点出发向y轴作垂线,交在y轴上的点表示的数是几,这个数就是该点的纵坐标.
注意:(1)画平面直角坐标系时,别忘了标x轴、y轴的正方向及x轴、y 轴的名称.
(2)写坐标时要加括号,括号内先横后纵,中间用逗号隔开,如(2,3).
(教学说明:平面直角坐标系的产生是法国数学家迪卡尔的伟大发现,里边涉及到的概念很难引导学生自己得出,因此可以通过自学的方式让学生掌握这些知识.)
3.简单应用
课本本节练习题1、2.
(教学说明:在给定的平面直角坐标系中,能根据点的位置写出点的坐标,能利用点的坐标描出点的位置是本节应该达到的基本要求 .此练习主要训练了学生的这一基本能力.特别说明在利用点的坐标描出点的位置时,以一个点为例详细介绍描点的方法,如描出点N(-6,2),先在x轴上找出表示-6的点,再在y轴上找出表示2的点,过这两个点分别作x轴和y轴的垂线,两垂线的交点就是点N.)
(三)、巩固训练,熟练技能:
(设计说明:通过形式不同的练习,帮助学生进一步理解平面直角坐标系的有关概念,提高学生根据点的位置写出点的坐标的能力.)
1.在平面内,两条的数轴组成平面直角坐标系;
2.两条数轴通常分别置于位置与位置,取与的方向分别为两条数轴的正方向,水平的数轴叫做或,竖直的数轴叫做或,其交点O称为;
3.如图,人头左边嘴角的坐标是()
A、(1,-1)
B、(-3,-1)
C、(-1,1)
D、(-1,-3)
4.如图,六边形ABCDEF
各个顶点的坐标依次

(教学说明:1,2、题重点巩固平面直角坐标系的有关概念.3、4题考查学生能否根据点的位置写出点的坐标,因为坐标系放在方格之中,所以降低了难度,学生能轻松解决.)
(四)、总结反思,情意发展
(设计说明:围绕三个问题,师生共同总结本节课的学习收获。


问题1:平面直角坐标系及其相关概念;
问题2:在坐标平面内如何求一个点的坐标?
问题3:已知点的坐标,如何在坐标平面内描出这个点?
(教学说明:以上设计通过对三个问题的思考引导学生回顾自己的学习过程,教师和学生一起补充完善,使学生进一步理解所学的知识.)(五)、课堂小结
1.本节主要学习了平面直角坐标系及其相关概念。

2.主要用到的思想方法是数形结合思想。

3.注意的问题:
⑴平面直角坐标系的两个基本问题:①已知点求坐标②已知坐标描点
(2)画平面直角坐标系时,别忘了标x轴、y轴的正方向及x轴、y 轴的名
称.
(3)写坐标时要加括号,括号内先横后纵,中间用逗号隔开,如(2,3).
五、教学建议
本教学设计从学生已有的知识入手,引出要想表示平面内的点的位置需要新的知识,也就是平面直角坐标系.通过学生自学理解了平面直角坐标系及其相关概念,在此基础上通过简单应用让学生掌握了平面直角坐标系的两个基本问题:①已知点求坐标②已知坐标描点,同时渗透了数形结合的数学思想,数与形的相互转化加深了学生对点与坐标的理解
本教学设计体现了新课程的教学理念,学生在教师的引导下进行自主学习,自主探究,重视学生的思维过程,并给学生留有发挥的余地。

相关文档
最新文档